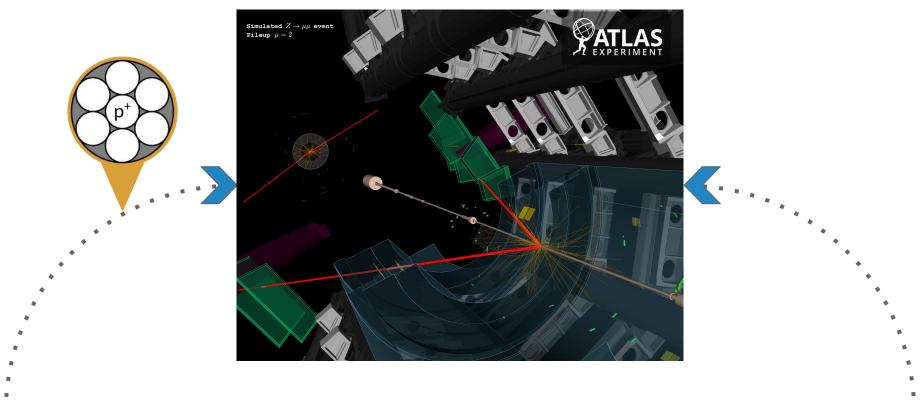
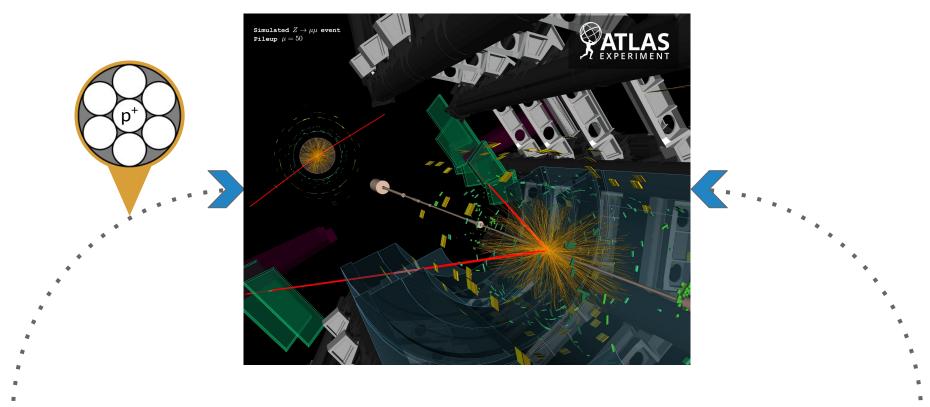


Optimal Transport Pileup Mitigation for Hadron Colliders

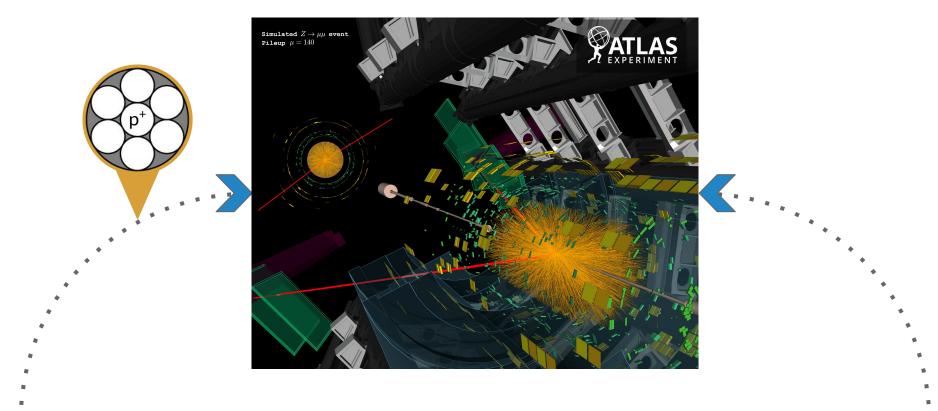
Nathan Suri, Vinicius Mikuni ML4FP 2024



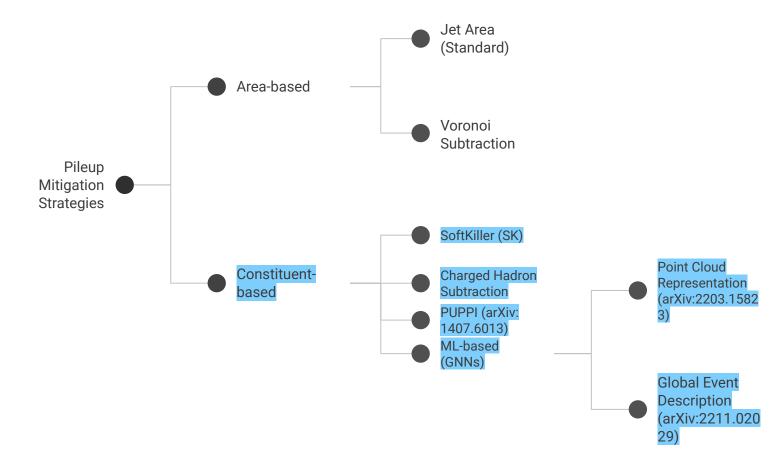
Charged + neutral pileup In-time + out-of-time pileup



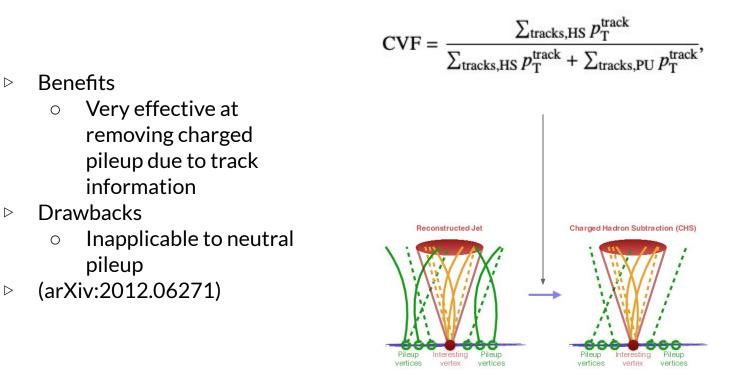
Charged + neutral pileup In-time + out-of-time pileup

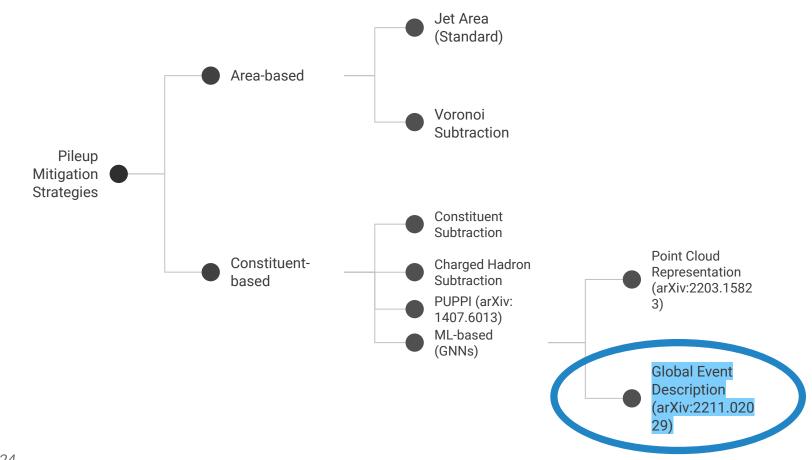


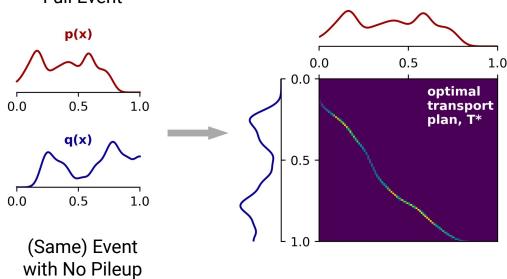
Charged + neutral pileup In-time + out-of-time pileup



Charged Hadron Subtraction



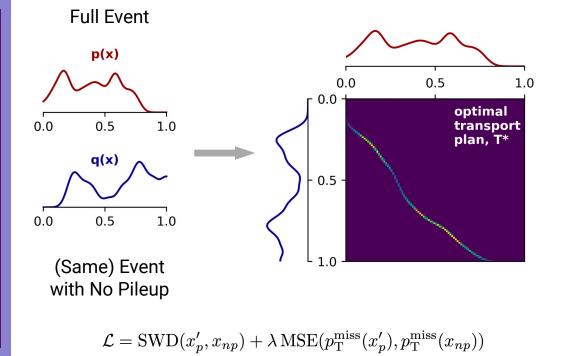




Full Event

 $\mathcal{L} = \text{SWD}(x'_p, x_{np}) + \lambda \operatorname{MSE}(p_{\mathrm{T}}^{\mathrm{miss}}(x'_p), p_{\mathrm{T}}^{\mathrm{miss}}(x_{np}))$

- The probability density is intractable, but we can approximate the density
- Realizations of the density are accessible
- Optimal transport over the space of inputs allows for approximation

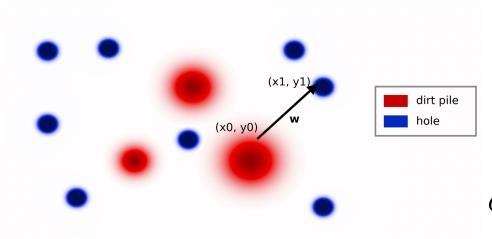


$\mathcal{L} = \text{SWD}(x'_p, x_{np}) + \lambda \operatorname{MSE}(p_{\mathrm{T}}^{\mathrm{miss}}(x'_p), p_{\mathrm{T}}^{\mathrm{miss}}(x_{np}))$

$$\mathcal{L} = \mathrm{SWD}(x'_p, x_{np})$$

- Wasserstein distance (WD): Finds the transport function that keeps hard scattering particles and removes those from simultaneous vertices
- Sliced WD to compensate for poor scaling of computational costs of calculating WD at high dimensions

Earth Mover's Distance = W_1



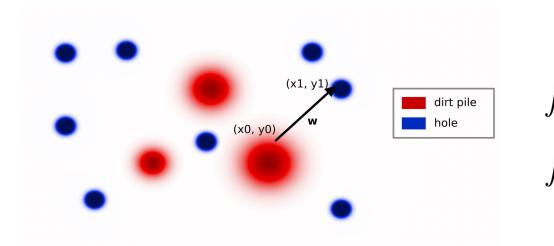
- Assumption: Total volume of the holes = total volume of the dirt piles
- Piles as the probability density function of P and holes as the probability density function of Q
- Per unit transportation cost:

$$C(x_0, y_0, x_1, y_1) = (x_0 - x_1)^2 + (y_0 - y_1)^2$$

Transportation Plan:

$$T(x_0, y_0, x_1, y_1) = w$$

Earth Mover's Distance = W_1



$$\int \int T(x_0, y_0, x, y) dx dy = p(x_0, y_0)$$

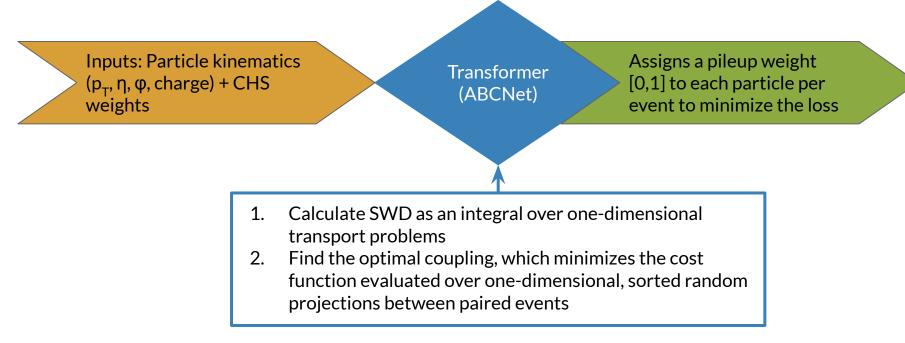
 $\int \int T(x, y, x_1, y_1) dx dy = q(x_1, y_1)$

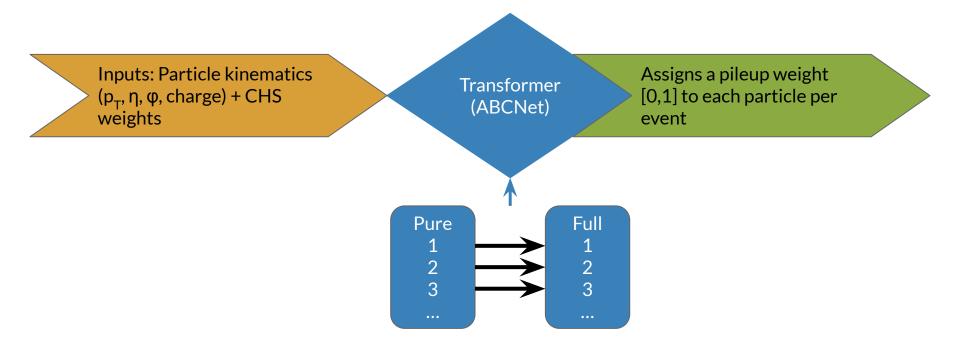
Total Cost =
$$\int \int \int \int \int C(x_0, y_0, x_1, y_1) \cdot T(x_0, y_0, x_1, y_1) dx_0 dy_0 dx_1 dy_1$$

Nathan Suri, 2024

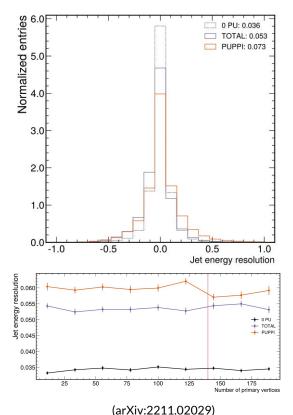
- Scaled Mean Square Error of missing p_T
- Forces energy conservation between the pure and full samples

 $+ \lambda \operatorname{MSE}(p_{\mathrm{T}}^{\mathrm{miss}}(x'_{p}), p_{\mathrm{T}}^{\mathrm{miss}}(x_{np}))$





- Outperforms traditional and ML-based alternatives
- + Relies on global event descriptions
- + Robustly learns pileup characteristics as a transport function

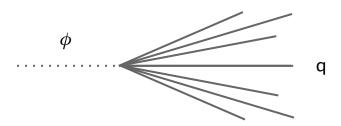


- Requires direct matching of events
 - Overall limited due to supervision

Rule-based Competitors (PUPPI, SK, etc.)	ML Competitors	TOTAL
 Reliant on an assumptions of pileup nature (MC correction) 	 Matching between truth and reco at particle level (MC correction) 	 Matching between pileup events and same event without pileup vertices (data-driven*)
<i>ATLAS</i> Simulation Preliminary	Truth Reco Reco Reco Reco Reco	Pure 1 2 3 Full 1 2 3

For more information, check out: https://arxiv.org/pdf/2211.02029

Tutorial Example: High p_T Jets



- PUMML Dataset: <u>https://zenodo.org/records/2652</u> 034
- Datasets
 - mH_Mu140: Set pileup vertex count, varied scalar mass
 - Mu_mH500: Varied pileup vertex (PV) count, set scalar mass

Server Options

Account (" a" suffix will be added as needed).

Tutorial directions (OT)

- Hop into <u>https://jupyter.nersc.gov/</u>
- Request a "Configurable Job" and choose:
 - a. Account: ntrain1
 - b. Reservation: ml4fp2024_day4
 - c. cpus=32, gpus=1, ntasks-per-node=1
 - d. Make sure you use QOS = shared
- Hit start
- Select kernel: tensorflow-2.9.0

	iououj.
ntrain1	~
Constraint:	
gpu	~
QOS:	
shared	~
cpus-per-task (node has 128 cpus):	
32	
gpus-per-task (node has 4 GPUs):	
1	
nodes (maximum of 4 for jupyter QOS):	
1	
ntasks-per-node:	
1	\$
Reservation:	
ml4fp2024_day3	\sim
time (time limit in minutes):	
300	

Backup Slides

Constituent Subtraction

- Benefits
 - Efficient at identifying potential pileup clusters
- Drawbacks
 - Reliant on an assumption of uniform pileup energy density

- 1. Apply ghost association on jet input objects ($|\eta| < 2.0$) with $p_T^g = A_g \times \rho$ where
 - $p_T^g\colon$ Expected pileup radiation contribution in a $\Delta\eta\Delta\varphi=0.01$ region $A_g=0.01:$ Area of the ghosts

 ρ : Pileup energy density estimated as the median of the p_T/A distribution of the $R = 0.4k_t$ jets

2. Calculate the distance between each $i\ {\rm cluster}$ and $k\ {\rm ghost}$

$$\Delta R_{i,k} = \sqrt{(\eta_i - \eta_k)^2 + (\varphi_i - \varphi_k)^2}$$

3. Sort cluster-ghost pairs in ascending $\Delta R_{i,k}$ order and update p_T values appropriately

If
$$p_{T,i} \ge p_{T,k} : p_{T,i} \to p_{T,i} - p_{T,k}$$

 $p_{T,k} \to 0$
Else: $p_{T,k} \to p_{T,k} - p_{T,i}$
 $p_{T,i} \to 0$

Nathan Suri, 2024

PUPPI

- Assigns a likelihood of candidate particle originating from a pileup interaction based on kinematic properties and proximity to charged hard-scatter particles from the PV
- (CERN-EP-2020-134)

$$\alpha_i = \log\left(\sum_j \frac{p_T^j}{\Delta R^{ij}} \times \Theta(R_{min} \le \Delta R_{ij} \le R_0)\right) \tag{1}$$

where

j: Charged inputs matched to the PV

 $R_0\approx 0.3:$ Maximum radial distance at which inputs may be matched to each other $R_{min}\approx 0.001:$ Minimum radial distance of matching

 $\Delta R^{ij}:$ Angular distance between an input and a charged hard-scatter particle

$$\chi_i^2 = \Theta(\alpha_i - \overline{\alpha}_{PU}) \times \frac{(\alpha_i - \overline{\alpha}_{PU})^2}{\sigma_{PU}^2}$$
(2)

where

 $\overline{\alpha}_{PU}$: Mean value of α for all charged pileup input objects in the event $\sigma_{PU} \approx 0.3$: RMS of aforementioned distribution

$$w_i = F_{\chi^2, \text{NDF}=1}(\chi_i^2) \tag{3}$$

where

 F_{χ^2} : Cumulative distribution of χ^2 , eliminating all neutral inputs *i* where $\alpha_i < \overline{\alpha}_{PU}$

Nathan Suri, 2024

Data assumed to be more than one-dimensional, necessitating projections

For data more than one-dimensional, perform multiple random projection to 1-D

```
def SWD(y_true, y_pred,nprojections=128):
    pu pfs = y true[:,:,:y true.shape[2]//2]
    nopu_pfs = y_true[:,:,y_true.shape[2]//2:]
   nopu_pfs = nopu_pfs
    pu_pfs = pu_pfs*y_pred
    def __getSWD(pu_pf,nopu_pf):
        proj = tf.random.normal(shape=[tf.shape(pu_pf)[0],tf.shape(pu_pf)[2], nprojections])
        proj *= tf.math.rsgrt(tf.reduce_sum(tf.square(proj), 1, keepdims=True))
        p1 = tf.matmul(nopu_pf, proj) #BxNxNPR0J
        p2 = tf.matmul(pu_pf, proj) #BxNxNPR0J
        p1 = sort_rows(p1, tf.shape(pu_pf)[1])
        p2 = sort_rows(p2, tf.shape(pu_pf)[1])
       wdist = tf.reduce_mean(tf.square(p1 - p2),-1)
        return wdist
    def _getMET(particles):
        px = tf.abs(particles[:,:,2])*tf.math.cos(particles[:,:,1])
        py = tf.abs(particles[:,:,2])*tf.math.sin(particles[:,:,1])
        met = tf.stack([px,py],-1)
        # print(met)
        return met
    #MET Loss, not used atm
    met_pu = tf.reduce_sum(_getMET(pu_pfs),1)
    met_nopu = tf.reduce_sum(_getMET(nopu_pfs),1)
    met_mse = tf.reduce sum(tf.square(met_pu[:,:2] - met_nopu[:,:2]),-1)
   wdist = _getSWD(pu_pfs,nopu_pfs)
    return 1e3*tf.reduce mean(wdist)
```

```
def SWD(y_true, y_pred,nprojections=128):
    pu pfs = y true[:,:,:y true.shape[2]//2]
    nopu_pfs = y_true[:,:,y_true.shape[2]//2:]
    nopu_pfs = nopu_pfs
    pu_pfs = pu_pfs*y_pred
    def __getSWD(pu_pf,nopu_pf):
        proj = tf.random.normal(shape=[tf.shape(pu_pf)[0],tf.shape(pu_pf)[2], nprojections])
        proj *= tf.math.rsgrt(tf.reduce_sum(tf.square(proj), 1, keepdims=True))
        p1 = tf.matmul(nopu_pf, proj) #BxNxNPR0J
        p2 = tf.matmul(pu_pf, proj) #BxNxNPR0J
        p1 = sort_rows(p1, tf.shape(pu_pf)[1])
        p2 = sort_rows(p2, tf.shape(pu_pf)[1])
        wdist = tf.reduce_mean(tf.square(p1 - p2),-1)
        return wdist
    def _getMET(particles):
        px = tf.abs(particles[:,:,2])*tf.math.cos(particles[:,:,1])
        py = tf.abs(particles[:,:,2])*tf.math.sin(particles[:,:,1])
        met = tf.stack([px,py],-1)
        # print(met)
        return met
    #MET Loss, not used atm
    met_pu = tf.reduce_sum(_getMET(pu_pfs),1)
    met_nopu = tf.reduce_sum(_getMET(nopu_pfs),1)
    met_mse = tf.reduce_sum(tf.square(met_pu[:,:2] - met_nopu[:,:2]),-1)
   wdist = _getSWD(pu_pfs,nopu_pfs)
```

return 1e3*tf.reduce mean(wdist)

The same projection is applied for each particle in an event within a batch

The particles are sorted based on the projection and then the non-pileup and pileup versions are compared using the defined cost function