
Differentiable Programming
Sean Gasiorowski (SLAC)
sgaz@slac.stanford.edu

August 14th, 2024

Machine Learning for Fundamental Physics School 2024
Lawrence Berkeley National Laboratory

mailto:sgaz@slac.stanford.edu
mailto:sgaz@slac.stanford.edu

Outline:
Talk:

• What is differentiable programming/why do we care?

• Basics of automatic differentiation

• Tips and tricks

Tutorial:

• Fitting parameters with differentiable programming

• How to deal with hard edges

• Differentiable pipelines: simulators and neural networks

2

What is Differentiable Programming?

3

Machine Learning
Neural networks are the backbone of modern machine learning

4
Protein Folding

Large Language Models

Image Generation

Semantic Segmentation

https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://openai.com/index/chatgpt/
https://openai.com/index/chatgpt/
https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-2/
https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-2/
https://thegradient.pub/semantic-segmentation/
https://thegradient.pub/semantic-segmentation/

How do machines learn?
When we train a neural network, what’s happening?

5

h(i)(x) = ϕ(i)(wTx + b)

Activation Function

Weights
Biases

How do machines learn?

6

h(i)(x) = ϕ(i)(wTx + b)

Activation Function

Weights
Biases

Ruder, link

NN weights and biases are adjusted to
minimize a loss function using an
optimizer

When we train a neural network, what’s happening?

https://www.ruder.io/optimizing-gradient-descent/
https://www.ruder.io/optimizing-gradient-descent/

Breaking down an optimizer
E.g. supervised learning:

• Data with labels:

• Model: (parameters)

• Element-wise loss (e.g. squared error, cross-entropy):

Gradient descent: Minimize total loss . At iteration :

• Compute gradient

• Update model weights as: , where is a
learning rate controlling the size of the gradient step.

• Negative gradient gives (local) direction of steepest descent

{(xi, yi)}N
i=1

h(xi; w) w

ℒi(w) ≡ ℒ(yi, h(xi; w))

ℒ(w) =
1
N

N

∑
i=1

ℒi(w) t

∇wℒ(w(t))

w(t+1) = w(t) − η ⋅ ∇wℒ(w(t)) η

7

Breaking down an optimizer
Gradient descent is the foundation of most common optimizers

• In practice: stochastic/mini-batch gradient descent is used

• Cost of full gradient descent scales with the number of samples: 

• Instead, compute each update over a randomly sampled data point/batch of points

• Unbiased estimator of full gradient: on average moves in the right direction

• Benefits: less costly to compute/faster, randomness may help break out of local minima

• Common extensions: momentum, Adam, RMSProp, …

∇wℒ(w) =
1
N

N

∑
i=1

∇wℒi(w)

8

Why gradients?
Gradient-based optimizers have been used to train
models with (at least) O(1011) parameters

• => works well for high dimensional optimization

• Batch methods/SGD => scalable with dataset size

• Gradients are easy to compute

9

https://arxiv.org/abs/2005.14165

https://arxiv.org/abs/1802.10026

Link

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1802.10026
https://arxiv.org/abs/1802.10026
https://towardsdatascience.com/parameter-counts-in-machine-learning-a312dc4753d0
https://towardsdatascience.com/parameter-counts-in-machine-learning-a312dc4753d0

How to Compute Gradients
Popularity of gradient-based methods => good toolkits for computing gradients!

• Fundamental component of common ML libraries

• All use a common technique: automatic differentiation

• a.k.a. backpropagation (for neural networks), autodiff, autograd, AD

10

Nature 323, 533-536 (1986)

http://www.apple.com
http://www.apple.com

Neural networks are just code
Machine learning libraries are able to efficiently calculate
gradients with respect to neural network parameters

• Neural networks are just differentiable functions

• Why stop at neural networks?

• Differentiable programming: use ML libraries to write
code (neural networks, but also e.g. exact physics
simulators)

• The same techniques that enable neural network
training can be used to calculate gradients with
respect to code parameters

11

Why do we care?

12

Simulators are very important to HEP, but we often
only use inputs and outputs

• Differentiable simulators can be directly used in
ML pipelines — explicitly use physics, rather
than relying on examples!

• Gradient information can be used to augment
simulator output

• Fits of simulation to data can be used to
understand and adjust underlying processes (e.g.
detector conditions/calibration)

Analysis workflows feature many parameters (cuts,
binning) that are often painstakingly tuned

• Differentiable programming can make optimizing
these many parameters possible

True Inputs

Simulated
Outputs

Analysis

Differentiable
Programming

Differentiable Programming: Applications

13

Neutrino Simulation MadJAX

HEP Analysis

Climate Forecasting

Cosmology

Flavor Tagging

https://iopscience.iop.org/article/10.1088/2632-2153/ad2cf0
https://iopscience.iop.org/article/10.1088/2632-2153/ad2cf0
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012137
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012137
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012105
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012105
https://www.nature.com/articles/s41586-024-07744-y
https://www.nature.com/articles/s41586-024-07744-y
https://arxiv.org/abs/2105.05859v3
https://arxiv.org/abs/2105.05859v3
https://arxiv.org/abs/2310.12804
https://arxiv.org/abs/2310.12804

Differentiable Programming: Applications

14

Neutrino Simulation MadJAX

HEP Analysis

Climate Forecasting

Cosmology

Flavor Tagging

Lots of interest in the community + lots of potential for
applications!

https://iopscience.iop.org/article/10.1088/2632-2153/ad2cf0
https://iopscience.iop.org/article/10.1088/2632-2153/ad2cf0
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012137
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012137
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012105
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012105
https://www.nature.com/articles/s41586-024-07744-y
https://www.nature.com/articles/s41586-024-07744-y
https://arxiv.org/abs/2105.05859v3
https://arxiv.org/abs/2105.05859v3
https://arxiv.org/abs/2310.12804
https://arxiv.org/abs/2310.12804

How does it work: Automatic Differentiation

15

Ways to Compute Derivatives of Code

16

Baydin, Pearlmutter, Radul,
Siskind. 2018. “Automatic
Differentiation in Machine
Learning: a Survey.” Journal of
Machine Learning Research
(JMLR)

Section modified from
M. Kagan

Ways to Compute Derivatives of Code

17

Automatic differentiation:

• Principle: break down arbitrary computer program into a graph of fundamental operations with known
derivatives

• Exact gradient calculation, broadly applicable

• Scales well! Gradient cost ~ original code cost

• e.g. neural networks (), forward + backward pass (gradients) ~2x cost of just forward (no
gradients)

f : ℝn → ℝ

Ways to Compute Derivatives of Code

18

Symbolic

Manual differentiation:

• Derive expression by hand, then code it up

• Can be useful, but also labor intensive, case-by-case

Ways to Compute Derivatives of Code

19

Symbolic differentiation:

• e.g. Mathematica, SymPy

• Gets messy/costly with number of terms

• Only applicable to closed form expressions (no control flow)

Ways to Compute Derivatives of Code

20

Numerical differentiation (finite differences):

• ,

• Blows up with input dimensionality (one function eval per basis vector)

• Approximation errors from choices of

∂f(x)
∂xi

≈
f(x + hei) − f(x)

h
0 < h ≪ 1

ei

h

Automatic Differentiation: The Chain Rule in Disguise

21

Example:

• Represent as a computational graph showing all
operations, dependencies

log(a ⋅ b)f(a, b) = log(a ⋅ b)

∇f(a, b) = (1
a

,
1
b)

Automatic Differentiation: The Chain Rule in Disguise

22
“Primals”: intermediate function values

Normal (forward) evaluation of the code for values of , results in a set of intermediate values (primals) at
each stage of the computation

a b

Automatic Differentiation: The Chain Rule in Disguise

23

Derivatives

The final result is a composition of the primal
operations. The derivative of the final result is a
product of the derivatives of each operation (via
the chain rule).

Automatic Differentiation: The Chain Rule in Disguise

24
InnerOuter

Different modes of automatic differentiation <=> different order of evaluation of terms in the chain rule

• Forward mode AD: Inner (inputs) to outer (end result)

Automatic Differentiation: The Chain Rule in Disguise

25
InnerOuter

Different modes of automatic differentiation <=> different order of evaluation of terms in the chain rule

• Reverse mode AD (cf. backprop): Outer (end result) to inner (inputs)

Automatic Differentiation: Forward vs Reverse Mode

26

Forward mode:
Compute primals and derivatives on single
forward pass: follow the evaluation flow.

Additional sweep needed for each
independent variable (e.g. b vs a)

Reverse mode:
Compute and store primals on forward
pass, compute and accumulate derivatives
on backward pass

Additional sweep for needed for each
dependent variable (e.g. multiple outputs)

Automatic Differentiation: Forward vs Reverse Mode

27

Reverse mode:
Compute and store primals on forward
pass, compute and accumulate derivatives
on backward pass

Additional sweep for needed for each
dependent variable (e.g. multiple outputs)

Neural networks usually have large number of inputs, small
number of outputs (e.g. scalar loss function)

• => backpropagation <=> reverse mode AD more
efficient

How to compute efficiently?

28

df(x)
dx

=

∂f1
∂x1

⋯ ∂f1
∂xN

⋮ ⋱ ⋮
∂fM
∂x1

⋯ ∂fM
∂xN

f(x) : ℝN → ℝM

Forward mode (single
evaluation):
Derivatives of all outputs
w.r.t. one input => column of
Jacobian matrix

M

df(x)
dx

=

∂f1
∂x1

⋯ ∂f1
∂xN

⋮ ⋱ ⋮
∂fM
∂x1

⋯ ∂fM
∂xN

Reverse mode (single
evaluation):
Derivatives of one output

w.r.t. inputs => row of
Jacobian matrix

N

How to compute efficiently?

29

df(x)
dx

=

∂f1
∂x1

⋯ ∂f1
∂xN

⋮ ⋱ ⋮
∂fM
∂x1

⋯ ∂fM
∂xN

f(x) : ℝN → ℝM

Forward mode (single
evaluation):
Derivatives of all outputs
w.r.t. one input => column of
Jacobian matrix

M

Relevant column can be extracted by multiplying by an
appropriate basis vector:

Forward mode AD <=> Jacobian-vector product (JVP)

df(x)
dx

=

∂f1
∂x1

⋯ ∂f1
∂xN

⋮ ⋱ ⋮
∂fM
∂x1

⋯ ∂fM
∂xN

How to compute efficiently?

30

f(x) : ℝN → ℝM

Reverse mode (single
evaluation):
Derivatives of one output w.r.t.

 inputs => row of Jacobian
matrix
N

Relevant row can be extracted by multiplying by an
appropriate basis vector:

Reverse mode AD <=> vector-Jacobian product (VJP)

How to compute efficiently?

31

Chain Rule: Jacobian matrix of function composition is product of Jacobian matrices of constituent functions

• e.g.:

• Vector-Jacobian/Jacobian-vector product for elementary operations + composition => gradient computation

• See e.g. https://theoryandpractice.org/stats-ds-book/autodiff-tutorial.html for explicit examples

Jf∘g(x) = Jf(g(x)) ⋅ Jg(x)

Video: L. Heinrich

https://theoryandpractice.org/stats-ds-book/autodiff-tutorial.html
https://theoryandpractice.org/stats-ds-book/autodiff-tutorial.html

Tips and tricks

32

Things to know: Frameworks and Advantages
Much of the modern ML ecosystem is in Python

• Advantages: Quick start/ease of use, compatibility with other pieces of ML code

• Disadvantages:

• Designed for neural networks/interpreted => loops can be slow

• Mixed support for e.g. compilation, forward mode AD, etc

Rising interest in Julia:

• Community of AD support (e.g. Enzyme), potential performance advantages

33

https://github.com/EnzymeAD/Enzyme
https://github.com/EnzymeAD/Enzyme

Things to know: Differentiability
Not everything is (trivially/usefully) differentiable!

• But some workarounds/ways to get useful derivative information

34

Branched processesHard cuts Histograms

https://arxiv.org/abs/2308.16680
https://arxiv.org/abs/2308.16680
https://iopscience.iop.org/article/10.1088/2632-2153/ad2cf0
https://iopscience.iop.org/article/10.1088/2632-2153/ad2cf0
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012105
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012105

Some Common Issues
Gradients can do a lot! But there’s still some engineering involved in getting a good optimization:

My convergence is slow:

• Play with batching, explore GPU (multi-GPU) acceleration

• Experiment with different learning rates and optimizers

My optimization gets stuck at local minima:

• Check for model degeneracies/decouple parameters

• Start with a good guess

My convergence is unstable (e.g. sensitive to learning rate choice):

• Apply constraints: parameter/gradient clipping, loss modification/regularization

• Second order optimization

Everything breaks on real data:

• Calibrate the simulation (make it more like real data)

• Learn effects not in the simulation using, e.g., neural networks
35Modified from Y. Nashed

Conclusions + Comments on Tutorial
Differentiable programming represents a broad class of tools including (but not limited to!) neural networks

• Can use common ML tools to write exact physics code that is optimizable both on its own and in conjunction
with neural networks

• Automatic differentiation is just a clever use of the chain rule

Tutorial:

• Please pull/start with a fresh clone: https://github.com/ml4fp/2024-lbnl/tree/main

• “diffprog” folder

• Use pytorch-2.0.1

36

https://github.com/ml4fp/2024-lbnl/tree/main
https://github.com/ml4fp/2024-lbnl/tree/main

