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Problem Overviews



Problem Overview Reconstruction

One of the most common inverse problem: identify produced particles.
* Particles are detected as collimated streams (jets)

* Must be mapped to a more fundamental, theoretical identity.
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Problem Overview Jet-Parton Matching

 Many simultaneous decays in each event.
Many more jets than partons.
Initial cuts and requirements eliminate most of the garbage jets
* Most events have at least 2 extra jets which must be removed.
Complications

« Inputs are unordered collections (Sets) of jets.
* Qutputs are not unique!
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Jet-Parton Matching Set Assignment

This modeling task reduces to a unique set assignment problem.

Input is a set of size N

{il'jZ' 'jN}

Possible Targets are a set of size C < N and a special null target @
{0,t1,t,, ..., tc}

Output is another set of size N
with each p E {@, tl' tz, ...,jc} S. tpl * p] or p; = 1)

{pb P2, -, pN}



Problem Overview Parton Unfolding

« A larger reconstruction problem: Recover kinematic description of more fundamental particles.
* Challenge: Map set of jets to set of Parton kinematics.
* Need top effective Summarize a set of jets into a completed Parton description.
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Problem Overview Particle-level Unfolding

« Invert just the detector response
 Map a set of jets to a different set of particles
* Set cardinality may not be equal!
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Symmetry Input Permutation Equivariance

 Input has not inherent order, just a collection of observations.
e Qutputs match the order of input.
 Any approach must work for any initial ordering inputs.

{jl:jZ:jB:j4;j5:j6:j7:j8} = {j31j7'j11j21j8'j41j6'j5}
h,q',0,9,b",0,q9,q} ={0,9,b,9',9,9',0,b"}

« Enforce an arbitrary consistent ordering? Hard to justify.
* Process every possible permutation? Very expensive.
 Use a permutation equivariant architecture from the start!

Attention



Overview

Need a method to process sets, maintaining permutation symmetry.

Several different problems:

1. Assign labels to each element of a set (Jet-Parton Assignment)

2. Summarize a set into a fixed-length description (Parton Unfolding)

3. Generate an entirely new set conditioned on a set (Particle Unfolding)



Attention



Attention Overview Vectors
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Pick a SIMILARITY function. Compute  S;; = SIMILARITY(q;, k;)
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Attention Overview
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Attention Self-Attention

Special Case of attention where we use the same
input stream, X, as the queries, keys, and values.

Used to add context to collections of objects.
Make every element aware of the other elements
and learn the relationship between them.
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Attention Self-Attention

Another Interpretation: A fully connected graph neural network.
Every node sends a message to every other node.
Update equation with a dot-product similarity:
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Attention Self-Attention

Yet Another Interpretation: A dynamic fully-connect layer.

* Treat all vectors as a single stacked vector of values.
e Construct a dynamics weights matrix from the inputs.

0= Av

v=[fy (x1), fy (x2),..., [y (xn)]
A = Attention Matrix from before



Attention Multi-Head Attention

A simple extension: Learn multiple parallel, but smaller, attention layers.
: : D : :
Learn H mappings into a smaller space = and recombine (simple concatentate)

;}K’V - RP— > R7
for (X)

K fe()
Vi = f,(X)

O = [AIVI;AQVQ; S jAHVH]



Attention Transformers

q; - kj Self-attention’ with scaled dot-
D product as the similarity measure.

SIMILARITY (q;, kj) =

4 l ™)
~>| Add & Norm
Feed .
Forward The transformer encoder combines
A
- * Scaled dot-product attention
> GEEEEEI * Skip-connections
Multi-H . .
riead * Layer Normalization
it * Position-independent feed-forward layers.
\.
\_ J

1.Vaswani, Ashish, et al. “Attention Is All You Need.” Dec. 2017.



Attention Transformers Interpretation

logits The final logits are produced by applying the unembedding.
g P y applying g9
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€T; . . 7
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MLP ™M . — , .
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dimensional, from the same or information from
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Elhage, et al., "A Mathematical Framework for Transformer Circuits", Transformer Circuits Thread, 2021



Attention Permutation Equivariance
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Symmetric Attention

An extension of attention for jet-parton matching.

Shmakov A., Fenton M.J,, Ho T, et al. SPANet: Generalized Permutationless Set Assignment for Particle Physics using Symmetry
Preserving Attention. SciPost Phys. 12, 178 (2022)

https://scipost.org/SciPostPhys.12.5.178
https://github.com/Alexanders101/SPANet



https://scipost.org/SciPostPhys.12.5.178
https://github.com/Alexanders101/SPANet

Jet-Parton Matching Set Assignment

This modeling task reduces to a unique set assignment problem.

Input is a set of size N

{il'jZ' 'jN}

Possible Targets are a set of size C < N and a special null target @
{0,t1,t,, ..., tc}

Output is another set of size N
with each p E {@, tl' tz, ...,jc} S. tpl * p] or p; = 1)

{pb P2, -, pN}



Set Assignment Itemized Approach

The simplest approach to unique set classification
would be independent classification.

{jl:jZ: 'jN}

Train a jet classifier fy which treats
each jet as a separate object. fo

(dy,ds, ..., dy)

max

Postprocess your predictions and select
the highest probability assignment.

{pl' P2, -, pN}
Big Problems!

 How to prevent two identical targets being predicted? Maybe removing elements?
 How to pick order to go through targets? Different ordering could change the prediction!
 The network has no information about the uniqueness. No context for each input!



Set Assignment Permutation Approach

A more invariant approach to this would be the
permutation score function.

Generate every C-permutation of your set.

Score each permutation with DNN f,(S) € R.

Predict the highest scoring permutation.

Good approach but terrible run-time
e Currently used in many baseline methods

« Need to generate every permutation! Runtime is O(N%).

Ut Jzs -er Jic}

Permute

{Sl' 52' ) SkPC}

Score

{fo(S1), fo(S2), ..., fo(Skpr)}



SPANet A Combined Approach

Merge these two approaches to get the best of
both plus symmetry!

Output independent sub-permutations scores for each top-level particle
and learn to differentiate sub-permutations with classification.

Jet
Permutation
Stage

q | jet
qf
b/
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Symmetry Target Symmetries

One very interesting property of Feynman Diagram matching is the presence of symmetries.
The following target sets are equivalent due to charge symmetry.

!/ !/ !/ !/ / !/
CI1CI2bCI1 qzb < (q> qlbql CIZb We call these jet symmetries.

We will handle this with attention.
!/ !/ !/ !/ 14 !/
q419:bq1q9,b" < q19,bq;,q1b

7-1 7-2 7-2 7-1 We call this particle symmetries.
q19.bq1q>b" < q1q9,b'q,1q,b We will handle this with a special loss function.

Note: this is not the same as allowing duplicate targets Y / Py
because the target groupings must remain together. q1 quql CIZb a q1 qu‘h CIZb



Tensor Attention Overview

We can also use attention to produce joint distributions over N dimensions.
Generalization of dot-product attention: Tensor Attention

Suppose X is our list of vectors. This can be
viewed as a (1,1)-tensor with ranks (N, D).

Suppose 0 is a (0, K)-tensor of learnable
weights with rank (D, D, ..., D).

1. Perform generalized dot-product self- Oj1j2"'jN — X%l X%Q o XT{N Enin2.-nyN
attention on X with the mixing weights 0. 1 2 N

exp Q12N

> expO

2. Create a K-joint distribution P by

normalizing O. PILI2:IN —




Tensor Attention Symmetric Attention

Suppose we want our joint distribution to obey permutation symmetries.
For example: p(jy, j2, - ) = pU2,j1, - )-

We encode this as a symmetry group on the indices of O

Suppose Gp € Sk is a permutation group acting on the
indices {j{, j2, ) jx -

1. Create a symmetric weights tensor § by summing Sz — E Olo(1)to(2) - a(K)

over the symmetric indices of 8 according to Gp. ceGp

O2--JK — XZ-JlX-” o X?KSH’@---@K
1 72 LK

2. Perform generalized dot-product on the list of input
vectors X with a symmetric weights tensor S.

3. Create a symmetric joint distribution P by pju’z...jK exp (031]2...][()
normalizing O just like before. — T
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SPANet Training the Permutation Ranker

* Train symmetric joint-distributions using a simple categorical cross-entropy.
* One special difference

 The target T is not a delta distribution!

T will be non-zero for every valid symmetric assignment.

Lp(P,T)= Y  —Thizinlogpiriz-iy

715725 N



SPANet Symmetric Training

 Handle event symmetries using a symmetric loss function.

* Define an event-level symmetry group Gz € S,,, acting on particles
{P,P,,..,P,}

* Loss function simply takes the minimum achievable loss over valid
permutations.

« Also tried other methods such as sum of soft-min. Simple min works the best.

£ = min Z Lr (Potiy, Toti))

OEGE



Shmakov, Alexander et al. SPANet: Generalized Permutationless Set Assignment for Particle Physics using Symmetry Preserving Attention. SciPost. 2022.

SPANet Results

« Compare to a common baseline used in CERN analyses - A permutation-based X 2 approach.
* Greatly improve accuracy over baseline methods. On average around ~25% improvement.
» Drastically increase runtime performance. Baseline method cannot tractably evaluate tttt!

tt ttH

" t
g a1t gusnn Mo
P 2
g .00000 / 0 0> g &MT%QQ
by

bg
Event SPA-NET Efficiency x~ Efficiency Event SPA-NET Efficiency \~ Efficiency Event SPA-NET Efficiency
Nijets Fraction | Event  Top Quark | Event Top Quark Niets Fraction | Event Higgs Top | Event Higgs  Top Niets Fraction | Event  Top Quark
All Events == 0.245 0.643 0.696 0.461 0.523 == 0.261 0.370 0497 0540 | 0.056 0.193 0.092 =12 0.219 0.276 0.484
== 0.282 0.601 0.667 0.408 0.476 == 0.313 0.343 0492 0514 | 0.053 0.160 0.102 ==13 0.304 0.247 0.474
>8 0.320 0.528 0.613 0.313 0.395 > 10 0.313 0.294 0472 0473 | 0.031 0.150 0.056 > 14 0.450 0.198 0.450
Inclusive 0.848 0.586 0.653 0.387 0.457 Inclusive 0.972 0.330 0485 0.502 | 0.045 0.164 0.081 Inclusive 0.974 0.231 0.464
Complete Events == 0.074 0.803 0.837 0.664 0.696 == 0.042 0.532  0.657 0.663 | 0.040 0220 0.135 =12 0.005 0.350 0.617
=7 0.105 0.667 0.754 0.457 0.556 == 0.070 0422 0.601 0596 | 0.019 0.152 0.079 =13 0.016 0.249 0.567
> 8 0.145 0.521 0.602 0.281 0.429 > 10 0.115 0.306 0545 0523 | 0.004 0.126 0.073 > 14 0.044 0.149 0.504
Inclusive 0.325 0.633 0.732 0.426 0.532 Inclusive 0.228 0.383 0.583 0.572 | 0.016 0.153 0.087 Inclusive 0.066 0.191 0.529




Shmakov, Alexander et al. SPANet: Generalized Permutationless Set Assignment for Particle Physics using Symmetry Preserving Attention. SciPost. 2022.

SPANet Results

« Compare to a common baseline used in CERN analyses - A permutation-based X2 approach.
* Greatly improve accuracy over baseline methods. On average around ~25% improvement.
» Drastically increase runtime performance. Baseline method cannot tractably evaluate tttt!
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“© 10 == = |{ SPA-NET CPU == == {{{f SPA-NET CPU L~ *
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Extended SPANet

Further extensions of attention for spatial symmetry and regression.

Fenton, M.J., Shmakov, A., Okawa, H. et al. Reconstruction of unstable heavy particles using deep symmetry-preserving attention
networks. Communications Physics 7, 139 (2024).

https://www.nature.com/articles/s42005-024-01627-4



https://www.nature.com/articles/s42005-024-01627-4

Extended SPANet Continuous Input Symmetries

There are really three types symmetries in reconstruction.

 Mathematical permutation symmetry of sets

* Handled with transformer attention.
* Discrete Physics symmetries such as CPT

* Handled charge and parity symmetries with tensor attention and symmetric loss.
« Continuous Physics symmetries - Lorentz symmetries of space.

« We can rotate or flip the entire detector and get the exact same event.

e Still present!

EXPERIMENT

ATLAS =




Extended SPANet Continuous Input Symmetries

A Reference Frame is a conditional mapping

¢ (u; v) over the input vectors. In HEP, our cb(u ”U) _ 1 U — v+ v (u . U)U
transform is the Lorentz boost, which is ’ 1 —v-u Yo Yo + 1
preserved under a global Lorentz transform.

Q € RY*Y  QUERIES
Keys and values become matrix
collections of vectors. Queries remain K - RNXNXD KEYS

as lists of vectors.
V e RYVVXD VAL UES

K;; = ¢(kj; k;) represents the j'th key from i'th reference frame.

V; i = ¢(vj; v;) represents the j'th value from i'th reference frame.
Q; = ¢(q;; q;) represents the i'th query from i’'th reference frame.



Extended SPANet Continuous Input Symmetries

Qz’ - K 1,9
Modified attention o AN i S?j,j E R
peration 1s nearly \/E

identically to regular attention.

Just need to add some extra indices A’é,: — SOFTMAX(S@):) E RN

Output vector, O, is invariant to any
global changes w.r.t the perspective

operation. OZ — Z (Az,j O ‘/;J,j) ~ RD

J

A trivial reference frame function, ¢(u; v) = u, reduces
this operation regular scaled dot-product attention.



Extended SPANet Continuous Input Symmetries

Almost no improvement in performance!

0.74

2 —F Invariant Attention I What's going on?

3 072 Regular Attention ﬂ__ﬂ/

% 0.70 * The transformation function is just a

% 0.68 non-linear conditional function of

S 0.6 £ the original input.

2 o6 / « This is precisely a transformer!

z 0 « If Lorentz invariance is useful, then
10° 10° 10’ the network should just learn it.

Number of Training Examples (log Scale)

Density

05 e Tep——— Let's examine how much our

o Hadronic Top assignment probability changes as you

. feed the same event rotated in several

ways.

0.2

! i/“ Even without Lorentz invariant attention,
\“k . ® ® ®

T 0 s 0 5 0 I 20 SPANet 1s approximately invariant!

Absolute Difference in Truth Marginal Probability (%)



Extended SPANet Event and Particle Level

Outputs
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complete event.
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Global Outputs

Combined Training

Train SPANet on simulated data with the
hypothetical particle present and not present.
This will ensure reasonable performance
regardless of what the real data holds.

Regress extra neutrino terms

Classify event into signal or background

Use the encoded global vector to
predict additional event-level terms.



Extended SPANet Event and Particle Level Outputs

We can add a special Event-Level output to attention with a neat trick.

Add a special fixed vector to our input stream, X, which will represent the
event information. This special vector will have the same value for all events.
The transformer's contextual learning will fill Y. with relevant event information.




Extended SPANet Detection Probability

Original SPANet only produced assignment distributions, which we trained only on events
where the particle was fully reconstructable. We add the other half of the distribution to
detect when the reconstruction is even valid. Detection output is trained using binary

cross-entropy on the particle mask.

ASSIGNMENT PROBABILITY: P,(J1,72,.... jk, | p reconstructable)

DETECTION PROBABILITY: Py,(p reconstructable)
MARGINAL PROBABILITY: P, (j1, 2, -, Jk,) = Palj1. 92, - -, Jr, | ) Palp)

4

L detection = Min [Mg(p) log Pa(p) 4+ (1 — M) log (1 — Pd(p))}.

ceGg



Extended SPANet Detection Probability

Evaluating this new output head on semi-leptonic ttH

= Correct
=3 Incorrect

0.00 0.25 0.50 0.75 1.00
Leptonic Top Assignment Probability

=] Reconstructable
=1 Not Reconstructable

10

Density

0
0.00  0.25 0.50 0.75 1.00

Leptonic Top Detection Probability

2.0

1.5

1.0

0.5

0.0

3 Correct
== Incorrect

0.0 0.2 0.4 0.6 0.8 1.0
Hadronic Top Assignment Probability

=1 Reconstructable
[ Not Reconstructable

0.00 0.25 0.50 0.75 1.00
Hadronic Top Detection Probability

] 1 Correct
=3 Incorrect

0.0 0.2 0.4 0.6 0.8 1.0
Higgs Assignment Probability

] Reconstructable
=1 Not Reconstructable

0.0 0.2 0.4 0.6 0.8 1.0
Higgs Detection Probability



Extended SPANet Signal / Background Separation

g > t
A
-__I_-_I_<b
)\ b

g . t

g b t

b

Q
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ttbb present a significant background to ttH events
with very similar kinematics and final states
Add auxiliary classification output to SPANet
 Feed both ttHand ttbbinto SPANet training,
labeling events with either © or 1.

* Do not perform reconstruction on ttbb events.
Optionally fine-tune auxiliary output after training.
Compare to BDTs trained from model scores.

* Feed assignment, detection, and marginal

probabilities into BDT.
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Extended SPANet Signal / Background Separation

Table 5: Expected LHC Run 2 sensitivity to ttH as measured in a parame-
terized detector model described in the text. Shown is the expected statistical
significance of the measurement as well as expected upper limits on cross
section and signal strength using the output of classification networks trained

—— SPANET Fine-tuning (AUC = 0.771)

—+— SPANET Pretraining (AUC = 0.744)

0.0

SPANET BDT (AUC = 0.762)

PDNN BDT (AUC = 0.708)
KLFitter BDT (AUC = 0.704)

0.2

0.4 0.6
Signal Efficiency

0.8

1.0

on the products of various reconstruction algorithms.

Signal Upper cross Upper signal

significance | section limit [pb] | strength limit
KLFitter BDT 238 ¢ 0.847 0.84
PDNN BDT 2.40 o 0.843 0.831
SPANET BDT 3.00 o 0.773 0.671
SPANET pre-training 2.74 o 0.799 0.732
SPANET fine-tuning 3.08 ¢ 0.765 0.655

Table 6: Expected LHC Run 3 sensitivity to ttH as measured in a parame-
terized detector model described in the text. Shown is the expected statistical
significance of the measurement as well as expected upper limits on cross
section and signal strength using the output of classification networks trained

on the products of various reconstruction algorithms.

Signal Upper cross Upper signal

significance | section limit [pb] | strength limit
KLFitter BDT 4.11 o 0.705 0.489
PDNN BDT 4.14 o 0.703 0.486
SPANET BDT 5.21 o 0.662 0.387
SPANET pre-training 4.76 o 0.677 0.423
SPANET fine-tuning 5.72 o 0.647 0.353




Extended SPANet Search for 2’

Background
Standard model semi-leptonic tt event.

Events also have an additional neutrino term
which needs to be reconstructed separately.

Need to separate events into a signal and a
background class depending on if the
hypothetical particle was present in the
event.

Hypothetical modified event with a non-
standard-model Z’ Boson before top decay.



Extended SPANet Search for 2’

s g 4
. . 5 3 S 3
« Use regression outputs to predict £ 3
the missing neutrino kinematics to 2 1 E 1
assists in search. S g
« Also employ signal-background %2 .,
classification to assist in cuts. 52 2

M4 32-10 1 2 3 4 §_4—4 -3-2-10 1 2 3 4

True Neutrino n True Neutrino n

(a) (b)

Fig. 2: True necutrino pseudo-rapidity (n) versus predicted values from (a)
SPA-NET, and (b) the W-mass constraint.

Table 4: Expected global significance for a Z’ signal with an integrated lumi-

nosity of 140 (300) fb—!, for several choices of Z’ mass and reconstruction
algorithms.

KLFitter PDNN SPA-NET SPA-NET w/ n¥

Mz = 500 GeV
my = 700 GeV
myz = 900 GeV

1.20 (2.50)
1.60 (3.30)
1.90 (3.90)

1.80 (3.50)
2.50 (4.90)
2.80 (5.50)

.80 (5.50)
3.10 (6.10)
4.30 (8.50)

2.70 (5.40)
2.90 (5.70)
1.10 (8.20)




Unfolding

Attention for learning kinematic distributions

Shmakov A, Greif K, Fenton M, Ghosh A, Baldi P, Whiteson D. End-To-End Latent Variational Diffusion Models for Inverse Problems in
High Energy Physics. Neural Information Processing Systems. 2023

Huetsch et. al. The Landscape of Unfolding with Machine Learning. Preprint. 2024
https://arxiv.org/abs/2404.18807



https://arxiv.org/abs/2404.18807

Unfolding Parton Unfolding

Simulators (Madgraph, Delphes, etc)
define the forward problem:
Parton -> Detector

So far, we have been assigning jets to
source partons. What if we could do more?

Unfolding Fully recovering the momenta of

) We want to solve the inverse problem:
the source partons from observations.

Detector -> Parton

NSRS,

~

t s

SRS

<

Unfolding




Preliminary Work

Parton Unfolding Diffusion

We borrow a popular idea from machine learning: Diffusion.
Generate complex distributions conditioned on another observation.

Based on a principle of denoising: generate new samples by reversing gradual noise.

Fixed Forward Diffusion Process

Generative Reverse Denoising Process

Learning objective
Given conditioning ¢ and noisy data z = x + ¢, predict € = fy(z,¢)



Parton Unfolding Architecture

Jet Central
Embeddings Transformer
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Detector Encoder

Use the special event-level output
fromm SPANet to get an abstract
conditional latent vector.

Convert a complex variable-length
observation into a fixed-length
vector to use for diffusion.



Parton Unfolding Event Vector

 Use same trick as the event-level SPANet outputs.
« Ignore the jet outputs. Don’t need them for anything.

Noise
Prediction

Transformer Encoder

Z

Noisy Parton

Conditioning Jets
Features 9




Parton Unfolding Diffusion

The whole unfolding framework will generate
Parton configurations conditioned on event vector.
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Parton Unfolding Results
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Figure 7: Unfolded distributions from conditional generation, using cINN, CFM and
VLD. For cINN and CFM, the Bayesian errors are based on drawing 50 samples, and
the MAP estimate is obtained by unfolding each event 30 times. For VLD, we show
the bin-wise mean and standard deviation of 33 unfoldings.



Unfolding Particle Unfolding

« Invert just the detector response

 Map a set of jets to a different set of particles

* Set cardinality may not be equal!

* N particles, M observed Jets at detector level, M # N
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Unfolding Particle Unfolding

Denoising network will now take in and output sets.
Simple trick: Feed everything into the transformer, only use what you need.

Noisy Inputs Cond. Jets




Unfolding Particle Unfolding

How many particles to generate? Learn a multiplicity predictor!
Y,

Transformer Encoder

Xy

Learned
Input

Conditioning Jets




Unfolding Particle Unfolding
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