Machine Learning for Fundamental Physics School 2024

US/Pacific
Aishik Ghosh, Benjamin Nachman, Elham E Khoda
Description

The Machine Learning for Fundamental Physics (ML4FP) School will be hosted at Lawrence Berkeley National Laboratory. All talks and tutorials will be given in person, and participants can register to participate in-person or virtually. Following two very successful US ATLAS Machine Learning (ML) training events in 2022 and 2023, this year the program is open to all of particle physics. NERSC will provide training accounts with GPU nodes for registered participants. Thanks to the financial assistance provided by US ATLAS through the ATC program, US ATLAS students will be eligible for financial assistance with housing during their stay. There will also be a dedicated parallel session for ATLAS specific ML skills.

There is no registration fees for this school. The total number of registrations for each participation mode will be capped, so please register as soon as possible!

 

Getting to the School

From the Guest House 
Participants staying at the Guest House can walk directly from the Guest House to the School venue: B66. The walk takes around 15 minutes and is described in this map.

From Berkeley:
Participants staying in Berkeley are advised to take the Blue LBL shuttle line up the hill until the B62/66 shuttle stop. 

 

Overview:

We will introduce fundamental concepts of machine learning accompanied by hands-on tutorials of the essential open-source ML packages. The program will cover particle physics specific use cases and deployment of the trained models in C++ software (eg. Athena) / FPGAs, with lots of hands-on examples. There will be invited talks from veteran ML experts in HEP who have previously deployed ML for different tasks in experiments.

Attendees can expect to gain an overview of the range of current and upcoming ML applications in HEP, and also learn some of the particle physics specific tricks that an ML practitioner picks up from experience. We will try to address the typical ML questions that often come up in analysis meetings.

Tentative topics to be covered (many will include a hands-on component):

  • Introduction to Machine Learning
  • Introduction to standard open-source ML packages like Scikit-learn, XGBoost, Keras and Pytorch
  • Overview of ML in particle physics
  • Practitioners guide to handling particle physics datasets
  • Generative Models
  • Neural Simulation-Based Inference
  • Uncertainty treatment
  • Unfolding
  • Exploiting symmetries in physics data
  • Graph Neural Networks in particle physics 
  • Transformers and LLMs
  • Differentiable Programming
  • Deploying NNs in C++ and python: ONNX Runtime 
  • Deploying NNs on FPGA: Quantization, Model prunnning and compression, HLS4ML

The full agenda will be made public closer to the event.

Industry Talk:

In previous years we had speakers from Nvidia (Jaideep Pathak) and Amazon (Chen Luo) talk about their transition to industry and their research work in these companies. We will invite another exciting speaker this year from industry.

Computing Resources:

In-person participants will be guaranteed computing resources for the hands-on sessions thanks to NERSC. Virtual participants will be giving access on a first come first serve basis. 

Networking:

The inaugural program led to new collaborative projects in ATLAS. This training program will again be a platform for young ML enthusiasts to connect with one another and with veteran ML experts in HEP.

Tutorial git:

Github link: https://github.com/ml4fp/2024-lbnl

Zoom: See Day 5 session links

 

Discussions:
Join the slack workspace to discuss and ask questions about the tutorials, particularly for remote participants.

Slack joining link: https://join.slack.com/t/ml4fp/shared_invite/zt-2nhv0qhts-pkH3Qf30YomavTOn3MP_nw

 

 

Organizing team:

Aishik Ghosh, he/him/they/them (UCI & LBL)

Elham E Khoda (SDSC/UCSD)

Benjamin Nachman (LBL)

Steven Farrell (NERSC/LBL)

Sascha Diefenbacher (LBL)

Oz Amram (Fermilab)

Maris Arthurs (SLAC)

Daniel Whiteson (UCI)

Shih-Chieh Hsu (UW)

 

 

Participants
  • aaron mankel
  • Abdulhafiz Ahmed Mustofa
  • Abdullah Younus
  • Abhishikth Mallampalli
  • Ahmed Abdelmotteleb
  • Aiham Al Musalhi
  • Ajay Kaladharan
  • Alejandro Cobo
  • Alo Chakravarty
  • Aman Desai
  • AMAN Gupta
  • Anas Farahat
  • Andrea Lizeth Lopez Rodriguez
  • Andrea Sainz Bear
  • Andrew Wiebe
  • Andrews Peter
  • André Aimé ATANGANA LIKENE
  • ANKUR SINGHA
  • Antonett Prado
  • Aurora Kiefer
  • Austin Mullins
  • Avik Das
  • Baker Wong
  • Bhawani Singh
  • Bouchra El Alaoui
  • Carlos Romero
  • Caue Evangelista
  • Chandramauli Agrawal
  • Chi Lung Cheng
  • Christos Vergis
  • Chukwuebuka Ezeokeke
  • Con Muangkod
  • Daniel Estrada Acevedo
  • Daniel Felea
  • Daniela Hikari Yano
  • Datao Gong
  • Devin Aebi
  • Diego Figueiredo
  • Dinesh Kumar
  • Dipak Maity
  • Divyajyoti Pandey
  • Divyansh Tripathi
  • Duong Nguyen
  • Eda Erdoğan
  • Ehizojie Ali
  • Elie Hammou
  • Emmanuel Botero Osorio
  • Erdem Yigit Ertorer
  • Ethan Lee
  • Fabian Andres Castaño Usuga
  • Franz Glessgen
  • Gabriel Matos
  • Gursharan Singh
  • Hadi Hashamipour
  • hamza harraf
  • Haoxuan Sun
  • Harisree Krishnamoorthy
  • Haritha P.E
  • HECTOR VELAZQUEZ
  • Hemida Hamed Hemida Mohammed
  • Isaac Rosenberg
  • Jack Simoni
  • Jae Jin Hong
  • Jaime Calderon
  • Jake Rudolph
  • James Kingston
  • Jan-Frederik Schulte
  • Jay Shen
  • Jieun Yoo
  • Johannes Wagner
  • Jordán Daniel Santillan Morales
  • Jose Monroy
  • Juan Esteban Ospina Holguín
  • Junsong Lin
  • Kaicheng Zhang
  • Keila Moral Figueroa
  • Kevin Cardenas
  • Kevin Mota Amarilo
  • Kevin Wood
  • Kousar Shaheen
  • Kuldeep Deka
  • Kyla Langotsky
  • Laboni Das
  • Lacey Dishman
  • Longfei Hu
  • Luca Mantani
  • Lucas Kang
  • Lázaro Raúl Díaz Lievano
  • Mahesh Kumar Saini
  • Manasa Ranjan Sahoo
  • Manoj Yadav
  • Manuel Morales-Alvarado
  • Maria Vittoria Garzelli
  • Mariano Dominguez
  • Marina Kholodenko
  • Marina Prvan
  • Marium Ghulam Nabi
  • Mark Costantini
  • Matheus da Costa Geraldes
  • Matt Foresi
  • Mayra Silva
  • Mazen Nairat
  • Miduo GUO
  • Milo Buitrago-Casas
  • Mohammed ABDELLAOUI
  • Mohammed Aboelela
  • Mohammed Attia Mahmoud
  • Moira Venegas
  • Muhammad saiel
  • Muhammad Zuhaib Khan
  • Nakul Aggarwal
  • Nan Lu
  • Natalya Melnikova
  • Nathan Suri
  • Naveen Baghel
  • Nihar Ranjan Saha
  • Orçun Kolay
  • Osama Dawood
  • osman bayraktar
  • Owen Young
  • Pablo Gordon
  • Pau Solé Vilaró
  • Pellegrino Piantadosi
  • Phan Nguyen
  • Prachi Sharma
  • Pritvik Sinhadc
  • Qiuping Shen
  • Rahul Agrawal
  • Rami Slim
  • Ranzivelle Marianne Roxas-Villanueva
  • Raymond Wynne
  • Ricardo Paredes
  • Riccardo Manfredi
  • Riya Bisht
  • Rogelio Orozco
  • Roger Huang
  • Rohit Raj
  • Rudina Osmanaj (Zeqirllari)
  • Rupul Chandna
  • Saksevul Arias Santiz
  • Samarendra Nayak
  • Sandeep Pradhan
  • Sanjit Masanam
  • Santosh Bhandari
  • Sayan Chatterjee
  • Sayantan Dutta
  • Sebastián Reyes
  • Sergei Kholodenko
  • Shafiq Ur Rehman
  • Shauvik Biswas
  • Shuo Yuan
  • Simone Gasperini
  • Simón González Gómez
  • Sneh Shuchi
  • Stefan Katsarov
  • Stephen Greenberg
  • Suman Das Gupta
  • Sumit Keshri
  • SURBHI KHETRAPAL
  • Swagata Ghosh
  • SWETA BARADIA
  • Taha Afzal
  • Tananan Anansubying
  • Tapasi Ghosh
  • Tia Charaf
  • Timofei Babenko
  • Tongguang Cheng
  • Vinay Hegde
  • Vincent Riechers
  • Wanyue Wang
  • xiaolong he
  • xinyue geng
  • Yahya Khwaira
  • Yanxi Gu
  • Yasser Mohammed
  • Yibo Zhong
  • Yue Wang
  • Zhenglaing Guo
  • Zhou Li
  • +212