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Outline:

Talk:
* What is differentiable programming/why do we care?
* Basics of automatic differentiation
* Tips and tricks
Tutorial:
* Fitting parameters with differentiable programming
* How to deal with hard edges

* Differentiable pipelines: simulators and neural networks
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What is Differentiable Programming?
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Machine Learning

Neural networks are the backbone of modern machine learning
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How do machines learn?

When we train a neural network, what’s happening?
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How do machines learn?

When we train a neural network, what’s happening?
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Breaking down an optimizer

E.g. supervised learning:
. Data with labels: {(x;, yl-)}ﬁ.\; q
« Model: ii(x;; W) (parameters w)

* Element-wise loss (e.g. squared error, cross-entropy):

Zw) = Z(y;, h(x;; W)

| &
Gradient descent: Minimize total loss &£ (w) = ~ Z Z(w). At iteration #:
i=1

. Compute gradient V, Z(w®)

. Update model weights as: W/t = w® — . V_ #(w?), where 57 is a
learning rate controlling the size of the gradient step.

* Negative gradient gives (local) direction of steepest descent

L(w),
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Breaking down an optimizer

Gradient descent is the foundation of most common optimizers
* In practice: stochastic/mini-batch gradient descent is used

« Cost of full gradient descent scales with the number of samples:

1 N
Vy W) =— D) Vo, Zw)
i=1

* Instead, compute each update over a randomly sampled data point/batch of points
* Unbiased estimator of full gradient: on average moves in the right direction
* Benefits: less costly to compute/faster, randomness may help break out of local minima

* Common extensions: momentum, Adam, RMSProp, ...
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Why gradients?

Gradient-based optimizers have been used to train
models with (at least) O(1011) parameters

» => works well for high dimensional optimization
 Batch methods/SGD => scalable with dataset size

* Gradients are easy to compute

Parameter count of ML systems through time

1.06544 Domain
1.0e+13 A O Games
[ Language
0 Other
1.0e+12 0 2 4 Vision
1.0e+11 PR = B

MODE CONNECTIVITY

1.0e+10

1.0849 S el "aéﬁf‘g https://arxiv.org/abs/1802.10026

1.0e+7 ) B —oems o

Parameters

B Details of Model Training

1.00+1 To train all versions of GPT-3, we use Adam with 8; = 0.9, 8 = 0.95, and € = 10~8

1.0e+0
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Publication date Link https://arxiv.org/abs/2005.14165


https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1802.10026
https://arxiv.org/abs/1802.10026
https://towardsdatascience.com/parameter-counts-in-machine-learning-a312dc4753d0
https://towardsdatascience.com/parameter-counts-in-machine-learning-a312dc4753d0

How to Compute Gradients

Popularity of gradient-based methods => good toolkits for computing gradients!

* Fundamental component of common ML libraries
* All use a common technique: automatic differentiation

* a.k.a. backpropagation (for neural networks), autodiff, autograd, AD

Learning representations

by back-propagating errors : . P —|— h
David E. Rumelhart*, Geoffrey E. Hinton? y O rC

& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
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T Department of Computer Science, Carnegie-Mellon University, y /
Pittsburgh, Philadelphia 15213, USA
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We describe a new learning procedure, back-propagation, for

networks of neurone-like units. The procedure repeatedly adjusts

Nature 323, 533-536 (1986)
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Neural networks are just code

Machine learning libraries are able to efficiently calculate
gradients with respect to neural network parameters

* Neural networks are just differentiable functions
* Why stop at neural networks?

 Differentiable programming: use ML libraries to write
code (neural networks, but also e.g. exact physics
simulators)

* The same techniques that enable neural network
training can be used to calculate gradients with
respect to code parameters

(% Kyle Cranmer
&>

This is the way

. Machine Learning: Science and Technology

Great new work by Daniel Ratner @SeanGaz @codingkazu et al @SLAClab
@Stanford @APC_Laboratory @univ_paris_cite @CNRS -'Differentiable
#simulation of a liquid #argon time projection
chamber'-iopscience.iop.org/article/10.108... #machinelearning #HEP
#particlephysics #Al #neutrinos @DUNEScience

10P Publishing Mach. Learn.: Sci. Technol. 5 (2024) 025012 it 10i.0rg/10.1088/2¢
PAPER
@ CrossMark
Differentiable simulation of a liquid argon time projection
OPEN ACCESS
chamber
RECEIVED
4 October 2023 Sean Gasiorowski~* 7, Yifan Chen' ), Youssef Nashed' (, Pierre Granger (', Camelia Mironov' ),
''''''' Ka Vang Tsang' (0, Daniel Ratner' 0 and Kazuhiro Terao
19 January 2024
P p—— x SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States of America
20 February 2024 © Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France

Author to whom any correspondence should be addressed.
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Why do we care?

Simulators are very important to HEP, but we often
only use inputs and outputs

« Differentiable simulators can be directly used in
ML pipelines — explicitly use physics, rather
than relying on examples!

» Gradient information can be used to augment
simulator output

* Fits of simulation to data can be used to
understand and adjust underlying processes (e.g.
detector conditions/calibration)

Analysis workflows feature many parameters (cuts,
binning) that are often painstakingly tuned

« Differentiable programming can make optimizing
these many parameters possible

True Inputs

Simulated
Outputs

Differentiable

Programming

Analysis
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Differentiable Programming: Applications
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Differentiable Programming: Applications
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How does it work: Automatic Differentiation
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Ways to Compute Derivatives of Code

Section modified from
M. Kagan

Baydin, Pearlmutter, Radul,
Siskind. 2018. “Automatic
Differentiation in Machine
Learning: a Survey.” Journal of
Machine Learning Research
(JMLR)
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Iu+l = 4111(1 - l")

f(z) = lg = 64z(1 —)(1 —22)*(1 — 8z + 822)?

Coding

Manual
Differentiation

£f(x):
v=x
fori=1to3
v =4*xvx(1-v)
return v

or, in closed-form,

f(x):
return 64*x* (1-x)* ((1-2%x)"2)

*(1-8*x+8*x*x) "2

Symbolic
Differentiation

of the Closed-form

Automatic
Differentiation

Numerical
Differentiation

f2(x):
(v,dv) = (x,1)
fori=1to3
(v,dv) = (4*v*(1-v), 4=xdv-8*v*dv)
return (v,dv)

T (x.;) _/’"(:.I'ujl

Exact

f(z) = 128z(1 — z)(—8 + 16z)(1 — 2z)*(1 —
8z +8x2)+64(1 —x)(1 —2x)%(1 — 8z +8z%)% —
64z(1 — 22)?(1 — 8z + 8z2)% — 256z(1 — z) (1 —
2z)(1 — 8z + 8z2)?

Coding

NG INE

return 128*x* (1 - x)*(-8 + 16*x)
*((1 - 2%x) "2) *(1 - 8%*x + 8*x*x)
+64*%(1 - x)*((1 - 2*x)"2)*((1
- 8%x + 8*x#*x)"2) - (64*x*(1 -
2%x) "2)*(1 - 8%x + 8*x*x) "2 -
256%x* (1 - x)*(1 - 2*x) *(1 - 8*x
+ 8*x*x) "2

£’ (x0) = f'(z0)

Exact

f£i(x):
h =0.000001
return (f(x+h) -£(x)) /h

£ (x0) =~ f'(z0)

Approximate
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Ways to Compute Derivatives of Code

Automatic differentiation:

* Principle: break down arbitrary computer program into a graph of fundamental operations with known
derivatives

* Exact gradient calculation, broadly applicable
* Scales well! Gradient cost ~ original code cost

- e.g. neural networks (f : R" — R), forward + backward pass (gradients) ~2x cost of just forward (no

gradients)
d
f(a: b) . C m
c=a*hb
% 1o - d
d = log(c) \\E/
return d b

1l A
S 17



Ways to Compute Derivatives of Code

Manual differentiation:
* Derive expression by hand, then code it up

* Can be useful, but also labor intensive, case-by-case

N, \— —

Novel model Derive gradient

ol AR
= Ty o A

Use it
in a standard
optimization procedure
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Ways to Compute Derivatives of Code

Symbolic differentiation:

* e.g. Mathematica, SymPy

» Gets messy/costly with number of terms

* Only applicable to closed form expressions (no control flow)

Logisticmap /1 = 4lp(1 — Ip). }; = x

n 1, %l" T(i-l" (Simplified form)
1. 1 1
2 4z(1 —x) 41 —z) — 4x 4 — 8z

3 16z(1-z)(1-22)%> 16(1—=z)(1 —2z)% —162(1 —2z)% —
64z(1 — z)(1 — 2x)

4 64z(1-z)(1—22)%> 128z(1—z)(—8+16x)(1 —2x)3(1 —
(1 — 8z + 822%)2 8x+82%)+64(1—x)(1—2z)%(1—-8z+
812)? —64x(1—27)%(1—-8x+8z2)2 -

256z(1 — z)(1 — 2z)(1 — 8z + 8z2)?

16(1 — 10z + 2422 — 1623)

64(1 — 42z + 504x% — 264023 +
7040z* — 998425 + 71682° — 204827)

D[x*2, Xx]

2 X

Number of terms
600 —

500 —
400 —
300 —
200 —

100 —
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Ways to Compute Derivatives of Code

Numerical differentiation (finite differences):

o) f(x+he) —f(x)
© ox h

l

O<hx1

- Blows up with input dimensionality (one function eval per basis vector €;)

« Approximation errors from choices of &

/
Truncagion error
(19f11i11a11t

W;‘w , 4

dominant

= ——  Forward difference
— — - C(Center difference

Error
1012 101° 10 10° 10* 102 10°

I | | I ' | | |
107 10" 10" 10" 107 107 100 107

h
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Automatic Differentiation: The Chain Rule in Disguise

f(aa b) = log(a - b) Example: log(a - b)

* Represent as a computational graph showing all

Vf(a,b) = (l,l) operations, dependencies
a b
\ d
f(a, b): C
C = d * b sk :fl;g\ >
d = log(c) \_/

return d
b

21



Automatic Differentiation: The Chain Rule in Disguise

Normal (forward) evaluation of the code for values of a, b results in a set of intermediate values (primals) at
each stage of the computation

2
f(a, b) | ;
d, . C 1.791
c=a*b * (1o8) - d
d = log(c) _/
return d

£(2, 3) = 1.791

“Primals”: intermediate function values

ol AL 29
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Automatic Differentiation: The Chain Rule in Disguise

The final result is a composition of the primal
operations. The derivative of the final result is a

product of the derivatives of each operation (via Derivatives
the chain rule). /
2 dc —h=3
3~ da 6
f(a, b): C 1 791
c=a%*hb . /l;\ g
> g >
d = log(c) _/
return d
b~ dc 94 _1_ 0166
o =a=2 dc ¢
3 db
(2, 3) = 1.791
df(2,3) = [6.5, ©.333 p
( ’ ) [ ’ ] Chain Rule: gz = gi ga = 0.166 *3 = 0.5
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Automatic Differentiation: The Chain Rule in Disguise

Different modes of automatic differentiation <=> different order of evaluation of terms in the chain rule

* Forward mode AD: Inner (inputs) to outer (end result)

f(a, b):
c=a*hb
d = log(c)
return d

f(2, 3) = 1.791
df(2,3) = [0.5, ©.333]

o1 AL
OGN

od 1
b~ dc —=—=0.166
ETA a=2 dc ¢

3
Chain Rule: 2% =229 _ 11663 = 0.5
Jda dc da

Outer<—— Inner

24



Automatic Differentiation: The Chain Rule in Disguise

Different modes of automatic differentiation <=> different order of evaluation of terms in the chain rule

* Reverse mode AD (cf. backprop): Outer (end result) to inner (inputs)

2 X,y
f(a, b) ° N i
a, : C 1.791
c=a*b * * =I/1C:g\< - d
d = log(c) —/
return d ad 1
b - — =2=0.166
=a=2 dc C
L
f(2, 3) = 1.791
df(2,3) = [0.5, ©.333 c
(2,3) [ ? ] Chain Rule: Zz=gi§a=0.166*3=0.5

1AL

S-S Outer——"> Inner
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Automatic Differentiation: Forward vs Reverse Mode

Forward mode:
Compute primals and derivatives on single
forward pass: follow the evaluation flow.

Additional sweep needed for each
independent variable (e.g. b vs a)

o1 AL
OGN

Reverse mode:
Compute and store primals on forward
pass, compute and accumulate derivatives

on backward pass

Additional sweep for needed for each
dependent variable (e.g. multiple outputs) 26



Automatic Differentiation: Forward vs Reverse Mode

Neural networks usually have large number of inputs, small

number of outputs (e.g. scalar loss function) dc b= 3
—_— = p— 6
e => backpropagation <=> reverse mode AD more d N
efficient % /_\<

Reverse mode:
Compute and store primals on forward
pass, compute and accumulate derivatives

on backward pass

Additional sweep for needed for each
SLAC dependent variable (e.g. multiple outputs) 27
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How to compute efficiently?

f(x): RY - RM

Forward mode (single
df(x) evaluation):
= Derivatives of all M outputs
dx w.r.t. one input => column of
Jacobian matrix
Reverse mode (single
df(x) evaluation):
=1 : Derivatives of one output
dx oy, oy, w.r.t. Ninputs => row of
" oo T Jacobian matrix
\ 1 N )

D MNS
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How to compute efficiently?

f(x): RY - RM

ﬂ )
df(x) o
dx of,
a,
0]
- 0]
-
(@]

Forward mode (single
evaluation):

Derivatives of all M outputs
w.r.t. one input => column of
Jacobian matrix

Relevant column can be extracted by multiplying by an
appropriate basis vector:

Forward mode AD <=> Jacobian-vector product (JVP)

29



How to compute efficiently?

Reverse mode (single

df(X) evaluation):
— Derivatives of one output w.r.t.
dx oy, oy, N inPuts => row of Jacobian
_ case — matrix
\ 0x; 0Xy )

..-. Relevant row can be extracted by multiplying by an

[ [ | pElol1/ol [ | | | appropriate basis vector:

Reverse mode AD <=> vector-Jacobian product (VJP)

o1 AL
OGN



How to compute efficiently?

Chain Rule: Jacobian matrix of function composition is product of Jacobian matrices of constituent functions
e €.0.: Jfog(x) = Jf(g(X)) . Jg(X)

 Vector-Jacobian/Jacobian-vector product for elementary operations + composition => gradient computation

» See e.g. https://theoryandpractice.org/stats-ds-book/autodiff-tutorial.html for explicit examples

Ci Co Mel' - M3M2Mlel

SLAC Video: L. Heinrich

31
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Tips and tricks




Things to know: Frameworks and Advantages

Much of the modern ML ecosystem is in Python

« Advantages: Quick start/ease of use, compatibility with other pieces of ML code
* Disadvantages:
* Designed for neural networks/interpreted => loops can be slow
* Mixed support for e.g. compilation, forward mode AD, etc
Rising interest in Julia:

e Community of AD support (e.g. Enzyme), potential performance advantages

OPyTorch i

TensorFlow %

U



https://github.com/EnzymeAD/Enzyme
https://github.com/EnzymeAD/Enzyme

Things to know: Differentiability

Not everything is (trivially/usefully) differentiable!

« But some workarounds/ways to get useful derivative information

1.0+ —— Hard Mask (A > 0)
we Slgmold Mask, k=5
0.8 ~ Sigmold Mask, k =10
~ Sigmoid Mask, k = 20
— ~— Sigmoid Mask, k = 100
=< 0.6
@
3 Hard Mask:
£ 04 gA)=e?-(A>0)
0.2 Sigmoid Mask:
o -A . 1
g{A)-e ’ 1+et%
0.0
-2 =1 0 1 2 3 4 5
A
Hard cuts
[ad B V o~
o b M\

1”771 standard hist kernels
KDE bKDE
| data
-

bandwidth = bin width

Histograms

N

0.5 1.0 15 2.0 2.5 3.0 35
X

Branched processes

—2.25 1

—2.50 1

—2.75 1

—3.00 1

-3.25 1

-3.50

-3.75 1

—4.00 1

0.50 0.75 1.00 1.25 150 175 2.00 2.25
X
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Some Common Issues

Gradients can do a lot! But there’s still some engineering involved in getting a good optimization:

My convergence is slow:
* Play with batching, explore GPU (multi-GPU) acceleration
* Experiment with different learning rates and optimizers
My optimization gets stuck at local minima:
» Check for model degeneracies/decouple parameters
 Start with a good guess
My convergence is unstable (e.g. sensitive to learning rate choice):
* Apply constraints: parameter/gradient clipping, loss modification/regularization
» Second order optimization
Everything breaks on real data:
 Calibrate the simulation (make it more like real data)

* Learn effects not in the simulation using, e.g., neural networks
SLAC Modified from Y. Nashed 35



Conclusions + Comments on Tutorial

Differentiable programming represents a broad class of tools including (but not limited to!) neural networks

« Can use common ML tools to write exact physics code that is optimizable both on its own and in conjunction
with neural networks

* Automatic differentiation is just a clever use of the chain rule

Tutorial:

* Please pull/start with a fresh clone: https://github.com/ml4fp/2024-Ibnl/tree/main

 “diffprog” folder
* Use pytorch-2.0.1

36
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