

Unfolding Data with Machine Learning

Vinicius Mikuni

What we measure

What we want

Traditional methods for unfolding use histograms

3

Source: MITHIG-MOD-21-001

 $a_i = \mathbf{R}_{ij}b_j$

R_{ii} is the response matrix: **P(observed in bin i | true in bin j)**

Traditional methods for **unfolding** use **histograms**

40

30

Gen Jet E (GeV)

Reco Jet E (GeV)

Source: MITHIG-MOD-21-001

5

 $a_{i} = R_{ij}b_{j}$ $a_{i} = R_{ij}b_{j}$ $R_{ij} \text{ is the response matrix: } P(observed in bin i | true in bin j)$ $Traditional unfolding is all about inverting the matrix R_{ij}$

Traditional methods for **unfolding** use **histograms**

How to define the **optimal binning**?

- Choice depends on the distribution and phase space
- Need to compromise when **combining** results from **different experiments**

How to define the **optimal binning**?

- Choice depends on the distribution and phase space
- Need to compromise when **combining** results from **different experiments**

How to include **multiple distributions**?

- Histograms are hard to scale: curse of dimensionality
- Unfolding uncertainties can be reduced using additional observables

7

How to define the **optimal binning**?

- Choice depends on the distribution and phase space
- Need to compromise when **combining** results from **different experiments**

How to include **multiple distributions**?

- Histograms are hard to scale: curse of dimensionality
- Unfolding uncertainties can be reduced using additional observables

How to unfold distributions that are **not** defined for each event?

- Moments of distributions
- Energy Correlators

For unfolding using **invertible networks** see:

 SciPost Phys. 9 (2020) 074 e-Print: <u>2006.06685</u>

₩ G

Going beyond histograms: Omnifold*

ML is used to define a method for unfolding that is unbinned and can use multiple distributions at a time **2 step** iterative approach

- Simulated events after detector interaction are reweighted to match the data
- Create a "new simulation" by transforming weights to a proper function of the generated events

Machine learning is used to approximate **2** likelihood functions:

- reco MC to Data reweighting
- Previous and new Gen reweighting

* Andreassen et al. PRL 124, 182001 (2020)

Omnifold

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2024-132 May 31, 2024

A simultaneous unbinned differential cross section measurement of twenty-four Z+jets kinematic observables with the ATLAS detector

The ATLAS Collaboration

CMS Physics Analysis Summary

Contact: cms-pag-conveners-smp@cern.ch

2024/06/03

Measurement of event shapes in minimum bias events from pp collisions at 13 TeV

The CMS Collaboration

-6

FPH Omnifold

-4

Thrust $\ln(1-T)$

-2

Measurement of lepton-jet correlation in deep-inelastic scattering with the H1 detector using machine learning for unfolding

V. Andreev,²³ M. Arratia,³⁵ A. Baghdasaryan,⁴⁶ A. Baty,¹⁶ K. Begzsuren,³⁹ A. Belousov,^{23, *} A. Bolz,¹⁴ V. Boudry,³¹ G. Brandt,¹³ D. Britzger,²⁶ A. Buniatvan,⁶ L. Bystritskava,²² A.J. Campbell,¹⁴ K.B. Cantun Avila,⁴⁷ K. Cerny,²⁸ V. Chekelian,²⁶ Z. Chen,³⁷ J.G. Contreras,⁴⁷ L. Cunqueiro Mendez,²⁷ J. Cvach,³³ J.B. Dainton,¹⁹ K. Daum,⁴⁵ A. Deshpande,³⁸ C. Diaconu,²¹ G. Eckerlin,¹⁴ S. Egli,⁴³ E. Elsen,¹⁴ L. Favart,⁴ A. Fedotov,²² J. Feltesse,¹² M. Fleischer,¹⁴ A. Fomenko,²³ C. Gal,³⁸ J. Gayler,¹⁴ L. Goerlich,¹⁷ N. Gogitidze,²³ M. Gouzevitch,⁴² C. Grab.⁴⁹ T. Greenshaw,¹⁹ G. Grindhammer,²⁶ D. Haidt,¹⁴ R.C.W. Henderson,¹⁸ J. Hessler,²⁶ J. Hladký,³³ D. Hoffmann,²¹ R. Horisberger,⁴³ T. Hreus,⁵⁰ F. Huber,¹⁵ P.M. Jacobs,⁵ M. Jacquet,²⁹ T. Janssen,⁴ A.W. Jung,⁴⁴ H. Jung,¹⁴ M. Kapichine,¹⁰ J. Katzy,¹⁴ C. Kiesling,²⁶ M. Klein,¹⁹ C. Kleinwort,¹⁴ H.T. Klest,³⁸ R. Kogler,¹⁴ P. Kostka,¹⁹ J. Kretzschmar,¹⁹ D. Krücker,¹⁴ K. Krüger,¹⁴ M.P.J. Landon,²⁰ W. Lange,⁴⁸ P. Laycock,⁴¹ S.H. Lee,³ S. Levonian,¹⁴ W. Li,¹⁶ J. Lin,¹⁶ K. Lipka,¹⁴ B. List,¹⁴ J. List,¹⁴ B. Lobodzinski,²⁶ E. Malinovski,²³ H.-U. Martyn,¹ S.J. Maxfield,¹⁹ A. Mehta,¹⁹ A.B. Meyer,¹⁴ J. Meyer,¹⁴ S. Mikocki,¹⁷ M.M. Mondal,³⁸ A. Morozov,¹⁰ K. Müller,⁵⁰ B. Nachman,⁵ Th. Naumann,⁴⁸ P.R. Newman,⁶ C. Niebuhr,¹⁴ G. Nowak,¹⁷ J.E. Olsson,¹⁴ D. Ozerov.⁴³ S. Park.³⁸ C. Pascaud.²⁹ G.D. Patel.¹⁹ E. Perez.¹¹ A. Petrukhin.⁴² I. Picuric.³² D. Pitzl.¹⁴ R. Polifka,³⁴ S. Preins,³⁵ V. Radescu,³⁰ N. Raicevic,³² T. Ravdandori,³⁹ P. Reimer,³³ E. Rizvi,²⁰ P. Robmann,⁵⁰ R. Roosen,⁴ A. Rostovtsev,²⁵ M. Rotaru,⁷ D.P.C. Sankey,⁸ M. Sauter,¹⁵ E. Sauvan,^{21, 2} S. Schmitt,¹⁴ B.A. Schmookler,³⁸ L. Schoeffel,¹² A. Schöning,¹⁵ F. Sefkow,¹⁴ S. Shushkevich,²⁴ Y. Soloviev,²³ P. Sopicki,¹⁷ D. South.¹⁴ V. Spaskov.¹⁰ A. Specka.³¹ M. Steder.¹⁴ B. Stella.³⁶ U. Straumann.⁵⁰ C. Sun.³⁷ T. Sykora.³⁴ P.D. Thompson,⁶ D. Traynor,²⁰ B. Tseepeldorj,^{39,40} Z. Tu,⁴¹ A. Valkárová,³⁴ C. Vallée,²¹ P. Van Mechelen,⁴ D. Wegener,⁹ E. Wünsch,¹⁴ J. Žáček,³⁴ J. Zhang,³⁷ Z. Zhang,²⁹ R. Žlebčík,³⁴ H. Zohrabyan,⁴⁶ and F. Zomer²⁶ (The H1 Collaboration)

Increasing adoption by experimental collaborations: **ATLAS, CMS, H1, T2K, Aleph**

10

Data MC **Reco level**

()

Reco level

Iteration 1

Step 2:

- **Pull weights** from **step 1** to generator level events
- Train a classifier to separate **initial MC at gen level** from **reweighted MC** events
- Define a **new simulation** with weights that are a proper function of gen level kinematics

W(gen) = p_{weighted} MC(gen)/p_{MC}(gen)

Reco level

Omnifold

Iteration 1

Start again from **step 1** using the **new simulation** after **pushing** the weights from **step 2**

- Guaranteed convergence to the maximum likelihood estimate of the generator-level distribution when number of iterations go to infinite
- In practice, less than 10 iterations are enough to achieve convergence

Reco level

Iteration N

Start again from **step 1** using the **new simulation** after **pushing** the weights from **step 2**

- **Guaranteed convergence** to the maximum likelihood estimate of the generator-level distribution when number of iterations goes to infinite
- In practice, **less than 10 iterations** are enough to achieve convergence

Part 2 Applications

We are going to unfold **6 jet substructure observables** simultaneously using **OmniFold**

Only consider Z decaying to neutrinos: **mostly a single jet per event.**

-14 -12 -10 -8

Only consider Z decaying to neutrinos: **mostly a single jet per event.**

Phys. Rev. Lett. 124, 182001 (2020)

Soft Drop Jet Mass $\ln \rho$

-6

-4

-2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

N-subjettiness Ratio $\tau_{21}^{(\beta=1)}$

0.2

Groomed Jet Momentum Fraction z_a

0.3 0.4

0.0 0.1

THANKS!

Any questions?

Backup

Only consider Z decaying to neutrinos: **mostly a single jet per event.**

Observables:

- ▷ Jet mass
- Particle Multiplicity
- ▷ $\tau_{21} = \tau_2 / \tau_1$ see Energ. Phys. 2012, 93 (2012).
- ▷ Jet width (τ_1)
- $ightarrow \log \rho = 2 \log M_{SD}/p_T$
- ▷ Momentum fraction z_q after using Soft Drop