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2

• Postdoc at Lawrence Berkeley National Lab 
• Since >8 years working in data analysis @ LHC (CMS & ATLAS)
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No experience 1-2 years

3-4 years ≧ 5 years

What is your data science experience?

(Courses, Projects, …)

About you

A B

C D
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The data I am usually using is …

O(MB)A B

C D

O(GB)

O(TB) O(PB)

About you



Intro to ML: Part 2 | Dennis Noll | ML4PF School | 12.08.24 5

What is the structure of your data?

Rectangular (List, …)A B

C D

Geometric (Picture, …)

Point Cloud (Set, Graph, …) Other / Don’t know

About you



Intro to ML: Part 2 | Dennis Noll | ML4PF School | 12.08.24 6

I have used Advanced Machine Learning Models (CNN, GNN, …)

What are CNN or GNN?A B

C D

Tried it out

Use occasionally Use regularly

About you
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From Classic Computing to Machine Learning
7

Rock Paper Scissors

Data:

Answers:

0110101001010
1100010110110
1110110101011
0101101011010
1111010101101
0110101001010
1100010110110
1110110101011
0101101011010
1111010101101

1001010110001
1010110101101
0110101011101
1010101101011
0101101011110 
1001010110001
1010110101101
0110101011101
1010101101011
0101101011110

0101101010111
0110101011000
1101011010111
0101101011010
1101011110100
0101101010111
0110101011000
1101011010111
0101101011010
1101011110100

Classic

Computing

Data

Rules
Answers

Machine

Learning

Data

Answers
Rules
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From Machine Learning to Deep Learning
8

Classic Machine Learning 
● Hand-engineered features


■ time consuming

■ not stable

■ not scalable

Deep Learning 
● Machine extracts features


■ fast

■ stable

■ well scalable

simple abstract

Machine

Machine
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Types of Machine Learning
9

Supervised

Learning

Data

Answers
Rules

Unsupervised

Learning

Data Rules

Reinforcement

Learning

Environment Rules
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Supervised Machine Learning in a Nutshell
10

R

Answers

Predictions

R

Training
Model

Data

Objective
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Data (Recap)
11
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Figure 1: The stable particles (top left), track (top right), topocluster (bottom left), and tower (bottom right) images
for an example gluon jet image. The tower image has gaps between hit pixels because the 0.1 ⇥ 0.1 towers are
projected onto a 0.05 ⇥ 0.05 jet image.

5

Image

Tabular

Graph …

Ou
tp

ut
s

Classification

Regression

Clustering

…
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Model (Recap)
• Node (Perceptron): Granular unit with parameters θ = (W, b)

12

Can approximate 

many functions!

Neural Network

4.3 Machine Learning and Deep Neural Networks 67
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Figure 32: Shown are four common examples of non-linear activation functions used in neural
networks. The outputs of the sigmoid and the tanh function are limited between 0 and 1, and
-1 and 1, respectively. The output of the ReLU function is restricted to positive values. The
output of the SELU function is restricted to values greater than ⇡ �1.76.

...

...
...

...

Input layer
(l=0) Hidden layer

(l=1)
Hidden layer

(l=L-1)
. . .

Output layer
(l=L)

xi

y1
i

yL
i

Figure 33: Shown is a sketch of a generic neural network. A number of layers which are connec-
ted through weight matrices is hierarchically stacked. The input values of the neural network
(xi) are given by the input layer. The output values of the neural network (yi = yL

i ) are given by
the outputs of the last layer. The connections between the white nodes symbolise the weights
of the network. The grey nodes and their connections symbolise the biases of the network. The
figure is taken from [193] and edited.

b1

y0 = σ(Wx + b)
yl = σ(Wyl−1 + b)

Node

⋅ w
1

y
⋅ 1

x2
⋅ w2

∑ σ

x1

b y = σ (∑
i

wi ⋅ xi + b)

• Neural Network: 
• Connected layers of multiple nodes 
• Width: number of nodes per layer 
• Depth: number of layers holding weights
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Learning (Recap)
13

Wi Wi+1

∇θℒ

ℒ(θ)

θ

ℒ =
1
n

n

∑
i

(ytrue
i − ypred

i (θ))2

Objective Function
• Does parametrized model approximate the truth? 
• e.g. MSE for Regression:

θ → θ − α∇θℒ
GradientStep size


(learning rate)

• Update parameters  to minimize objective function 

• Uses gradient descent:

θ
Parameter Update
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Data (NEW!)
14

1. Investigate 2. Preprocess 3. Split

Model 
Training

Raw 
Data

• Data is most important resource in Machine Learning 
• Perform three steps before model training 
• Many great tools available: Numpy, Pandas, iPython, Jupyter, …
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Data Investigation: Know your data!
15

Time well spent: One more hour here might save you weeks afterwards!

Understand
• Origin (e.g. experiment) 
• Structure (Tabular, …) 
• Amount

Explore
• Numerical domain 
• Trends 
• Mean, Variance, Corr, …

Assess
• Outliers? 
• Missing values? 
• Bias in training data?



Intro to ML: Part 2 | Dennis Noll | ML4PF School | 12.08.24

Data Preprocessing: Scaling
• Typical “active” range of activation functions is (-1, 1) 
• Scale your data to fit this numerical domain 
• Can enable, stabilize, and accelerate training process

16

Z Score

• Use for: 
• Gaussian shaped 
• Few outliers

z =
x − μ

σ

Log Scaling

• Use for: 
• Diff. orders of magnitude 
• Some heavy outliers

z = log(x)

Min-max Scaling

• Use for: 
• Uniform data 
• Few / no outliers

z =
x − max

max − min
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Data Preprocessing: Missing Values
• Recorded data often has missing values (e.g. limited amount of jets in HEP event) 
• Strategies: 

• Delete Rows / Columns: Easy, but can loose a lot of important information 
• Fill values with mean / mode / interpolation: May not be applicable 
• Fill values with categorical value (e.g. 0, -1): Involves educated guess

17

Jet 1 pT Jet 1 η Jet 2 pT Jet 2 η

Event #1 100 1.5 80 0.2

Event #2 250 2.1 180 1.1

Event #3 180 0.3 - -

Event #4 200 0.8 - -

Event #5 170 1.2 100 0.1

Event #6 210 0.5 - -

…

C
re

di
t: 

AT
LA

S
Detected Events

Use what 

works!

Training Data
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Original

Data Preprocessing: Class Imbalance
18

class 1

class 2

Augmented

Undersampled Oversampled

Reweighted

w
ei

gh
t x

 4

Multiply loss 

by weight

Do not use all data

Create synthetic data (advanced)

Use data 

multiple times

Challenge: 
Class 1 might 
get ignored 
during training
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Data Preprocessing: Augmentation
• Create synthetic samples by modifying samples in existing dataset by small changes 
• Need to have understanding of meaningful symmetries 
• E.g. in physics: Shift measurement within uncertainties, rotate cosmic showers, … 
• Other methods: High-dimensional interpolation (e.g. kNN-based augmentation SMOTE), …

19

Original Data

Augmented Data

[1]
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Data Splitting: Motivation

• A complex model can be fitted to any function if trained long enough 
• It might perform great on training data but not generalize (overtraining) 
• Need measure to prevent this!

20

4.3 Machine Learning and Deep Neural Networks 71

Lo
ss

L

Training Step t

Overtraining

Generalisation Error

Training Loss
Validation Loss

Figure 35: Sketch of the training and validation loss for the training of a neural network. The
generalisation error is the difference between the two. The training shows an overtraining
which is marked by the rising validation loss

networks [202].

Another technique which can be used as a regulariser but also has other advantages is the batch
normalisation. It is a re-parametrisation technique which can be applied between the layers of
a network [203]. For each batch, the mean (µB) and variance (�B) of the outputs of a layer (yi)
are calculated as

µB =
1
k

k

Â
i=1

yi (62)

�B =

vuute +
1
k

k

Â
i=1

(yi �µB)2 (63)

with a small number e for numerical stability. Together with two trainable parameters called
dispersion (g) and shift (b), the output of the network is transformed as

y0

i = g
yi �µB

�B
+ b . (64)

In some cases, batch normalisation regularises so well that it can completely replace other reg-
ularisation techniques, such as dropout. At the same time, it often accelerates the training of
DNNs.

4.3.3 Advanced Model Building

The most successful strategy for building the most accurate and general networks usually lies
in an appropriate network design. New network designs incorporating the data’s internal
symmetries can lead to faster training and better performance. This section introduces two
architectural variants of the fully connected network used in this analysis.

A residual network [204] is constructed by a chain of so-called residual blocks. Figure 36 shows
a sketch of a residual block. A residual block can consist of one or more layers; its last layer’s
output is summed together with its input before passing the final activation function. This
construction builds a shortcut around each residual block. These shortcuts are also called skip

[2]
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Data Splitting: Train-Val-Test Split
• Split data into three parts: 

• Training set: Train parameters of the model 
• Validation set: Monitor and tune training procedure (e.g. learning rate) 
• Test set: Estimate final performance, use only once! 

• Pro-tip: Use deterministic splitting via event identifier (e.g. event number from simulation)

21

Data

Training Validation Testing

60% 20% 20%
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Data Splitting: Cross Validation
• Do not want to loose measured data due to splitting 
• Would be better if we could use all measured data in final evaluation 
• Solution: Use rotating cross-validation to train multiple different (independent) models!

22

Data

Training Validation TestingFold 1

Fold 2

Fold 3

Fold 4

Fold 55 
D
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en
t T
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gs
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Introduction to Machine Learning: Part II - Take Away
23

• Know your data (an hour here can save you weeks!)
• Preprocess your data (fix outliers, missing values, normalize, augment)
• Split your data (train val test) before you do anything else!
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Model (NEW!)
• Theory: A one-layer perceptron can approximate any function with arbitrary precision 
• Reality: Shallow neural networks often hard to train, advanced architectures much better! 
• Use type of model according to data (type, structure, symmetry, and complexity)

24

Before: Simple Architectures

Now: Advanced Architectures 
• More resource/parameter efficient 
• Easier to train 
• Converge faster

CNN

Graph

Transformer

LSTM

RNN
ResNET

Feed Forward



Intro to ML: Part 2 | Dennis Noll | ML4PF School | 12.08.24

Activation Functions
• Activation functions bring non-linearity to models 
• Many different possibilities enable complex inner network representations

25

Logistic function

σ(x) =
1

1 + e−x

Good for probabilities!

Tanh

σ(x) =
e2x − 1
e2x + 1

Positive & negative outputs!

ReLU

σ(x) = max(0,x)

Very easy and fast!

SELU

σ(x) = {λx |x > 0
λα(ex − 1) |x ≤ 0

Self-normalizing!

Mastering model building22 Self-normalizing networks

● The mean and variance of layer activations can be intentionally constrained 
■ Either with batch normalization, or  

■ Scaled exponential linear units (SELU) activation 

● Numerical stability reached in a way similar to beam focussing                                                                                                     
with F and D quadrupole magnets 
■ (De)focussing in x(y) followed by (de)focussing in y(x), but when placed                                                           

in perfect distance(*), overall effect is focussing in both planes 

● SELU 
■ Mean and variance per layer map to next layer such that they slightly                                                                  

alternate, but always remain in a defined region (proof) 

■ Require fine tuned(*) scaling parameters  and  

■ Alternative to batch-normalization (feel free to test)

λ α
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-

dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

Residual Neural Network
• Include skip-connection between layers: 

• Every layer only has to contribute small (residual) change 
• Direct propagation of gradients during learning 
• Stabilizes training and convergence (especially in large networks) 

• First architecture to beat human image-recognition

26

[3]
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Densely Connected Networks

• Apply shortcut to all layers in dense block: 
• Reuse features from each layer 
• Combine features from all layers 
• Easy propagation of gradients 

• Transition Layers between dense blocks reduce vector size

27

Densely Connected Convolutional Networks

Gao Huang⇤

Cornell University
gh349@cornell.edu

Zhuang Liu⇤

Tsinghua University
liuzhuang13@mails.tsinghua.edu.cn

Laurens van der Maaten
Facebook AI Research

lvdmaaten@fb.com

Kilian Q. Weinberger
Cornell University
kqw4@cornell.edu

Abstract

Recent work has shown that convolutional networks can

be substantially deeper, more accurate, and efficient to train

if they contain shorter connections between layers close to

the input and those close to the output. In this paper, we

embrace this observation and introduce the Dense Convo-

lutional Network (DenseNet), which connects each layer

to every other layer in a feed-forward fashion. Whereas

traditional convolutional networks with L layers have L

connections—one between each layer and its subsequent

layer—our network has
L(L+1)

2 direct connections. For

each layer, the feature-maps of all preceding layers are

used as inputs, and its own feature-maps are used as inputs

into all subsequent layers. DenseNets have several com-

pelling advantages: they alleviate the vanishing-gradient

problem, strengthen feature propagation, encourage fea-

ture reuse, and substantially reduce the number of parame-

ters. We evaluate our proposed architecture on four highly

competitive object recognition benchmark tasks (CIFAR-10,

CIFAR-100, SVHN, and ImageNet). DenseNets obtain sig-

nificant improvements over the state-of-the-art on most of

them, whilst requiring less computation to achieve high per-

formance. Code and pre-trained models are available at

https://github.com/liuzhuang13/DenseNet.

1. Introduction
Convolutional neural networks (CNNs) have become

the dominant machine learning approach for visual object
recognition. Although they were originally introduced over
20 years ago [18], improvements in computer hardware and
network structure have enabled the training of truly deep
CNNs only recently. The original LeNet5 [19] consisted of
5 layers, VGG featured 19 [29], and only last year Highway

⇤Authors contributed equally

x0

x1
H1

x2
H2

H3

H4

x3

x4

Figure 1: A 5-layer dense block with a growth rate of k = 4.
Each layer takes all preceding feature-maps as input.

Networks [34] and Residual Networks (ResNets) [11] have
surpassed the 100-layer barrier.

As CNNs become increasingly deep, a new research
problem emerges: as information about the input or gra-
dient passes through many layers, it can vanish and “wash
out” by the time it reaches the end (or beginning) of the
network. Many recent publications address this or related
problems. ResNets [11] and Highway Networks [34] by-
pass signal from one layer to the next via identity connec-
tions. Stochastic depth [13] shortens ResNets by randomly
dropping layers during training to allow better information
and gradient flow. FractalNets [17] repeatedly combine sev-
eral parallel layer sequences with different number of con-
volutional blocks to obtain a large nominal depth, while
maintaining many short paths in the network. Although
these different approaches vary in network topology and
training procedure, they all share a key characteristic: they
create short paths from early layers to later layers.

1

ar
X

iv
:1

60
8.

06
99

3v
5 

 [c
s.C

V
]  

28
 Ja

n 
20

18

Single Dense Block

[4]



Intro to ML: Part 2 | Dennis Noll | ML4PF School | 12.08.24

Convolutional Neural Network (1/2)

• For structured, geometrical data (e.g. images) 
• Instead of weights now have 'filters': 

• Slided over data (translational invariant) 
• Each filter extracts a feature

28

80 5.7. Convolutional neural networks
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depth
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width

feature maps

filtersinput

Figure 5.16: Working principle of a convolutional layer. Two filters are applied to an image
with three color channels, resulting in two feature maps. Adapted from [172].

during training. In a figurative sense, the filters scan the image to detect shapes and
structures in the image, which are essential to solve the underlying learning task.

The application of the filter, i.e., the convolution of the image x with the filter, can
be split into two parts. First, the adaptive weights W of the filter are multiplied with
the adjacent pixels xj ∈ Ni of the respective pixel xi (and itself) where the filter is
applied. As the second step, the result is aggregated over the neighborhood Ni to a
single value by simply summing up. Thus, the output of the convolutional operation
with one filter, which additionally features a bias b and a non-linearity σ, reads

x′
i = σ

⎛

⎝b +
∑

xj∈Ni

Wj · xj

⎞

⎠ (5.28)

for each activation x′
i in the created feature map17. This looks very similar to Eq. (5.2).

In fact, the main difference is that in the fully-connected case, the neighborhood Ni

covers the complete input image, which would correspond to a filter with the size of
the image. An example for such a filter application is visualized in Fig. 5.17a. The
application of the bias and the non-linearity is shown in Fig. 5.17b. It is important to
note that in Eq. (5.28) the adaptive weights Wj do not depend on the filter position i,
which means that the same filter with the same weights is shared over the complete
image. This technique is called weight sharing.

The basic convolutional layer, defined by Eq. (5.28), has only three hyperparameters
that need to be set by the user; the number of filters (which corresponds to the number
of new feature maps), the size of the filter, and the activation function to be used. As
CNNs use weight-sharing, the number of adaptive parameters per layer reads:

nparams = nc · nw · nh · nf + nf (5.29)

Here, nc is the number of input channels, nf the number of filters, and nw, nh their
width and height. As each convolutional layer returns feature maps that inherit the

17Note that for a multi-channel image as input, different weights are used for each channel, but the
aggregation is utilized over the channel dimension as well.
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Figure 5.17: Convolutional operation of a single channel image with a single filter. (a)
Illustration of the filter application at a single position and subsequent aggregation over the
neighborhood resulting in a single output. (b) Addition of the bias and application of a
non-linearity (ReLU). Adapted from [172].

image-like data structure, the output can be directly used as input for a subsequent
convolutional layer. Thus, the basic concept of using many layers with computational
inexpensive transformation remains the same. This scale separation can be observed
by visualization purposes and causality investigation of CNNs [197].

The advantages of convolutional networks can be summarized into three key points.

CNNs exploit translational invariance: Most computer vision tasks feature data,
e.g., natural images, which are invariant under translational transformations. In other
words, to identify a specific object, it does not matter if this object is located at the
upper left or somewhere else in the picture. As the weights of the filters are shared
over the image, CNNs are translational invariant. Taking advantage of this symmetry
helps to minimize the number of adaptive parameters without reducing the capacity
of the machine learning model. Furthermore, weight-sharing supports CNNs to be
noise-robust, less susceptible to overfitting, and show improved generalization capacities.

CNNs set a prior on local correlations: In natural images, correlations are
mostly confined to small regions. Even in most cases, a global relationship between the
image pixels exists, small-scale correlations superimpose this relationship. For example,
an image that shows ‘a dog catching a ball in the park’ requires a relationship between
all pixels. Still, it should be evident that pixels that correspond to the same object,
e.g., pixels forming the dog or the meadow, have much greater inter-dependencies.
The fact that in CNNs, filters are utilized which cover only a tiny part of the image18,
directly translates into a prior that is set on local correlations.

Reduction of parameters: In addition to the fact that the number of parameters in
CNNs is small compared to fully-connected networks due to symmetry considerations,

18Usually the sizes of filters are in the order of 3 × 3.

Step by step:

[2]
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Convolutional Neural Network (2/2)
• Multiple layers of filters extract more-and-more abstract features 
• Usually have pyramidal shape: Decrease spatial extent & increase feature space

29

Deep Learning
Glombitza | RWTH Aachen | 
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07/22/22 | Part 4: Convolutional Neural Networks

Convolutional Pyramid

ConvNet architectures usually have a pyramidal shape. For deeper layers:

● Increase of feature space

● Decrease of spatial extent

➢ Spatial information is converted to representational features with increasing
hierarchy

...

Conv. Conv.

[5]
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Learning on Graphs (1/2)

• Graph: 
• Nodes: Have features 
• Edges: Connect nodes, can have features

30

= + ++

• Learning by updating each node: 
• Embed neighbors 
• Aggregate embebbings 
• Embed aggregations 

+ + (permutation invariant.)

[6]
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Learning on Graphs (2/2)

• Graph: 
• Nodes: Have features 
• Edges: Connect nodes, can have features

31

• Learning by updating each node: 
• Embed edges 

• Aggregate embebbings 

• Embed aggregations 

, ,⨁

= ɸ(  )
= ɸ(  ,  )

- Isotropic

- Anisotropic

= ѱ(  ,            ), ,⨁

ɸ and ѱ can be DNNs! use multiple rounds k
[6]
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Introduction to Machine Learning: Part II - Take Away
32

• Know your data (an hour here can save you weeks!)
• Preprocess your data (fix outliers, missing values, normalize, augment)
• Split your data (train val test) before you do anything else!

• Use an appropriate architecture: many different options
• My personal start: 3 layers, 256 nodes, ReLU activation
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Visualizing the Loss Landscape of Neural Nets

Hao Li1, Zheng Xu1, Gavin Taylor2, Christoph Studer3, Tom Goldstein1

1University of Maryland, College Park 2United States Naval Academy 3Cornell University
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Abstract

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well-known that certain network architecture
designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effect on the underlying loss landscape, are not well understood. In this paper, we
explore the structure of neural loss functions, and the effect of loss landscapes on
generalization, using a range of visualization methods. First, we introduce a simple
“filter normalization” method that helps us visualize loss function curvature and
make meaningful side-by-side comparisons between loss functions. Then, using
a variety of visualizations, we explore how network architecture affects the loss
landscape, and how training parameters affect the shape of minimizers.

1 Introduction

Training neural networks requires minimizing a high-dimensional non-convex loss function – a
task that is hard in theory, but sometimes easy in practice. Despite the NP-hardness of training
general neural loss functions [3], simple gradient methods often find global minimizers (parameter
configurations with zero or near-zero training loss), even when data and labels are randomized before
training [43]. However, this good behavior is not universal; the trainability of neural nets is highly
dependent on network architecture design choices, the choice of optimizer, variable initialization, and
a variety of other considerations. Unfortunately, the effect of each of these choices on the structure of
the underlying loss surface is unclear. Because of the prohibitive cost of loss function evaluations
(which requires looping over all the data points in the training set), studies in this field have remained
predominantly theoretical.

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Training (NEW!)
33

ℒ θ2
θ1

θ → θ − α∇θℒ
Reminder:
Gradient 
Descent

• Loss landscape can look very complicated (e.g. local minima) 

• At each step only evaluate loss  and gradient 

• Many possible failure modes (- - -)
ℒ

Local minimum

Vanishing Gradient

Slow optimization

[7]

https://papers.nips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
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Learning rate
• Want training to converge smoothly and avoid local minima 

• Learning rate ⍺ instrumental for success 

• Can decrease learning rate during training: 
• e.g. exponential with steps or on-plateau

34
𝓛

(θ
) Too small

Parameters

𝓛
(θ

) Too high

Parameters
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e Much too high

Training steps

Too high

Too low

Just right

θ → θ − α∇θℒ
Reminder:
Gradient 
Descent
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Stochastic Gradient Descent (SGD)
• Until now: Calculation of loss and gradient based on whole dataset 
• New idea: Approximate loss and gradient on subset of dataset (mini-batch)

35

Pro Contra
• More parameter updates 

• Stochasticity helps escape local minima

• Gradient not exact (however in practice 
good enough)

Gradient Descent: Stochastic Gradient Descent:
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Advanced Optimization Algorithms
36

Momentum
Maintain velocity or previous updates: stable

Δθt = mt = γ ⋅ mt−1 + (1 − γ) ⋅ α ⋅
dℒ
dθ

Adagrad
Remember past gradients and adapt  : adaptiveα → αt

vt =
t

∑
τ=1 ( ∂ℒ

∂θτ )
2

αt =
α

vt + ϵ

Adam
Combines Momentum and RMSprob:

Δθt = α ⋅
mt

vt + ϵ
mt =

1
1 − γt [γ ⋅ mt−1 + (1 − γ) ⋅

∂ℒ
∂θt ] vt =

1
1 − βt

βvt−1 + (1 − β) ⋅ ( ∂ℒ
∂θt )

2

θ → θ − α∇θℒ
Reminder:
Gradient 
Descent

RMSprob
Decay memory of past gradients: good to train longer

vt = β ⋅ vt−1 + (1 − β) ⋅ ( ∂ℒ
∂θt )

2

αt =
α

vt + ϵ

θt+1 → θt − Δθt

Reminder:
Gradient 
Descent

Slide inspired by M. Rieger [8]

[9]
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Regularization
• Regularization methods can prevent overtraining 

• More data: generally best but not always possible 
• Early stopping: stop training at minimum of validation loss

37

Dropout

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.
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Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.
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• Randomly disable nodes during training 
• Effectively creates ensemble of models

Weight Regularization

w2

w1

wopt

∑
i

w2
i

• Penalize large weight values (wi) in  
• Do not want few large volatile weights

ℒ

[10,11]
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Hyperparameter Optimization
• Hyperparameters (HP) do not have gradient 
• For each HP define: 

• Range (min, max, categories) 
• Domain (e.g. log for learning rates, …) 

• n-HP-dimensional optimization!

38

Architecture

Number of Nodes

Number of Layers

Activations

RegularizationWhich
 to use?
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Grid Search
Hyperparameter Optimization - Grid and Random
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BERGSTRA AND BENGIO
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Figure 1: Grid and random search of nine trials for optimizing a function f (x,y) = g(x)+ h(y) ≈
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square h(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

given learning algorithm, looking at several relatively similar data sets (from different distributions)
reveals that on different data sets, different subspaces are important, and to different degrees. A grid
with sufficient granularity to optimizing hyper-parameters for all data sets must consequently be
inefficient for each individual data set because of the curse of dimensionality: the number of wasted
grid search trials is exponential in the number of search dimensions that turn out to be irrelevant for
a particular data set. In contrast, random search thrives on low effective dimensionality. Random
search has the same efficiency in the relevant subspace as if it had been used to search only the
relevant dimensions.

This paper is organized as follows. Section 2 looks at the efficiency of random search in practice
vs. grid search as a method for optimizing neural network hyper-parameters. We take the grid search
experiments of Larochelle et al. (2007) as a point of comparison, and repeat similar experiments
using random search. Section 3 uses Gaussian process regression (GPR) to analyze the results of
the neural network trials. The GPR lets us characterize what Ψ looks like for various data sets,
and establish an empirical link between the low effective dimensionality of Ψ and the efficiency
of random search. Section 4 compares random search and grid search with more sophisticated
point sets developed for Quasi Monte-Carlo numerical integration, and argues that in the regime of
interest for hyper-parameter selection grid search is inappropriate and more sophisticated methods
bring little advantage over random search. Section 5 compares random search with the expert-
guided manual sequential optimization employed in Larochelle et al. (2007) to optimize Deep Belief
Networks. Section 6 comments on the role of global optimization algorithms in future work. We
conclude in Section 7 that random search is generally superior to grid search for optimizing hyper-
parameters.
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• Test all combinations: exhaustive! 
• But computationally expensive/inefficient

Random Search
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Figure 1: Grid and random search of nine trials for optimizing a function f (x,y) = g(x)+ h(y) ≈
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square h(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

given learning algorithm, looking at several relatively similar data sets (from different distributions)
reveals that on different data sets, different subspaces are important, and to different degrees. A grid
with sufficient granularity to optimizing hyper-parameters for all data sets must consequently be
inefficient for each individual data set because of the curse of dimensionality: the number of wasted
grid search trials is exponential in the number of search dimensions that turn out to be irrelevant for
a particular data set. In contrast, random search thrives on low effective dimensionality. Random
search has the same efficiency in the relevant subspace as if it had been used to search only the
relevant dimensions.

This paper is organized as follows. Section 2 looks at the efficiency of random search in practice
vs. grid search as a method for optimizing neural network hyper-parameters. We take the grid search
experiments of Larochelle et al. (2007) as a point of comparison, and repeat similar experiments
using random search. Section 3 uses Gaussian process regression (GPR) to analyze the results of
the neural network trials. The GPR lets us characterize what Ψ looks like for various data sets,
and establish an empirical link between the low effective dimensionality of Ψ and the efficiency
of random search. Section 4 compares random search and grid search with more sophisticated
point sets developed for Quasi Monte-Carlo numerical integration, and argues that in the regime of
interest for hyper-parameter selection grid search is inappropriate and more sophisticated methods
bring little advantage over random search. Section 5 compares random search with the expert-
guided manual sequential optimization employed in Larochelle et al. (2007) to optimize Deep Belief
Networks. Section 6 comments on the role of global optimization algorithms in future work. We
conclude in Section 7 that random search is generally superior to grid search for optimizing hyper-
parameters.
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• Test random combinations: efficient! 
• Less systematic and non-deterministic

[12]
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expected improvement, U�� next observation location

Figure �.�: The expected improvement acquisition function (�.�) corresponding to our running example.

�� The value q⇤ is incumbent as it is currently
“holding o�ce” as our standing recommenda-
tion until it is deposed by a better candidate.

a dataset D = (x, 5), and de�ne q⇤ = max 5 to be the so-called incum-maximal value observed, incumbent q⇤

bent : the maximal objective value yet seen.�� As a consequence of exact
observation, we have

D (D) = q⇤; D (D0) = max(q⇤, q);
and thus

D (D0) � D (D) = max(q � q⇤, 0).

Substituting into (�.�), in the noiseless case we have

U�� (G ;D) =
æ
max(q � q⇤, 0) ? (q | G,D) dq . (�.�)

Expected improvement is illustrated for our running example inexample and interpretation
Figure �.�. In this case, maximizing expected improvement will select
a point near the previous best point found, an example of exploitation.
Notice that the expected improvement vanishes near regions where
we have existing observations. Although these locations may be likely
to yield values higher than q⇤ due to relatively high expected value,
the relatively narrow credible intervals suggest that the magnitude of
any improvement is likely to be small. Expected improvement is thus
considering the exploration–exploitation dilemma in the selection of the
next observation location, and the tradeo� between these two concerns
is considered automatically.

Figure �.� shows the posterior belief of the objective after sequentiallysimulated optimization and interpretation
maximizing expected improvement to gather �� additional observations
of our example objective function. The global optimum was e�ciently
located. The distribution of the sample locations, with more evaluations
in the most promising regions, re�ects consideration of the exploration–
exploitation dilemma. However, there seems to have been a focus on
exploitation throughout the entire process; the �rst ten observationsexploitative behavior resulting from myopia
for example never strayed from the initially known local optimum. This
behavior is a re�ection of the simple reward utility function underlying
the policy, which only rewards the discovery of high objective func-
tion values at observed locations. As a result, one-step lookahead may

Hyperparameter Optimization - Bayesian

• Model hyperparameter space with surrogate model (e.g. Gaussian Processes) 
• Use acquisition function to predict which hyperparameters to check next 
• Can find optimal hyperparameters fast and efficiently!
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observations posterior mean posterior ��% credible interval samples

Figure �.�: The posterior process for our example scenario in Figure �.� conditioned on three exact observations.

acquisition function next observation location

Figure �.�: A prototypical acquisition function corresponding to our example posterior from Figure �.�.

observations are assumed to be exact, the objective function posterior
collapses onto the observed values. The posterior mean interpolates
through the data, and the posterior credible intervals re�ect increased
certainty regarding the function near the observed locations. Further,
the posterior continues to re�ect the structural assumptions encoded
in the prior, demonstrated by comparing the behavior of the samples
drawn from the posterior process to those drawn from the prior.

Uncertainty-aware optimization policies

Bayesian inference provides an elegant means of reasoning about an
uncertain objective function, but the success of optimization is measured
not by the �delity of our beliefs but by the outcomes of our actions.
These actions are determined by the optimization policy, which exam-
ines available data to design each successive observation location. Each
of these decisions is fraught with uncertainty, as we must commit to each
observation before knowing its result, which will form the context of all
following decisions. Bayesian inference enables us to express this uncer-
tainty, but e�ective decision making additionally requires us to establish
preferences over outcomes and act to maximize those preferences.

To proceed we need to establish a framework for decision makingChapter �: Decision Theory for Optimization,
p. ��

Chapter �: Utility Functions for Optimization,
p. ���

Chapter �: Common Bayesian Optimization
Policies, p. ���

under uncertainty, an expansive subject with a world of possibilities.
A natural and common choice is Bayesian decision theory, the subject
of Chapters �–�. We will discuss this and other approaches to policy
construction at length in Chapter � and derive popular optimization
policies from �rst principles.

Ignoring details in policy design, a thread running through all Bayes-
ian optimization policies is a uniform handling of uncertainty in the
objective function and the outcomes of observations via Bayesian infer-

(a)

�� ������������

observations posterior mean posterior ��% credible interval samples

Figure �.�: The posterior process for our example scenario in Figure �.� conditioned on three exact observations.

acquisition function next observation location

Figure �.�: A prototypical acquisition function corresponding to our example posterior from Figure �.�.

observations are assumed to be exact, the objective function posterior
collapses onto the observed values. The posterior mean interpolates
through the data, and the posterior credible intervals re�ect increased
certainty regarding the function near the observed locations. Further,
the posterior continues to re�ect the structural assumptions encoded
in the prior, demonstrated by comparing the behavior of the samples
drawn from the posterior process to those drawn from the prior.

Uncertainty-aware optimization policies

Bayesian inference provides an elegant means of reasoning about an
uncertain objective function, but the success of optimization is measured
not by the �delity of our beliefs but by the outcomes of our actions.
These actions are determined by the optimization policy, which exam-
ines available data to design each successive observation location. Each
of these decisions is fraught with uncertainty, as we must commit to each
observation before knowing its result, which will form the context of all
following decisions. Bayesian inference enables us to express this uncer-
tainty, but e�ective decision making additionally requires us to establish
preferences over outcomes and act to maximize those preferences.

To proceed we need to establish a framework for decision makingChapter �: Decision Theory for Optimization,
p. ��

Chapter �: Utility Functions for Optimization,
p. ���

Chapter �: Common Bayesian Optimization
Policies, p. ���

under uncertainty, an expansive subject with a world of possibilities.
A natural and common choice is Bayesian decision theory, the subject
of Chapters �–�. We will discuss this and other approaches to policy
construction at length in Chapter � and derive popular optimization
policies from �rst principles.

Ignoring details in policy design, a thread running through all Bayes-
ian optimization policies is a uniform handling of uncertainty in the
objective function and the outcomes of observations via Bayesian infer-

(b)

Figure 38: Schematic view on Bayesian hyperparameter optimisation using a Gaussian process
estimator. The horizontal axis of the plots constitutes the parameter space of different sets of
hyperparameters. Figure 38a shows the Gaussian process estimator fitted to three observa-
tions. The model internally includes different weighted samples. They are used to construct
the mean prediction and a credibility interval. The acquisition function in figure 38b builds on
this prediction and provides a measure of how promising a particular part of the parameter
space is. The maximum of the acquisition function determines the location of the next obser-
vation. Both figures are taken from [207].

expected improvement [210], and the lower confidence bound [211].

4.4 Statistical Inference

This section introduces the statistical framework which is used to infer the parameters of in-
terest. The parameters of interest in this analysis are the signal strength modifiers µ = s/stheory
of the inclusive HH process and of the HH(VBF) process. The basis of the inference is a binned
maximum likelihood (ML) fit in which a parametrised model is fitted to the recorded data.
The model is parametrised according to the signal strength modifiers and additional nuisance
parameters, which represent systematic uncertainties.

The four paragraphs of this section describe the model building, the model fitting, the statistical
tests, and the model evaluation. The section starts by describing the likelihood function and
its construction. The likelihood function describes how well a specific model describes a set
of given data. Second, the section explains how the likelihood function is used to infer the
parameters of the model. Third, the section introduces the statistical tests, which can be used
to set an upper limit on the signal strength modifiers or to infer the exclusion significance for a
model without a signal. The section closes with the description of goodness-of-fit (GOF) tests.
They determine how well the fitted model describes the given data. Thus, they can be used to
ensure the quality of the fitted model.

The implementation and execution of the inference tasks follow the official statistical recom-
mendations for searches in the Higgs sector [212]. They were issued in 2011 by the ATLAS

��� ������ �������� ������������ ��������

expected improvement, U�� next observation location

Figure �.�: The expected improvement acquisition function (�.�) corresponding to our running example.

�� The value q⇤ is incumbent as it is currently
“holding o�ce” as our standing recommenda-
tion until it is deposed by a better candidate.

a dataset D = (x, 5), and de�ne q⇤ = max 5 to be the so-called incum-maximal value observed, incumbent q⇤

bent : the maximal objective value yet seen.�� As a consequence of exact
observation, we have

D (D) = q⇤; D (D0) = max(q⇤, q);
and thus

D (D0) � D (D) = max(q � q⇤, 0).

Substituting into (�.�), in the noiseless case we have

U�� (G ;D) =
æ
max(q � q⇤, 0) ? (q | G,D) dq . (�.�)

Expected improvement is illustrated for our running example inexample and interpretation
Figure �.�. In this case, maximizing expected improvement will select
a point near the previous best point found, an example of exploitation.
Notice that the expected improvement vanishes near regions where
we have existing observations. Although these locations may be likely
to yield values higher than q⇤ due to relatively high expected value,
the relatively narrow credible intervals suggest that the magnitude of
any improvement is likely to be small. Expected improvement is thus
considering the exploration–exploitation dilemma in the selection of the
next observation location, and the tradeo� between these two concerns
is considered automatically.

Figure �.� shows the posterior belief of the objective after sequentiallysimulated optimization and interpretation
maximizing expected improvement to gather �� additional observations
of our example objective function. The global optimum was e�ciently
located. The distribution of the sample locations, with more evaluations
in the most promising regions, re�ects consideration of the exploration–
exploitation dilemma. However, there seems to have been a focus on
exploitation throughout the entire process; the �rst ten observationsexploitative behavior resulting from myopia
for example never strayed from the initially known local optimum. This
behavior is a re�ection of the simple reward utility function underlying
the policy, which only rewards the discovery of high objective func-
tion values at observed locations. As a result, one-step lookahead may

[13]
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Deep Learning Software
• Two popular, easy to use, open-source software libraries: 

• TensorFlow: End-to-end Deep Learning, industry-ready applications 
• PyTorch: Deep Learning research, Large state-of-the-art models 

• Both similar for ML-driven Physics Research
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Course Focus: 
Training industry-
ready ML engineers

Course Focus: 
Deep learning 
theory & research

Ideally: both!

Professor

[14]
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Hardware: GPUs - The Backbone of Machine Learning
• GPUs originally developed for rendering computer graphics  
• GPUs enable highly parallel computations / matrix multiplications 
• Other (event more advanced) architectures exist: Tensor Processing Unit (TPU) 
• Many computing clusters nowadays offer enormous GPU resources (>7k GPUs on Perlmutter)

42

CPU GPU
GPU

TPU

[15,16]
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Introduction to Machine Learning: Part II - Take Away
43

• Know your data (an hour here can save you weeks!)
• Preprocess your data (fix outliers, missing values, normalize, augment)
• Split your data (train val test) before you do anything else!

• Use an appropriate architecture: many different options
• My personal start: 3 layers, 256 nodes, ReLU activation

• Use an appropriate optimizer, My personal start: SGD / Adam
• Monitor your training (loss, model predictions, GPU utilization, …)
• Perform Hyperparameter Optimization

• Pro tips:

• Automize every step! (Data Download → Paper Document)
• Use the right software tools (ML library, Lab book, …)
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How to represent the data?
46

Pro: Easy to use 
Con: Which ordering?

Pro: Geometric information 
Con: Very sparse

As Lists? As Images? As Sets?

Pro: Works with sparse data 
Con: No geometric information
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Figure 1: The stable particles (top left), track (top right), topocluster (bottom left), and tower (bottom right) images
for an example gluon jet image. The tower image has gaps between hit pixels because the 0.1 ⇥ 0.1 towers are
projected onto a 0.05 ⇥ 0.05 jet image.
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As Point Clouds…
• Unordered set of objects in metric space 
• Why is this nice? Objects can be our detector hits!

47

[8, 9]

Works with 
sparse data

Respects permutation 
invariance

Each object can have 
position, time, …
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Regression: Predict continuous feature
• Predict a real number associated with a feature vector 
• Example: 

• Prediction: What is the future net income of a student? 
• Input: Grade in course, Participation, Year of study 

• Last activation: Linear (no activation)
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Deep Learning
Glombitza | RWTH Aachen | 

29
07/22/22 | Part 2: Generalization, Regularization and Validation

 

Regression vs. Classification

● Regression: Predict continuous label 

● Classification: Separate into different classes (cats, dogs, airplanes, …)

● Can sometimes convert to the other

ℒ =
1
n

n

∑
i

(ytrue
i − ypred

i )2

Mean squared error (MSE) loss:
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Classification: Predict discrete classes
• Predict a discrete value (label) associated with a feature vector 
• Example: 

• Prediction: Does this picture show a cat or a dog? 
• Input: Pixels of image 

• Last activation: Sigmoid/softmax 

• Predicted probability 0 % ≤ q ≤ 100 %

49

Deep Learning
Glombitza | RWTH Aachen | 

29
07/22/22 | Part 2: Generalization, Regularization and Validation

 

Regression vs. Classification

● Regression: Predict continuous label 

● Classification: Separate into different classes (cats, dogs, airplanes, …)

● Can sometimes convert to the other

pcat=1

pcat=0

σ
q

ℒ = −
1
n

n

∑
i

c

∑
j

pij ⋅ log(qij)

[4]

Cross-Entropy for c classes:
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Back-Propagation (Example)
• Each network is a series of (simple) mathematical operations 
• Each operation has: 

• Local output (forward pass) 
• Local derivative (backward pass) 

• Use chain rule to evaluate derivatives  for every parameter 
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x

y

· + σ
𝓛W b

Example:    ypred = z3 = σ(Wx + b)

z1 z2 z3

∂ℒ/∂W = ∂ℒ/∂z3 ⋅ ∂z3/∂z2 ⋅ ∂z2/∂z1 ⋅ ∂z1/∂W



Intro to ML: Part 2 | Dennis Noll | ML4PF School | 12.08.24

Back-Propagation (Example)
51

∂ℒ/∂W = ∂ℒ/∂z3 ⋅ ∂z3/∂z2 ⋅ ∂z2/∂z1 ⋅ ∂z1/∂W









z1 = Wx = 0.5
z2 = z1 + b = 0.6
z3 = σ(z2) = ReLU(z2) = 0.6
ℒ(z3) = (z3 − y)2 = 0.16

Forward pass











∂ℒ/∂z3 = 2(z3 − y) = − 0.8
∂z3/∂z2 = ∂σ(z2)/∂z2 = 1
∂z2/∂z1 = 1
∂z1/∂W = x = 1
⇒ ∂ℒ/∂W = − 0.4 ⋅ 1 ⋅ 1 ⋅ 1 = − 0.4

Backward pass

x

1

y

1

· +

𝓛W

0.5

b

0.1

z1 z2 z3
ReLU
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Graph Neural Network: Edge Conv
• Use for graph-like (unordered) data: 

• Nodes (e.g. people in social network) 
• Edges (e.g. relations between people) 

• One possible architecture: EdgeConv

52

Dynamic Graph CNN for Learning on Point Clouds • 1:3

Fig. 2. Le�: Computing an edge feature, ei j (top), from a point pair, xi and xj (bo�om). In this example, h�() is instantiated using a fully connected layer,
and the learnable parameters are its associated weights. Right: The EdgeConv operation. The output of EdgeConv is calculated by aggregating the edge
features associated with all the edges emanating from each connected vertex.

expressed in terms of the metric are invariant to isometric defor-
mation. Representatives of this class include spectral descriptors
such as global point signatures [Rustamov 2007], the heat and wave
kernel signatures [Aubry et al. 2011; Sun et al. 2009], and variants
[Bronstein and Kokkinos 2010]. Most recently, several approaches
wrap machine learning schemes around standard descriptors [Guo
et al. 2014; Shah et al. 2013].

Deep learning on geometry. Following the breakthrough results of
convolutional neural networks (CNNs) in vision [Krizhevsky et al.
2012; LeCun et al. 1989], there has been strong interest to adapt
such methods to geometric data. Unlike images, geometry usually
does not have an underlying grid, requiring new building blocks
replacing convolution and pooling or adaptation to a grid structure.

As a simple way to overcome this issue, view-based [Su et al. 2015;
Wei et al. 2016] and volumetric representations [Klokov and Lempit-
sky 2017; Maturana and Scherer 2015; Tatarchenko et al. 2017; Wu
et al. 2015]—or their combination [Qi et al. 2016]—“place” geometric
data onto a grid. More recently, PointNet [Qi et al. 2017b,c] exempli-
�es a broad class of deep learning architectures on non-Euclidean
data (graphs and manifolds) termed geometric deep learning [Bron-
stein et al. 2017]. These date back to early methods to construct
neural networks on graphs [Scarselli et al. 2009], recently improved
with gated recurrent units [Li et al. 2016] and neural message pass-
ing [Gilmer et al. 2017]. Bruna et al. [2013] and Hena� et al. [2015]
generalized convolution to graphs via the Laplacian eigenvectors
[Shuman et al. 2013]. Computational drawbacks of this foundational
approach were alleviated in follow-up works using polynomial [Def-
ferrard et al. 2016; Kipf and Welling 2017; Monti et al. 2017b, 2018],
or rational [Levie et al. 2017] spectral �lters that avoid Laplacian
eigendecomposition and guarantee localization. An alternative def-
inition of non-Euclidean convolution employs spatial rather than
spectral �lters. The Geodesic CNN (GCNN) is a deep CNN on meshes
generalizing the notion of patches using local intrinsic parameteriza-
tion [Masci et al. 2015]. Its key advantage over spectral approaches
is better generalization as well as a simple way of constructing
directional �lters. Follow-up work proposed di�erent local chart-
ing techniques using anisotropic di�usion [Boscaini et al. 2016]
or Gaussian mixture models [Monti et al. 2017a; Veličković et al.
2017]. In [Halimi et al. 2018; Litany et al. 2017b], a di�erentiable
functional map [Ovsjanikov et al. 2012] layer was incorporated into

a geometric deep neural network, allowing to do intrinsic structured
prediction of correspondence between nonrigid shapes.
The last class of geometric deep learning approaches attempts

to pull back a convolution operation by embedding the shape into
a domain with shift-invariant structure such as the sphere [Sinha
et al. 2016], torus [Maron et al. 2017], plane [Ezuz et al. 2017], sparse
network lattice [Su et al. 2018], or spline [Fey et al. 2018].
Finally, we should mention geometric generative models, which

attempt to generalize models such as autoencoders, variational au-
toencoders (VAE) [Kingma and Welling 2013], and generative adver-
sarial networks (GAN) [Goodfellow et al. 2014] to the non-Euclidean
setting. One of the fundamental di�erences between these two set-
tings is the lack of canonical order between the input and the output
vertices, thus requiring an input-output correspondence problem
to be solved. In 3D mesh generation, it is commonly assumed that
the mesh is given and its vertices are canonically ordered; the gen-
eration problem thus amounts only to determining the embedding
of the mesh vertices. Kostrikov et al. [2017] proposed SurfaceNets
based on the extrinsic Dirac operator for this task. Litany et al.
[2017a] introduced the intrinsic VAE for meshes and applied it to
shape completion; a similar architecture was used by Ranjan et al.
[2018] for 3D face synthesis. For point clouds, multiple generative
architectures have been proposed [Fan et al. 2017; Li et al. 2018b;
Yang et al. 2018].

3 OUR APPROACH
We propose an approach inspired by PointNet and convolution
operations. Instead of working on individual points like PointNet,
however, we exploit local geometric structures by constructing a
local neighborhood graph and applying convolution-like operations
on the edges connecting neighboring pairs of points, in the spirit
of graph neural networks. We show in the following that such an
operation, dubbed edge convolution (EdgeConv), has properties lying
between translation-invariance and non-locality.
Unlike graph CNNs, our graph is not �xed but rather is dynam-

ically updated after each layer of the network. That is, the set of
k-nearest neighbors of a point changes from layer to layer of the
network and is computed from the sequence of embeddings. Prox-
imity in feature space di�ers from proximity in the input, leading
to nonlocal di�usion of information throughout the point cloud. As

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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expressed in terms of the metric are invariant to isometric defor-
mation. Representatives of this class include spectral descriptors
such as global point signatures [Rustamov 2007], the heat and wave
kernel signatures [Aubry et al. 2011; Sun et al. 2009], and variants
[Bronstein and Kokkinos 2010]. Most recently, several approaches
wrap machine learning schemes around standard descriptors [Guo
et al. 2014; Shah et al. 2013].

Deep learning on geometry. Following the breakthrough results of
convolutional neural networks (CNNs) in vision [Krizhevsky et al.
2012; LeCun et al. 1989], there has been strong interest to adapt
such methods to geometric data. Unlike images, geometry usually
does not have an underlying grid, requiring new building blocks
replacing convolution and pooling or adaptation to a grid structure.

As a simple way to overcome this issue, view-based [Su et al. 2015;
Wei et al. 2016] and volumetric representations [Klokov and Lempit-
sky 2017; Maturana and Scherer 2015; Tatarchenko et al. 2017; Wu
et al. 2015]—or their combination [Qi et al. 2016]—“place” geometric
data onto a grid. More recently, PointNet [Qi et al. 2017b,c] exempli-
�es a broad class of deep learning architectures on non-Euclidean
data (graphs and manifolds) termed geometric deep learning [Bron-
stein et al. 2017]. These date back to early methods to construct
neural networks on graphs [Scarselli et al. 2009], recently improved
with gated recurrent units [Li et al. 2016] and neural message pass-
ing [Gilmer et al. 2017]. Bruna et al. [2013] and Hena� et al. [2015]
generalized convolution to graphs via the Laplacian eigenvectors
[Shuman et al. 2013]. Computational drawbacks of this foundational
approach were alleviated in follow-up works using polynomial [Def-
ferrard et al. 2016; Kipf and Welling 2017; Monti et al. 2017b, 2018],
or rational [Levie et al. 2017] spectral �lters that avoid Laplacian
eigendecomposition and guarantee localization. An alternative def-
inition of non-Euclidean convolution employs spatial rather than
spectral �lters. The Geodesic CNN (GCNN) is a deep CNN on meshes
generalizing the notion of patches using local intrinsic parameteriza-
tion [Masci et al. 2015]. Its key advantage over spectral approaches
is better generalization as well as a simple way of constructing
directional �lters. Follow-up work proposed di�erent local chart-
ing techniques using anisotropic di�usion [Boscaini et al. 2016]
or Gaussian mixture models [Monti et al. 2017a; Veličković et al.
2017]. In [Halimi et al. 2018; Litany et al. 2017b], a di�erentiable
functional map [Ovsjanikov et al. 2012] layer was incorporated into

a geometric deep neural network, allowing to do intrinsic structured
prediction of correspondence between nonrigid shapes.
The last class of geometric deep learning approaches attempts

to pull back a convolution operation by embedding the shape into
a domain with shift-invariant structure such as the sphere [Sinha
et al. 2016], torus [Maron et al. 2017], plane [Ezuz et al. 2017], sparse
network lattice [Su et al. 2018], or spline [Fey et al. 2018].
Finally, we should mention geometric generative models, which

attempt to generalize models such as autoencoders, variational au-
toencoders (VAE) [Kingma and Welling 2013], and generative adver-
sarial networks (GAN) [Goodfellow et al. 2014] to the non-Euclidean
setting. One of the fundamental di�erences between these two set-
tings is the lack of canonical order between the input and the output
vertices, thus requiring an input-output correspondence problem
to be solved. In 3D mesh generation, it is commonly assumed that
the mesh is given and its vertices are canonically ordered; the gen-
eration problem thus amounts only to determining the embedding
of the mesh vertices. Kostrikov et al. [2017] proposed SurfaceNets
based on the extrinsic Dirac operator for this task. Litany et al.
[2017a] introduced the intrinsic VAE for meshes and applied it to
shape completion; a similar architecture was used by Ranjan et al.
[2018] for 3D face synthesis. For point clouds, multiple generative
architectures have been proposed [Fan et al. 2017; Li et al. 2018b;
Yang et al. 2018].

3 OUR APPROACH
We propose an approach inspired by PointNet and convolution
operations. Instead of working on individual points like PointNet,
however, we exploit local geometric structures by constructing a
local neighborhood graph and applying convolution-like operations
on the edges connecting neighboring pairs of points, in the spirit
of graph neural networks. We show in the following that such an
operation, dubbed edge convolution (EdgeConv), has properties lying
between translation-invariance and non-locality.
Unlike graph CNNs, our graph is not �xed but rather is dynam-

ically updated after each layer of the network. That is, the set of
k-nearest neighbors of a point changes from layer to layer of the
network and is computed from the sequence of embeddings. Prox-
imity in feature space di�ers from proximity in the input, leading
to nonlocal di�usion of information throughout the point cloud. As
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• Steps: 
1. Construct local neighborhood graph 
2. Extract edge features (with DNN) 
3. Symmetric aggregation (sum or max) 
4. Rebuild graph in feature space

[2, 3]
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Learning on Graphs (Interaction Network)

• What is a graph: 
• Nodes: Have features 
• Edges: Connect nodes, can have features
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[7, 10]

• Learning by updating each node (i): 
• Embed edges 

• Aggregate embebbings 

• Embed aggregations 
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(Multilayer Perceptron)
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Parameter initialization
• Initialization of model parameters can be critical for performance 
• Choose Gaussian distributed initial weights / break symmetry 
• Two standard initializations: 

• Sigmoid, Tanh:  

• ReLU:  

σ2 = 2/(nin + nout)
σ2 = 2/nin
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Weights to large Weights to small
• Exploding Signals: • Vanishing Signals:
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Graphs
• Graph = static computing model consisting of 

• Tensors (value placeholders) 
• Structural elements which connect tensors (e.g. tf.Operation) 

• Defined by: Inputs, Outputs, Operations and connections
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x1

x2

+

( )2

+f(x1, x2) = x1+x2+x22

• Graphs can be optimized (parallel execution): Super fast! 
• Graphs are portable: Run on CPU, GPU, TPU, Multiple devices in parallel 
• Graphs are static: Everybody gets the same results, everywhere
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AdaGrad
• Adaptive Learning Rate for every Parameter (i) 

• Smaller updates for parameters associated with frequent modifications 
• Larger updates for parameters associated with infrequent modifications -> Tries a lot in 

unknown directions! 
• How: G is sum of squares of gradients of loss with respect to theta i 
• Pro: Learning rate does not have to be tuned of set specifically 
• Con: 

• G is monotonically increasing over number of epochs 
• Therefore learning rate decay to zero
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How Big is BIG DATA?
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of streaming (1 GB)
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 (1.5 GB and 500 GB, respectively)
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shared in 2021

(2 MB)

30+ B web pages
in 2021 (2.15 MB)
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Figure 1: Big Data sizes. Bubble plot of the orders of magnitude of data produced by important big data players. The balloon areas illustrate the amount
of data and the text annotations highlight the key factors considered in the estimates. Average per-unit sizes are reported in parentheses, where italic
indicates measures reconstructed based on likely assumptions because no references were found. Interactive version available at: BigData2021.html
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