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Uncertainties, the bedrock of experimental science

mH = 125.25 ± 0.17 GeV

How sure am I ? How can I reduce my uncertainty ?


{statistical, detector systematic, theory systematic, epistemic, ….}



3

Nuisance Parameter InfrastructureNP infrastructure

Time to re-examine 
some of the  

underlying pieces 

Are they up to the 
task of the precision era? 

Approximation 
made by a grad 
student in 2003

Stolen from Daniel Whiteson

Inspired by XKCD

https://xkcd.com/2347/
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The four stages of ML adoption

Fear: Will ML exacerbate uncertainties in a way human-designed strategies naturally avoid ?


Solution: Find ML equivalents of uncertainty mitigation tricks we implicitly use in classical methods. 
Understand good and bad ways to use ML


Opportunity: ML for uncertainty –  Realising that ML unlocks completely new interpretability tools and 
methods to tackle uncertainties in a way classical methods couldn’t


Revolution: Novel uncertainty quantification & mitigation methods developed for ML have wider 
applications, also back-ported to classical (non-ML) algorithms



4

The four stages of ML adoption

Fear: Will ML exacerbate uncertainties in a way human-designed strategies naturally avoid ?
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Understand good and bad ways to use ML


Opportunity: ML for uncertainty –  Realising that ML unlocks completely new interpretability tools and 
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Revolution: Novel uncertainty quantification & mitigation methods developed for ML have wider 
applications, also back-ported to classical (non-ML) algorithms

We are 
here
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Typical Uncertainties in HEP

Statistical Uncertainty Systematic Experimental Uncertainty 

, HiggsMLH → ττ
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Figure 2. The seven inputs used to train a classifier to distinguish boosted W boson jets from
generic QCD jets events.

focus on the region near 10-15% signal e�ciency, which is a typical working point for LHC

analyses. In this range, the background rejection (inverse QCD e�ciency) is between a few

hundred and a few thousand.

A second network is trained as part of an adversarial approach. This second network

uses both Pythia and Herwig events and minimizes the following loss:

L[f, g] =�
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A , (3.1)

where yi = 0 for W jets and yi = 1 for QCD jets. Furthermore, � = 10. Note that

unlike Eq. 2.1, Eq. 3.1 has the labels as part of the function for the adversary. This means

– 5 –

Systematic Theory Uncertainty

Tau Energy Scale
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6IPhT, CEA Saclay, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette cedex, France
7Department of Physics, University of Cincinnati, Cincinnati, OH 45219, USA

Abstract: SHERPA is a general-purpose Monte Carlo event generator for the simulation of
particle collisions in high-energy collider experiments. We summarise essential
features and improvements of the SHERPA 2.2 release series, which is heavily used
for event generation in the analysis and interpretation of LHC Run 1 and Run 2
data. We highlight a decade of developments towards ever higher precision in the
simulation of particle-collision events.
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Essential terminology

Parameter of Interest (PoI): Parameter we want to measure from data

Eg. signal strength μ that describes the strength of a physics process we care about


Nuisance Parameter (NP):  Parameters we actually don’t want to care about, but they 
influence our measurement, so we need to account for their impact

Eg. Jet energy scale, background normalisation
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Eg. Jet energy scale, background normalisation
The Profile Likelihood approach

3

● The profile likelihood is a way to include systematic uncertainties in the likelihood
○ systematics included as "constrained" nuisance parameters
○ the idea behind is that systematic uncertainties on the measurement of µ come from 

imperfect knowledge of parameters of the model (S and B prediction)
■ still some knowledge is implied: "θ = θ0 ± Δθ"

○ external / a priori knowledge interpreted as "auxiliary/subsidiary measurement", 
implemented as constraint/penalty term, i.e. probability density function
(usually Gaussian, interpreting "±Δθ" as Gaussian standard deviation)

- usually θ0=0 and Δθ=1 (convention)
- define effect of systematic j on prediction x in bin i at "+1" and "-1",
- then interpolate & extrapolate for any value of θ Prior

 = Nuisance Parameterz

We often make auxiliary measurement of NP and use that as a prior constraint in final fit

Could also do simultaneous fit in signal and control regions
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Uncertainties discussed in ML: Aleatoric Uncertainty

60 samples600 samples60000 samples

Intrinsic randomness leads to a per-event uncertainty 
that cannot be reduced by taking more data
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Uncertainties discussed in ML: Epistemic Uncertainty

Could reduce by gathering more data, possibly focused on different parts of parameter space

Eg. Simulations at another value of JES, different particle energies

Image: Source

https://link.springer.com/article/10.1007/s10994-021-05946-3
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Could reduce by gathering more data, possibly focused on different parts of parameter space

Eg. Simulations at another value of JES, different particle energies

Image: Source

https://towardsdatascience.com/my-deep-learning-model-says-sorry-i-dont-know-the-answer-that-s-absolutely-ok-50ffa562cb0b
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Uncertainties discussed in ML: Epistemic Uncertainty

Image: Source

Could reduce by gathering more data, possibly focused on different parts of parameter space

Eg. Simulations at another value of JES, different particle energies

Image: Source

Snowmass 2021: Advocate to build common language between fields

https://towardsdatascience.com/my-deep-learning-model-says-sorry-i-dont-know-the-answer-that-s-absolutely-ok-50ffa562cb0b
https://link.springer.com/article/10.1007/s10994-021-05946-3


ML uncertainties are relevant in HEP !



ML uncertainties are relevant in HEP !

Eg. Estimating likelihoods directly with neural networks
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Fundamental interactions Detector effects on measurement
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(a) Feynman diagram of top quark (t) pair produc-
tion. Each top quark decays to a W boson and a
bottom quark (b). In this example, one W decays
leptonically to an electron (e) and neutrino (⌫), the
second decays hadronically to an up (u) and down
(d) quark.

(b) Display of the high-dimensional detector
observations for an LHC collision identified as
likely to have contained a top quark pair.

via the corresponding inverse process if one has access to a pseudo-inversion of the response function
p(x|y), also known as the posterior.

fparton(x) =

Z
dy p(x|y)fdet(y) (2)

Generative unfolding methods build the posterior as a generative model, which can be used to sample
from p(x|y). The desired parton distribution is then obtained by Equation 2. Simulated pairs of
parton-detector data, (x, y), may be used to train the generative model.

An important issue when choosing to directly model the posterior is that this quantity is itself
dependent on the desired distribution fparton(x), the prior in Bayes’ theorem:

p(x|y) =
p(y|x)fparton(x)

fdet(y)
(3)

Producing the data set used to train the generative model requires choosing a specific fparton(x),
which influences the learned posterior. In application to new datasets, this will lead to an unreliable
estimate of the posterior density if the assumed prior is far enough from the truth distribution. A
common method to overcome this challenge is to apply an iterative procedure, in which the assumed
prior is re-weighted to match the approximation to the truth distribution provided by the unfolding
algorithm [2]. Though application of this iterative procedure is not shown in this paper, the principle
has been demonstrated with other generative unfolding methods [28], for which the conditions are
similar.

2.2 Semi-Leptonic Top Quark Pair Production

Collisions at the LHC which result in a pair of top quarks allow for sensitive probes of new theories
of physics, which makes measurement of the top quark properties an important task. Top quarks are
unstable, decaying almost immediately to a W boson and a bottom quark; the W boson can then
decay hadronically to two quarks or leptonically to a charged lepton and neutrino. The case where
one of the produced top quarks decays hadronically and the other decays leptonically is known as the
semi-leptonic decay mode, see Fig. 1a. The 4-momenta (three momentum components, one mass) of
these six objects (four quarks, the charged lepton, and the neutrino) constitute the parton-level space
in this context.

The four quarks each produce a shower of particles (jets) which interact with the detector, while the
neutrino passes through without leaving a trace. The resulting observed detector signature which
defines the detector-level space is then quite complex, see Fig. 1b.

The semi-leptonic tt̄ process has been studied by the ATLAS and CMS collaborations to measure
various properties of the top quark and to search for new particles and interactions [29–34]. Many
of these measurements use existing unfolding techniques, which limit the unfolded measurements
to one or two dimensions. An un-binned and high dimensional unfolding technique would allow
physicists to use the full power of their data.

3

OmniFold: Anderson et al. (incl. Nachman)

https://arxiv.org/abs/1911.09107
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Figure 5: Inclusive kinematic distributions for jets in the SM testing dataset, comparing
the true particle-level jets (dashed blue), the unfolded particle-level jets (solid red),
and the detector-level jets (dotted green). The unfolded distributions include error
bounds estimated by sampling each event 128 times.
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Figure 6: Inclusive kinematic distributions of leptons in the SM testing dataset, com-
paring the true particle-level leptons (dashed blue), the unfolded particle-level leptons
(red solid), and the detector-level leptons (dotted green). Unfolded distributions
include error bounds estimated by sampling each event 128 times.
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via the corresponding inverse process if one has access to a pseudo-inversion of the response function
p(x|y), also known as the posterior.

fparton(x) =

Z
dy p(x|y)fdet(y) (2)

Generative unfolding methods build the posterior as a generative model, which can be used to sample
from p(x|y). The desired parton distribution is then obtained by Equation 2. Simulated pairs of
parton-detector data, (x, y), may be used to train the generative model.

An important issue when choosing to directly model the posterior is that this quantity is itself
dependent on the desired distribution fparton(x), the prior in Bayes’ theorem:

p(x|y) =
p(y|x)fparton(x)

fdet(y)
(3)

Producing the data set used to train the generative model requires choosing a specific fparton(x),
which influences the learned posterior. In application to new datasets, this will lead to an unreliable
estimate of the posterior density if the assumed prior is far enough from the truth distribution. A
common method to overcome this challenge is to apply an iterative procedure, in which the assumed
prior is re-weighted to match the approximation to the truth distribution provided by the unfolding
algorithm [2]. Though application of this iterative procedure is not shown in this paper, the principle
has been demonstrated with other generative unfolding methods [28], for which the conditions are
similar.

2.2 Semi-Leptonic Top Quark Pair Production

Collisions at the LHC which result in a pair of top quarks allow for sensitive probes of new theories
of physics, which makes measurement of the top quark properties an important task. Top quarks are
unstable, decaying almost immediately to a W boson and a bottom quark; the W boson can then
decay hadronically to two quarks or leptonically to a charged lepton and neutrino. The case where
one of the produced top quarks decays hadronically and the other decays leptonically is known as the
semi-leptonic decay mode, see Fig. 1a. The 4-momenta (three momentum components, one mass) of
these six objects (four quarks, the charged lepton, and the neutrino) constitute the parton-level space
in this context.

The four quarks each produce a shower of particles (jets) which interact with the detector, while the
neutrino passes through without leaving a trace. The resulting observed detector signature which
defines the detector-level space is then quite complex, see Fig. 1b.

The semi-leptonic tt̄ process has been studied by the ATLAS and CMS collaborations to measure
various properties of the top quark and to search for new particles and interactions [29–34]. Many
of these measurements use existing unfolding techniques, which limit the unfolded measurements
to one or two dimensions. An un-binned and high dimensional unfolding technique would allow
physicists to use the full power of their data.

3

SciPost Physics Submission

1.0

2.0

3.0

D
en

si
ty

�10�2

Unfolded
SM Truth
SM Detector

0 100 200 300 400

pjet
T [GeV]

-0.2

0.0

0.2

Lo
g

R
at

io

(a)

1.0

2.0

3.0

4.0

D
en

si
ty

�10�1

Unfolded
SM Truth
SM Detector

�2 0 2

h jet

-0.5

0.0

0.5

Lo
g

R
at

io

(b)

0.5

1.0

1.5

2.0

D
en

si
ty

�10�1

Unfolded
SM Truth
SM Detector

�2 0 2

f jet

-0.1

0.0

0.1

Lo
g

R
at

io

(c)

0.5

1.0

1.5

D
en

si
ty

�10�1

Unfolded
SM Truth
SM Detector

0 20 40 60

mjet [GeV]

-1.0

0.0

1.0

Lo
g

R
at

io

(d)

2.5

5.0

7.5

10.0

D
en

si
ty

�10�3

Unfolded
SM Truth
SM Detector

0 200 400 600 800

E jet [GeV]

-0.2

0.0

0.2

Lo
g

R
at

io

(e)

Figure 5: Inclusive kinematic distributions for jets in the SM testing dataset, comparing
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Traditional framework:

Statistical	
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The neural inference framework:
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See more in ‘Neural Simulation-Based Inference’ talk by Andy & Aishik on Day 5
hal-02971995v3: Ghosh, et al

CARL: Cranmer et al

https://hal.science/hal-02971995v3/
https://arxiv.org/abs/


Question to the audience:

What is the danger here?



We loose the analytical form for likelihoods,
to get a high-dimensional and unbinned analysis
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We loose the analytical form for likelihoods,
to get a high-dimensional and unbinned analysis

13

ln P(Nobs) = Nobs ⋅ Nexp − Nexp − ln(Nobs!)

In each bin:

Image: Source

Clear notion of per-bin MC statistical uncertainties

1-dim	histogram

Likelihood (ratio) in high dimensions estimated by a 
network

high-dim	data

https://www.vectorstock.com/royalty-free-vectors/fingers-crossed-cartoon-vectors


How much is your network limited my training statistics?
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Population
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Want to estimate mean of population

Re-Sample 
with 

replacement

Image: Source

Estimating the variance on mean: Bootstrapping

https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/bootstrapping-in-statistics/
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Propagating statistical uncertainty with bootstrapped samples

• Train an ensemble of networks, each on a bootstrapped 
version of the training dataset

• The spread in their prediction provides the uncertainty due 
to limited training statistics, and model uncertainty


• Variations of this core idea used in NSBI, unfolding, …

Image: Source

https://medium.com/@alexppppp/how-to-train-an-ensemble-of-convolutional-neural-networks-for-image-classification-8fc69b087d3
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Bayesian Networks

• Each weight replaced by a distribution of weights

• Eg. Sampled from learnt {mean, std}


• The distribution in NN prediction for each event gives you 
an uncertainty estimate


• Open question: How to interpret this uncertainty? What is 
the coverage?


• Calibrate the uncertainties arXiv:2408.00838: Bringer et al 
(incl. Diefenbacher)


• … more work needed here before if they are to 
become standard tools in frequentist frameworks

https://arxiv.org/abs/2408.00838
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An exciting use case: Interpretability
Insights from Theo Heimel, Peter Loch, Tilman Plehn, Jad M. Sardain, Philip Velie and Lorenz Vogel
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An exciting use case: Interpretability
Insights from Theo Heimel, Peter Loch, Tilman Plehn, Jad M. Sardain, Philip Velie and Lorenz Vogel

 σ

C
o
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t 

Is it events with missing jets?

Low Pt events where simulation is poorly modelled?

Some sub-module of the detector?

Gives you a new handle to understand your data !
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Similar story with neural likelihood ratio estimators

Particle mass

Avg LR

(  vs )H1 H2

1A new interpretability tool that let’s you study the 
contribution of each event on your final measurement


A slew of new sanity checks become possible

Which events favour my hypothesis ?



Where ML model uncertainties are not essential…
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Traditional analysis at LHC

Compare to find New Physics 

Unlabelled data from LHC Simulation using Standard 
Model of particle physics
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High dimensional data

Detector has ~100 million sensors


→ Combine information into 1 powerful 
summary variable


Look at histogram of this variable



CHAPTER 7. LIKELIHOOD-FREE INFERENCE

study, discuss how this strategy can be adapted for a signal strength measurement, and outline
dataset production setup. Finally it will present some very promising results for a simplified
problem (without accounting for background events coming from gg and qq̄ initial states, and
using Delphes for detector simulation) and discuss the future prospects within ATLAS.

7.1 The troubles that come with quantum interference
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Figure 9. Distributions of the BDT discriminants for the data taken at
�

s = 8 TeV in the signal
regions of the VBF (left) and boosted (right) categories for the �lep�lep (top), �lep�had (middle),
and �had�had (bottom) channels. The Higgs boson signal (mH = 125 GeV) is shown stacked with
a signal strength of µ = 1 (dashed line) and µ = 1.4 (solid line). The background predictions
are determined in the global fit (that gives µ = 1.4). The size of the statistical and systematic
normalisation uncertainties is indicated by the hashed band. The ratios of the data to the model
(background plus Higgs boson contributions with µ = 1.4) are shown in the lower panels. The
dashed red and the solid black lines represent the changes in the model when µ = 1.0 or µ = 0 are
assumed respectively.

– 37 –

Figure 7.1 – Example of an ATLAS signal strength measurement: Distribution of a BDT
discriminant for data taken at

Ô
s = 8 TeV in the signal region of the VBF category for the

H æ ·had·had channel. [125]

In a traditional signal strength (µ) measurement analysis where quantum interference plays no
role, one can simulate the signal and background samples separately. The number of expected
events is a linear function of µ. One can then train a machine learning classifier (such as a
Boosted Decision Tree) to separate the signal and background samples and perform a parameter
estimation fit on the distribution of the score when the model is applied to real data recorded by
the detector (an example of such a fit is shown in Figure 7.1 from the ATLAS H æ ·· analysis
from Run1). Neglecting systematics, and under the assumption that it is an optimal classifier,
this is the most precise measurement one can possibly perform. The expected number of events
is simply linear in µ (Nexp = µS + B, where S is the signal yield and B is the background
yield for the SM), and there is no need to train the model on separate datasets to be optimal to
di�erent possible true values of µ in nature. The mathematical reasoning for this is discussed
in Chapter 4.

In the presence of quantum interference, this strategy is no longer optimal. The expected number
of events is no longer linear in µ, but follows the equation,

Nexp = µS + Ô
µI + B, (7.1)

158

Classifier output 24

Build this ‘sensitive summary variable’ with ML

Typical use of ML at LHC :

• Classifier for Signal vs Background

• Output observable is maximally sensitive to measure theory parameter → New Physics

Compare various 
simulations to data to 

find best fit

1501.04943

https://arxiv.org/abs/1501.04943
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Build this ‘sensitive summary variable’ with ML

Typical use of ML at LHC :

• Classifier for Signal vs Background

• Output observable is maximally sensitive to measure theory parameter → New Physics

Compare various 
simulations to data to 

find best fit

1501.04943

Don’t need uncertainty on ML model !
Treat the output like a regular observable


Worse classifier ⇒ Less sensitivity, but still 
correct uncertainty estimates from histogram 
(using Poisson probability model)

https://arxiv.org/abs/1501.04943


Unlabelled data from LHCSimulation using Standard 
Model of particle physics

Known sources of differences between simulation and data… will systematically bias our measurements

Known unknowns

Train ML models on simulation, apply on data

Simulate using best guess: Z=1 Detector state Z = ? in data



Observable Sensitive to Nuisance Parameters

Single bin analysis, insensitive to shape uncertainty

Signal shape

Background uncertain shape

Infinite bin analysis, very sensitive to shape uncertainty

Traditionally, we reduce impact of NP by sacrificing something:


• Don’t use observable


• Don’t use phase space which is badly modelled by simulation


• Reduce sensitivity some other way



ML equivalent problem: Domain Adaptation

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

MNIST Syn Numbers SVHN Syn Signs

Source

Target

MNIST-M SVHN MNIST GTSRB

Figure 6: Examples of domain pairs used in the experiments. See Section 5.2.4 for details.

Method
Source MNIST Syn Numbers SVHN Syn Signs

Target MNIST-M SVHN MNIST GTSRB

Source only .5225 .8674 .5490 .7900

SA (Fernando et al., 2013) .5690 (4.1%) .8644 (�5.5%) .5932 (9.9%) .8165 (12.7%)

DANN .7666 (52.9%) .9109 (79.7%) .7385 (42.6%) .8865 (46.4%)

Train on target .9596 .9220 .9942 .9980

Table 2: Classification accuracies for digit image classifications for di↵erent source and
target domains. MNIST-M corresponds to di↵erence-blended digits over non-
uniform background. The first row corresponds to the lower performance bound
(i.e., if no adaptation is performed). The last row corresponds to training on
the target domain data with known class labels (upper bound on the DA perfor-
mance). For each of the two DA methods (ours and Fernando et al., 2013) we
show how much of the gap between the lower and the upper bounds was covered
(in brackets). For all five cases, our approach outperforms Fernando et al. (2013)
considerably, and covers a big portion of the gap.

Method
Source Amazon DSLR Webcam

Target Webcam Webcam DSLR

GFK(PLS, PCA) (Gong et al., 2012) .197 .497 .6631

SA* (Fernando et al., 2013) .450 .648 .699

DLID (Chopra et al., 2013) .519 .782 .899

DDC (Tzeng et al., 2014) .618 .950 .985

DAN (Long and Wang, 2015) .685 .960 .990

Source only .642 .961 .978

DANN .730 .964 .992

Table 3: Accuracy evaluation of di↵erent DA approaches on the standard Office (Saenko
et al., 2010) data set. All methods (except SA) are evaluated in the “fully-
transductive” protocol (some results are reproduced from Long and Wang, 2015).
Our method (last row) outperforms competitors setting the new state-of-the-art.
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arXiv:1505.07818

https://arxiv.org/abs/1505.07818


Adversarial decorrelation

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

Figure 1: Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The
adversary r models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through
the output f(X; ✓f ) of the classifier. By maximizing the antagonistic objective Lr(✓f , ✓r), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance
parameter Z and therefore pivotal.

type of the nuisance parameter (discrete or continuous) or of its prior. Finally, we demonstrate the
effectiveness of the approach with a toy example and examples from particle physics.

2 Problem statement

We begin with a family of data generation processes p(X,Y, Z), where X 2 X are the data, Y 2 Y
are the target labels, and Z 2 Z are the nuisance parameters that can be continuous or categorical. Let
us assume that prior to incorporating the effect of uncertainty in Z, our goal is to learn a regression
function f : X ! S with parameters ✓f (e.g., a neural network-based probabilistic classifier) that
minimizes a loss Lf (✓f ) (e.g., the cross-entropy). In classification, values s 2 S = R|Y| correspond
to the classifier scores used for mapping hard predictions y 2 Y , while S = Y for regression.

We augment our initial objective so that inference based on f(X; ✓f ) will be robust to the value
z 2 Z of the nuisance parameter Z – which remains unknown at test time. A formal way of enforcing
robustness is to require that the distribution of f(X; ✓f ) conditional on Z (and possibly Y ) be
invariant with the nuisance parameter Z. Thus, we wish to find a function f such that

p(f(X; ✓f ) = s|z) = p(f(X; ✓f ) = s|z0) (1)

for all z, z0 2 Z and all values s 2 S of f(X; ✓f ). In words, we are looking for a predictive function
f which is a pivotal quantity with respect to the nuisance parameters. This implies that f(X; ✓f ) and
Z are independent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is imposed with respect to p(X|Z) where Y is
marginalized out. In some situations however (see e.g., Sec. 5.2), class conditional independence of
f(X; ✓f ) on the nuisance Z is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y .

3 Method

Joint training of adversarial networks was first proposed by (Goodfellow et al., 2014) as a way to
build a generative model capable of producing samples from random noise z. More specifically, the
authors pit a generative model g : Rn ! Rp against an adversarial classifier d : Rp ! [0, 1] whose
antagonistic objective is to recognize real data X from generated data g(Z). Both models g and d are
trained simultaneously, in such a way that g learns to produce samples that are difficult to identify by
d, while d incrementally adapts to changes in g. At the equilibrium, g models a distribution whose
samples can be identified by d only by chance. That is, assuming enough capacity in d and g, the
distribution of g(Z) eventually converges towards the real distribution of X .

2
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LClassifier = LClassification − λ ⋅ LAdversary

Learning to Pivot, Louppe et al.

Similar ideas: Blance et al., Stevens et 
al., Wunsch at al.,


Estrade at al.

Kasieczka at al.


S vs B Regress NP

NN 
output

Learning to Pivot, Louppe et al.

https://arxiv.org/pdf/1611.01046.pdf
https://arxiv.org/pdf/1905.10384.pdf
https://arxiv.org/abs/1305.7248
https://arxiv.org/abs/1305.7248
https://arxiv.org/pdf/1907.11674.pdf
https://www.epj-conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_06024/epjconf_chep2018_06024.html
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.122001
https://arxiv.org/pdf/1611.01046.pdf
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Figure 1: Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The
adversary r models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through
the output f(X; ✓f ) of the classifier. By maximizing the antagonistic objective Lr(✓f , ✓r), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance
parameter Z and therefore pivotal.

type of the nuisance parameter (discrete or continuous) or of its prior. Finally, we demonstrate the
effectiveness of the approach with a toy example and examples from particle physics.

2 Problem statement

We begin with a family of data generation processes p(X,Y, Z), where X 2 X are the data, Y 2 Y
are the target labels, and Z 2 Z are the nuisance parameters that can be continuous or categorical. Let
us assume that prior to incorporating the effect of uncertainty in Z, our goal is to learn a regression
function f : X ! S with parameters ✓f (e.g., a neural network-based probabilistic classifier) that
minimizes a loss Lf (✓f ) (e.g., the cross-entropy). In classification, values s 2 S = R|Y| correspond
to the classifier scores used for mapping hard predictions y 2 Y , while S = Y for regression.

We augment our initial objective so that inference based on f(X; ✓f ) will be robust to the value
z 2 Z of the nuisance parameter Z – which remains unknown at test time. A formal way of enforcing
robustness is to require that the distribution of f(X; ✓f ) conditional on Z (and possibly Y ) be
invariant with the nuisance parameter Z. Thus, we wish to find a function f such that

p(f(X; ✓f ) = s|z) = p(f(X; ✓f ) = s|z0) (1)

for all z, z0 2 Z and all values s 2 S of f(X; ✓f ). In words, we are looking for a predictive function
f which is a pivotal quantity with respect to the nuisance parameters. This implies that f(X; ✓f ) and
Z are independent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is imposed with respect to p(X|Z) where Y is
marginalized out. In some situations however (see e.g., Sec. 5.2), class conditional independence of
f(X; ✓f ) on the nuisance Z is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y .

3 Method

Joint training of adversarial networks was first proposed by (Goodfellow et al., 2014) as a way to
build a generative model capable of producing samples from random noise z. More specifically, the
authors pit a generative model g : Rn ! Rp against an adversarial classifier d : Rp ! [0, 1] whose
antagonistic objective is to recognize real data X from generated data g(Z). Both models g and d are
trained simultaneously, in such a way that g learns to produce samples that are difficult to identify by
d, while d incrementally adapts to changes in g. At the equilibrium, g models a distribution whose
samples can be identified by d only by chance. That is, assuming enough capacity in d and g, the
distribution of g(Z) eventually converges towards the real distribution of X .
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Figure 2: Toy example. (Left) Conditional probability densities of the decision scores at Z = ��, 0,� without
adversarial training. The resulting densities are dependent on the continuous parameter Z, indicating that f is
not pivotal. (Middle left) The associated decision surface, highlighting the fact that samples are easier to classify
for values of Z above �, hence explaining the dependency. (Middle right) Conditional probability densities of
the decision scores at Z = ��, 0,� when f is built with adversarial training. The resulting densities are now
almost identical to each other, indicating only a small dependency on Z. (Right) The associated decision surface,
illustrating how adversarial training bends the decision function vertically to erase the dependency on Z.

where � � 0 is a hyper-parameter controlling the trade-off between the performance of f and its
independence with respect to the nuisance parameter. Setting � to a large value will preferably
enforces f to be pivotal while setting � close to 0 will rather constraint f to be optimal. When the
lower bound is strict, let us note however that there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase in accuracy would exactly be compensated
by a decrease in pivotality and vice-versa. How to best navigate this Pareto frontier to maximize a
higher-level objective remains a question open for future works.

Interestingly, let us finally emphasize that our results hold using only the (1D) output s of f(·; ✓f ) as
input to the adversary. We could similarly enforce an intermediate representation of the data to be
pivotal, e.g. as in (Ganin and Lempitsky, 2014), but this is not necessary.

5 Experiments

In this section, we empirically demonstrate the effectiveness of the approach with a toy example
and examples from particle physics. Notably, there are no other other approaches to compare to in
the case of continuous nuisance parameters, as further explained in Sec. 6. In the case of binary
parameters, we do not expect results to be much different from previous works.

5.1 A toy example with a continous nuisance parameter

As a guiding toy example, let us consider the binary classification of 2D data drawn from multivariate
gaussians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x|Z = z ⇠ N
✓
(1, 1 + z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z here represents our uncertainty about the location of the mean
of the second gaussian. Our goal is to build a classifier f(·; ✓f ) for predicting Y given X , but such
that the probability distribution of f(X; ✓f ) is invariant with respect to the nuisance parameter Z.

Assuming a gaussian prior z ⇠ N (0, 1), we generate data {xi, yi, zi}Ni=1, from which we train a
neural network f minimizing Lf (✓f ) without considering its adversary r. The network architecture
comprises 2 dense hidden layers of 20 nodes respectively with tanh and ReLU activations, followed
by a dense output layer with a single node with a sigmoid activation. As shown in Fig. 2, the resulting
classifier is not pivotal, as the conditional probability densities of its decision scores f(X; ✓f ) show
large discrepancies between values z of the nuisance parameters. While not shown here, a classifier
trained only from data generated at the nominal value Z = 0 would also not be pivotal.
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Again, we trade-off sensitivity to have a more robust analysis
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Alternatively.. Can we exploit all the information we have ?

The Profile Likelihood approach

3

● The profile likelihood is a way to include systematic uncertainties in the likelihood
○ systematics included as "constrained" nuisance parameters
○ the idea behind is that systematic uncertainties on the measurement of µ come from 

imperfect knowledge of parameters of the model (S and B prediction)
■ still some knowledge is implied: "θ = θ0 ± Δθ"

○ external / a priori knowledge interpreted as "auxiliary/subsidiary measurement", 
implemented as constraint/penalty term, i.e. probability density function
(usually Gaussian, interpreting "±Δθ" as Gaussian standard deviation)

- usually θ0=0 and Δθ=1 (convention)
- define effect of systematic j on prediction x in bin i at "+1" and "-1",
- then interpolate & extrapolate for any value of θ Prior

 = Nuisance Parameterz
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III. EVALUATION METHODOLOGY

To evaluate the power of each approach above, we ap-
ply them to a common use case, fitting a signal hypothe-
sis in the presence of background, where both signal and
background depend on nuisance parameters. Relevant to
many measurements of Standard Model (SM) processes
as well as searches for physics beyond the SM, the param-
eter of interest is the signal strength µ, the cross section of
the signal relative to the reference value. In the Gaussian
example below, we use low-dimensional datasets for sim-
pler visualization, but the results generalize. Similarly,
for ease of calculations we perform a binned likelihood fit,
although the unbinned nature of neural networks should
allow application to unbinned cases; we leave that inves-
tigation to future work.

For each of the strategies described, template his-
tograms of the classifier score are constructed from sim-
ulated signal and background events for several values of
the nuisance parameter z. These templates are the basis
of the binned likelihood calculation L(µ, z|{xi}) over the
parameters µ, z, where {xi} is the full observed dataset.
The likelihood is a product of a Poisson term for each
histogram bin and a Gaussian constraint on the nuisance
parameter. The Gaussian constraint can readily be re-
placed with any other prior or a Poisson term from an
auxiliary measurement if z is directly constrained with
control region data (demonstrated in Appendix B). If no
additional prior or constraint on the nuisance parameter
is used then only information from the primary measure-
ment constrains z. The Negative Log-Likelihood (NLL)
is (up to an irrelevant constant),

� logL(µ, z|{xi})

= �
nbinsX

j=1


Nj · log (µsj + bj) � µsj � bj � log(�(Ni))

�

+

✓
z � z0p
2�z

◆2

, (4)

where sj , bj are the expected number of signal and back-
ground events in bin j, respectively, and Nj is the num-
ber of events observed in data for that bin. The � func-
tion is the generalized factorial function which can handle
decimal values in the simulated test dataset. Although
usually irrelevant, the log(�(Ni)) term is not a constant
while using an uncertainty-aware network and cannot be
ignored. For this approach, the decision function changes
with z and therefore the bin counts in simulation and ob-
served data also change with z.

In practice, samples at various values of z can often
be produced cheaply from a single simulated MC sample
by shifting the value of z and recomputing all the rel-
evant physics variables, and this approach will be used
for the studies in Sec. V. Care must be taken to apply
any kinematic selection on these variables only after the
shift. In these studies, the templates and the ‘observed
dataset’ are built using the same test dataset because the

dataset used in Sec. V is not large enough to split into
three representative datasets.

The fitted value of µ is obtained by minimizing Eq. 4.
Uncertainties are accounted for by studying the depen-
dence of the likelihood near the fitted value µ̂ while op-
timizing over z. The power of each approach is deter-
mined by their relative uncertainties in µ. As a diagnos-
tic, the parameter of interest may be profiled over instead
to check if the measurement over-constrains the nuisance
parameter.

IV. GAUSSIAN EXAMPLE

To illustrate the di↵erent approaches in a simple set-
ting with complete analytic control, we begin with a
Gaussian example with a two-dimensional feature space
and a single nuisance parameter. Signal events are drawn
from Gaussian distributions in the two features, with
means at cos (z) and sin (z), respectively; the width of
each is set to 0.7. Background events are generated in
same fashion, but with means for the two features at
� cos (z) and � sin (z) respectively. An example of the
signal and background distributions for z = ⇡

4 is shown
in Fig. 2.

A set of 4.2 ⇥ 107 events are generated at 21 values
of z equally spaced between 0 and ⇡/2. The dataset is
split into training and test sets with a ratio of 3:1. All
signal events in the test set have a weight of 10�3 and
all background events have a weight of 10�1 to mimic a
rare signal typical of LHC analyses. Ten bins are used
to construct the template and observed histograms. The
parameter of interest is the signal strength µ with a true
value of 1.

z = �/4

FIG. 2: Contour of probability densities for signal and
background hypotheses in the two-dimensional feature
space for the simple Gaussian demonstration case, with

the nuisance parameter fixed to z = ⇡
4 .
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.

Likelihood
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output a score (see e.g. [50]),

s(x) =
p(x|z = z0, S)

p(x|z = z0, S) + p(x|z = z0, B)
, (1)

where

p(·) denotes a probability density, S represents the sig-
nal class and B represents the background class. The
score of the network is used as an observable with high
sensitivity to the parameter of interest for the final mea-
surement.

C. Data Augmentation

An alternative method is to augment the training data
to include signal and background samples with several
values of the nuisance parameters. A network trained
optimally to minimise a BCE loss learns the score,

s(x) =
hp(x|Z, S)ipZ

hp(x|Z, S)ipZ + hp(x|Z,B)ipZ

, (2)

where pZ is the probability density over the nuisance pa-
rameter Z, treated as a random variable with some prob-
ability density chosen by the experimenter. Typically, Z
is discrete and has a nonzero probability mass at only a
few values. The score s(x) is then treated in the same
way as in the baseline case (Eq. 1).

D. Adversarial Training

An orthogonal strategy is to train a classifier with the
explicit objective of being insensitive to the e↵ects of the
nuisance parameter. Our implementation follows the ad-
versarial training prescription of Ref. [12]. However, to
improve the training stability and speed, the classifier
and adversary are concatenated together through a gra-
dient reversal layer [51] and trained simultaneously. The
classifier is trained with the objective to minimize the
classification loss and maximise the adversarial loss and
the second loss has a relative weight of �, a tunable hyper-
parameter.

While training for exact invariance in this adversarial
setup can be tricky [52], maximizing overall sensitivity
requires a compromise between the level of invariance to
nuisance parameters and the classification power. The
Gaussian case described in Sec. IV is an extreme exam-
ple where exact invariance to the nuisance parameter re-
quires zero discriminating power for the classifier.

In the end, the score of the classifier on observed data
is used as an observable in the final measurement, in the
same way as for the baseline classifier.

E. Uncertainty-Aware Classifier

The concept explored in this paper is to parameter-
ize the network in the nuisance parameters; see Fig. 1.
Specifically, the network is trained with the true value
of the nuisance parameter z as an input to the network
in additional to the observables x. A network trained
optimally to minimise a BCE loss learns the score,

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (3)

The score of this classifier is not used as a single ob-
servable for the final fit as in the previous methods. At
evaluation time, while the x values remain fixed as inputs
to the network, the unknown z is left as a parameter, al-
lowing for later profiling over the nuisance parameters in
the final measurement.

Importantly, note that Eq. 3 depends on z. This means
that the calculation of analysis observable(s) depends on
z and change as the nuisance parameter is varied, during
the evaluation of uncertainties and/or during nuisance
parameter profiling. This is in contrast to the standard
search paradigm in which the calculation of the analysis
observables are fixed and the sensitivity to z is evaluated
post-hoc. Allowing the calculation of the analysis ob-
servables to depend explicitly on the value of z is not the
traditional approach, but it does not require that the ex-
perimenter have any special knowledge of z. Formation
of a confidence interval in the space of model parameters
(either parameters of interest or nuisance parameters)
naturally requires calculating the likelihood ratio of the
model as those parameters vary, relative to the best-fit
parameters. It is natural for the calculation of the anal-
ysis observable, a proxy for the likelihood ratio, to vary
with those parameters. One can later profile over the
nuisance parameters to capture the impact of our lack of
knowledge of its true value. The traditional approach of
fixing the analysis observable calculation can be thought
of as an ad-hoc approximation of the full method.

.	.
	.

3

z

x1
x2

f(x1, x2, . . . , z)

.	.
	.

.	.
	.

FIG. 1: The architecture of an uncertainty-aware
network, in which the nuisance parameter z is treated
as a feature alongside the observed data x, learning a

decision function which varies with the nuisance
parameter.
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search paradigm in which the calculation of the analysis
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servables to depend explicitly on the value of z is not the
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naturally requires calculating the likelihood ratio of the
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● The profile likelihood is a way to include systematic uncertainties in the likelihood
○ systematics included as "constrained" nuisance parameters
○ the idea behind is that systematic uncertainties on the measurement of µ come from 

imperfect knowledge of parameters of the model (S and B prediction)
■ still some knowledge is implied: "θ = θ0 ± Δθ"

○ external / a priori knowledge interpreted as "auxiliary/subsidiary measurement", 
implemented as constraint/penalty term, i.e. probability density function
(usually Gaussian, interpreting "±Δθ" as Gaussian standard deviation)

- usually θ0=0 and Δθ=1 (convention)
- define effect of systematic j on prediction x in bin i at "+1" and "-1",
- then interpolate & extrapolate for any value of θ 

Also discussed in CARL: Cranmer et al

https://arxiv.org/abs/1601.07913
https://doi.org/10.1103/PhysRevD.104.056026
https://arxiv.org/abs/


32

Nominal and Systematic Up Examples

Baseline Classifier Uncertainty-Aware Classifier

N
om

in
al

 “D
at

a”
Sy

st
U

p 
“D

at
a”

AUC=0.978

Optimal

5

A. Models

In a simple case where the signal and background prob-
abilities are well known, it is possible to derive the clas-
sifier analytically for the baseline and uncertainty-aware
approaches. The results below use the analytical expres-
sions, but as a cross check, neural networks were also
trained for the same objective and produced nearly iden-
tical results.

1. Baseline and Uncertainty-Aware Classifiers

The baseline classifier computes the score

s(x) =
p(x|z = ⇡

4 , S)

p(x|z = ⇡
4 , S) + p(x|z = ⇡

4 , B)
, (5)

using the the probability density functions for the Gaus-
sian distributions used to generate the two features for
signal and background at an assumed fixed value of
z = ⇡

4 .
The uncertainty-aware classifier, on the other hand,

does not make assumptions about the value of the nui-
sance parameter and instead calculates a score as a func-
tion of the nuisance parameter

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (6)

The score s, for the each of the two classifiers are shown
in Fig. 3 as a function of the input features, for datasets
generated with z = ⇡

4 or z = ⇡
2 . The uncertainty-aware

classifier is parameterized as a function of z, and given
the correct value of the nuisance parameter, it can pro-
vide the appropriate classifier. Examples of histogram
templates of the classifier outputs are shown in Fig. 4.
The separation power of the baseline classifier is clearly
reduced for cases where the data are generated with val-
ues of the nuisance parameter which do not match its as-
sumed value of z = ⇡

4 . Using the Area Under the Receiver
Operating Characteristic Curve as a metric to quantify
separation power of a model, the separation power for
the baseline classifier falls from 0.978 for data generated
at z = ⇡

4 to 0.924 for data generated at z = ⇡
2 , while it

remains 0.978 on both datasets for the uncertainty-aware
classifier.

2. Data Augmentation

A Linear Discriminant Analysis (LDA) classifier from
Scikit-Learn [53] is trained on a training dataset which
includes samples with all 21 values1 of z. As a cross

1 The data augmentation classifier was also trained on a dataset
with a continuous distribution of z sampled from the Gaussian
prior of z and found to provide near identical results.

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware,
evaluated at z = ⇡

4 , on data
where z = ⇡

4

(d) Uncertainty-aware,
evaluated at z = ⇡

2 , on data
generated with z = ⇡

2

FIG. 3: Classifier score for the baseline and
systematic-aware classifiers, see text for definitions.
Shown are examples where the baseline classifier’s
assumption that the nuisance parameter is z = ⇡

4
matches or disagrees with the generated data (points).

Also shown are score functions for the
uncertainty-aware classifier on the same datasets,
evaluated at the correct value of z for each dataset.

check, a neural network was trained on the same data
and produced a nearly identical score function.

3. Adversarial Training

The adversarial architecture was trained using samples
from all 21 values of z. The classifier and the adversarial
network each consist of 10 hidden layers with 64 nodes
and a rectified linear unit (ReLU) activation and a sin-
gle node output layer with sigmoid and linear activations
respectively. An L2 kernel regularizer [54] was applied
to all but the first and final layer of each network. The
two networks were attached with a gradient reversal layer
which scales the gradient by �0.2 and trained with the
RMSProp [55] optimizer and a batch size of 4096. BCE is
used as the classification loss while Mean Squared Error
(MSE) is used for the loss of the adversary. An adver-
sarial loss weight of � = 1 was used. For this dataset, a
classifier exactly invariant to z would have zero separa-
tion power between signal and background. Therefore, a
compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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sumed value of z = ⇡

4 . Using the Area Under the Receiver
Operating Characteristic Curve as a metric to quantify
separation power of a model, the separation power for
the baseline classifier falls from 0.978 for data generated
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2 , while it

remains 0.978 on both datasets for the uncertainty-aware
classifier.

2. Data Augmentation

A Linear Discriminant Analysis (LDA) classifier from
Scikit-Learn [53] is trained on a training dataset which
includes samples with all 21 values1 of z. As a cross

1 The data augmentation classifier was also trained on a dataset
with a continuous distribution of z sampled from the Gaussian
prior of z and found to provide near identical results.
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(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
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(c) Uncertainty-aware,
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FIG. 3: Classifier score for the baseline and
systematic-aware classifiers, see text for definitions.
Shown are examples where the baseline classifier’s
assumption that the nuisance parameter is z = ⇡

4
matches or disagrees with the generated data (points).

Also shown are score functions for the
uncertainty-aware classifier on the same datasets,
evaluated at the correct value of z for each dataset.

check, a neural network was trained on the same data
and produced a nearly identical score function.

3. Adversarial Training

The adversarial architecture was trained using samples
from all 21 values of z. The classifier and the adversarial
network each consist of 10 hidden layers with 64 nodes
and a rectified linear unit (ReLU) activation and a sin-
gle node output layer with sigmoid and linear activations
respectively. An L2 kernel regularizer [54] was applied
to all but the first and final layer of each network. The
two networks were attached with a gradient reversal layer
which scales the gradient by �0.2 and trained with the
RMSProp [55] optimizer and a batch size of 4096. BCE is
used as the classification loss while Mean Squared Error
(MSE) is used for the loss of the adversary. An adver-
sarial loss weight of � = 1 was used. For this dataset, a
classifier exactly invariant to z would have zero separa-
tion power between signal and background. Therefore, a
compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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A. Models

In a simple case where the signal and background prob-
abilities are well known, it is possible to derive the clas-
sifier analytically for the baseline and uncertainty-aware
approaches. The results below use the analytical expres-
sions, but as a cross check, neural networks were also
trained for the same objective and produced nearly iden-
tical results.
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s(x) =
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. (6)

The score s, for the each of the two classifiers are shown
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4 or z = ⇡
2 . The uncertainty-aware

classifier is parameterized as a function of z, and given
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reduced for cases where the data are generated with val-
ues of the nuisance parameter which do not match its as-
sumed value of z = ⇡

4 . Using the Area Under the Receiver
Operating Characteristic Curve as a metric to quantify
separation power of a model, the separation power for
the baseline classifier falls from 0.978 for data generated
at z = ⇡

4 to 0.924 for data generated at z = ⇡
2 , while it

remains 0.978 on both datasets for the uncertainty-aware
classifier.

2. Data Augmentation

A Linear Discriminant Analysis (LDA) classifier from
Scikit-Learn [53] is trained on a training dataset which
includes samples with all 21 values1 of z. As a cross

1 The data augmentation classifier was also trained on a dataset
with a continuous distribution of z sampled from the Gaussian
prior of z and found to provide near identical results.
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FIG. 3: Classifier score for the baseline and
systematic-aware classifiers, see text for definitions.
Shown are examples where the baseline classifier’s
assumption that the nuisance parameter is z = ⇡

4
matches or disagrees with the generated data (points).

Also shown are score functions for the
uncertainty-aware classifier on the same datasets,
evaluated at the correct value of z for each dataset.

check, a neural network was trained on the same data
and produced a nearly identical score function.

3. Adversarial Training

The adversarial architecture was trained using samples
from all 21 values of z. The classifier and the adversarial
network each consist of 10 hidden layers with 64 nodes
and a rectified linear unit (ReLU) activation and a sin-
gle node output layer with sigmoid and linear activations
respectively. An L2 kernel regularizer [54] was applied
to all but the first and final layer of each network. The
two networks were attached with a gradient reversal layer
which scales the gradient by �0.2 and trained with the
RMSProp [55] optimizer and a batch size of 4096. BCE is
used as the classification loss while Mean Squared Error
(MSE) is used for the loss of the adversary. An adver-
sarial loss weight of � = 1 was used. For this dataset, a
classifier exactly invariant to z would have zero separa-
tion power between signal and background. Therefore, a
compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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The adversarial architecture was trained using samples
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network each consist of 10 hidden layers with 64 nodes
and a rectified linear unit (ReLU) activation and a sin-
gle node output layer with sigmoid and linear activations
respectively. An L2 kernel regularizer [54] was applied
to all but the first and final layer of each network. The
two networks were attached with a gradient reversal layer
which scales the gradient by �0.2 and trained with the
RMSProp [55] optimizer and a batch size of 4096. BCE is
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(MSE) is used for the loss of the adversary. An adver-
sarial loss weight of � = 1 was used. For this dataset, a
classifier exactly invariant to z would have zero separa-
tion power between signal and background. Therefore, a
compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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from all 21 values of z. The classifier and the adversarial
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which scales the gradient by �0.2 and trained with the
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡
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FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with
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z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
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(c) Uncertainty-aware, on
data where z = ⇡
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(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡
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(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.

34

Scan the 2D Likelihood space in  vs Z μ

Template Baseline Classifier Score Histograms for various Z

Nominal

Syst Down

Syst Up
Observed Data

(  unknown)zT

6

B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with
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4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
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(c) Uncertainty-aware, on
data where z = ⇡
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(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
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(c) Uncertainty-aware, on
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(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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III. EVALUATION METHODOLOGY

To evaluate the power of each approach above, we ap-
ply them to a common use case, fitting a signal hypothe-
sis in the presence of background, where both signal and
background depend on nuisance parameters. Relevant to
many measurements of Standard Model (SM) processes
as well as searches for physics beyond the SM, the param-
eter of interest is the signal strength µ, the cross section of
the signal relative to the reference value. In the Gaussian
example below, we use low-dimensional datasets for sim-
pler visualization, but the results generalize. Similarly,
for ease of calculations we perform a binned likelihood fit,
although the unbinned nature of neural networks should
allow application to unbinned cases; we leave that inves-
tigation to future work.

For each of the strategies described, template his-
tograms of the classifier score are constructed from sim-
ulated signal and background events for several values of
the nuisance parameter z. These templates are the basis
of the binned likelihood calculation L(µ, z|{xi}) over the
parameters µ, z, where {xi} is the full observed dataset.
The likelihood is a product of a Poisson term for each
histogram bin and a Gaussian constraint on the nuisance
parameter. The Gaussian constraint can readily be re-
placed with any other prior or a Poisson term from an
auxiliary measurement if z is directly constrained with
control region data (demonstrated in Appendix B). If no
additional prior or constraint on the nuisance parameter
is used then only information from the primary measure-
ment constrains z. The Negative Log-Likelihood (NLL)
is (up to an irrelevant constant),

� logL(µ, z|{xi})

= �
nbinsX

j=1


Nj · log (µsj + bj) � µsj � bj � log(�(Ni))

�

+

✓
z � z0p
2�z

◆2

, (4)

where sj , bj are the expected number of signal and back-
ground events in bin j, respectively, and Nj is the num-
ber of events observed in data for that bin. The � func-
tion is the generalized factorial function which can handle
decimal values in the simulated test dataset. Although
usually irrelevant, the log(�(Ni)) term is not a constant
while using an uncertainty-aware network and cannot be
ignored. For this approach, the decision function changes
with z and therefore the bin counts in simulation and ob-
served data also change with z.

In practice, samples at various values of z can often
be produced cheaply from a single simulated MC sample
by shifting the value of z and recomputing all the rel-
evant physics variables, and this approach will be used
for the studies in Sec. V. Care must be taken to apply
any kinematic selection on these variables only after the
shift. In these studies, the templates and the ‘observed
dataset’ are built using the same test dataset because the

dataset used in Sec. V is not large enough to split into
three representative datasets.

The fitted value of µ is obtained by minimizing Eq. 4.
Uncertainties are accounted for by studying the depen-
dence of the likelihood near the fitted value µ̂ while op-
timizing over z. The power of each approach is deter-
mined by their relative uncertainties in µ. As a diagnos-
tic, the parameter of interest may be profiled over instead
to check if the measurement over-constrains the nuisance
parameter.

IV. GAUSSIAN EXAMPLE

To illustrate the di↵erent approaches in a simple set-
ting with complete analytic control, we begin with a
Gaussian example with a two-dimensional feature space
and a single nuisance parameter. Signal events are drawn
from Gaussian distributions in the two features, with
means at cos (z) and sin (z), respectively; the width of
each is set to 0.7. Background events are generated in
same fashion, but with means for the two features at
� cos (z) and � sin (z) respectively. An example of the
signal and background distributions for z = ⇡

4 is shown
in Fig. 2.

A set of 4.2 ⇥ 107 events are generated at 21 values
of z equally spaced between 0 and ⇡/2. The dataset is
split into training and test sets with a ratio of 3:1. All
signal events in the test set have a weight of 10�3 and
all background events have a weight of 10�1 to mimic a
rare signal typical of LHC analyses. Ten bins are used
to construct the template and observed histograms. The
parameter of interest is the signal strength µ with a true
value of 1.

z = �/4

FIG. 2: Contour of probability densities for signal and
background hypotheses in the two-dimensional feature
space for the simple Gaussian demonstration case, with

the nuisance parameter fixed to z = ⇡
4 .

zT →  True z
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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III. EVALUATION METHODOLOGY

To evaluate the power of each approach above, we ap-
ply them to a common use case, fitting a signal hypothe-
sis in the presence of background, where both signal and
background depend on nuisance parameters. Relevant to
many measurements of Standard Model (SM) processes
as well as searches for physics beyond the SM, the param-
eter of interest is the signal strength µ, the cross section of
the signal relative to the reference value. In the Gaussian
example below, we use low-dimensional datasets for sim-
pler visualization, but the results generalize. Similarly,
for ease of calculations we perform a binned likelihood fit,
although the unbinned nature of neural networks should
allow application to unbinned cases; we leave that inves-
tigation to future work.

For each of the strategies described, template his-
tograms of the classifier score are constructed from sim-
ulated signal and background events for several values of
the nuisance parameter z. These templates are the basis
of the binned likelihood calculation L(µ, z|{xi}) over the
parameters µ, z, where {xi} is the full observed dataset.
The likelihood is a product of a Poisson term for each
histogram bin and a Gaussian constraint on the nuisance
parameter. The Gaussian constraint can readily be re-
placed with any other prior or a Poisson term from an
auxiliary measurement if z is directly constrained with
control region data (demonstrated in Appendix B). If no
additional prior or constraint on the nuisance parameter
is used then only information from the primary measure-
ment constrains z. The Negative Log-Likelihood (NLL)
is (up to an irrelevant constant),

� logL(µ, z|{xi})

= �
nbinsX

j=1


Nj · log (µsj + bj) � µsj � bj � log(�(Ni))

�

+

✓
z � z0p
2�z

◆2

, (4)

where sj , bj are the expected number of signal and back-
ground events in bin j, respectively, and Nj is the num-
ber of events observed in data for that bin. The � func-
tion is the generalized factorial function which can handle
decimal values in the simulated test dataset. Although
usually irrelevant, the log(�(Ni)) term is not a constant
while using an uncertainty-aware network and cannot be
ignored. For this approach, the decision function changes
with z and therefore the bin counts in simulation and ob-
served data also change with z.

In practice, samples at various values of z can often
be produced cheaply from a single simulated MC sample
by shifting the value of z and recomputing all the rel-
evant physics variables, and this approach will be used
for the studies in Sec. V. Care must be taken to apply
any kinematic selection on these variables only after the
shift. In these studies, the templates and the ‘observed
dataset’ are built using the same test dataset because the

dataset used in Sec. V is not large enough to split into
three representative datasets.

The fitted value of µ is obtained by minimizing Eq. 4.
Uncertainties are accounted for by studying the depen-
dence of the likelihood near the fitted value µ̂ while op-
timizing over z. The power of each approach is deter-
mined by their relative uncertainties in µ. As a diagnos-
tic, the parameter of interest may be profiled over instead
to check if the measurement over-constrains the nuisance
parameter.

IV. GAUSSIAN EXAMPLE

To illustrate the di↵erent approaches in a simple set-
ting with complete analytic control, we begin with a
Gaussian example with a two-dimensional feature space
and a single nuisance parameter. Signal events are drawn
from Gaussian distributions in the two features, with
means at cos (z) and sin (z), respectively; the width of
each is set to 0.7. Background events are generated in
same fashion, but with means for the two features at
� cos (z) and � sin (z) respectively. An example of the
signal and background distributions for z = ⇡

4 is shown
in Fig. 2.

A set of 4.2 ⇥ 107 events are generated at 21 values
of z equally spaced between 0 and ⇡/2. The dataset is
split into training and test sets with a ratio of 3:1. All
signal events in the test set have a weight of 10�3 and
all background events have a weight of 10�1 to mimic a
rare signal typical of LHC analyses. Ten bins are used
to construct the template and observed histograms. The
parameter of interest is the signal strength µ with a true
value of 1.

z = �/4

FIG. 2: Contour of probability densities for signal and
background hypotheses in the two-dimensional feature
space for the simple Gaussian demonstration case, with

the nuisance parameter fixed to z = ⇡
4 .

zT →  True z
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the o�cial ATLAS software [65]. The three largest back-
grounds from Z/�

⇤ ! ⌧⌧ , tt̄ and W + jets are simulated
with the same chain and mixed in proportions deter-
mined by their relative cross sections. Di↵erent aspects
of the Z/�

⇤ ! ⌧⌧ background are simulated with Alp-

gen, Pythia8, Herwig, and Sherpa [66]; the details
can be found in Table 1 of Ref. [58]. The tt̄ background is
simulated with Powheg and Pythia8 and the W +jets
background is simulated withAlpgen [67] and Pythia8.

(a) Data generated with z = ⇡
4 .

(b) Data generated with z = ⇡
2 .

FIG. 6: The profile likelihood maxz L(µ, z) as a
function of the parameter of interest, µ for likelihoods

calculated with templates built from the various
classifiers. Narrower curves indicate more precise

measurements having accounted for systematic and
statistical uncertainties. The baseline classifier assumes

z = ⇡
4 , and matches the performance of the

uncertainty-aware classifier in data generated with
z = ⇡

4 (top). In data generated with z = ⇡
2 , the power

of all classifiers other than the uncertainty-aware
classifier become significantly weaker.

Each event is characterized by 29 features2, including the
lepton momenta and angles, the magnitude and direction
of missing transverse momentum, the energy and angles
of leading and sub-leading jets, and several other primary
and derived variables. See Ref. [56] for details.
The most important nuisance parameter is the un-

known absolute energy scale of the hadronically decaying
⌧ leptons. We follow prior studies [52, 59] and model this
using a skewing function [69] which is applied to the ⌧ lep-
ton ET, for signal and background alike. The minimum
ET threshold of 22 GeV is applied after skewing.
At the nominal value of the nuisance parameter, z = 1,

the ⌧ lepton energies are left unchanged. The impact of
z = 0.9 or 1.1, on several features is shown in Fig. 7.
The (unweighted) total number of events that pass the
ET threshold for the z = 0.9, z = 1 and z = 1.1 datasets
are 618906, 719349 and 818201 respectively. The data are
split into training and test set in the ratio 2:1. Since the
data at various values of z are generated from the nominal
sample, the samples are to a large extent correlated. The
train-test split therefore is determined before the skewing
function and ET threshold are applied, ensuring complete
independence between training and test sets.
Thirty bins are used to construct the template and

observed histograms.

A. Description of Trained Models

All methods were implemented using neural networks.
The baseline classifier was trained only on data at z = 1,
while the data augmentation classifier, uncertainty-aware
classifier and the adversarial classifier are all trained at
24 values spaced between z = 0.7 and z = 1.4. Two
additional classifiers were also trained on data at z = 0.8
and z = 1.1 to estimate the best possible performance
for an unparameterized classifier at these values of the
nuisance parameter.
Technical details about the training procedure and ar-

chitectures of the models are given below.

1. Baseline Classifier

The neural network comprises 10 hidden layers with
512 nodes each, ReLU activations and L2 kernel regu-
larizers for all but the first hidden layer and a final layer
with a single node and sigmoid activation. It was trained
with an RMSProp optimizer, BCE loss and a batch size
of 4096.

2 The DER mass MMC feature listed in Ref. [56] was not included
in the studies, following precedent set by Ref. [52], because the
Missing Mass Calculator [68] is slow to run and as an MCMC
algorithm, introduces an additional source of stochasticity which
makes comparisons di�cult.

35

Better final measurements!

Narrower ⇒ Smaller [statistical + systematic] uncertainty on 
measurement 


Practical for LHC analysis: Parameterise your main 
nuisance parameter but no need to train on all 100 NPs

Narrower is better

Signal Strength

PRD.104.056026: Aishik Ghosh, Benjamin Nachman, and Daniel Whiteson

https://doi.org/10.1103/PhysRevD.104.056026


A simple idea, that we exported to astrophysics !



37

Application in Astrophysics: Full propagation of uncertainties
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FIG. 1: Overview of the regression task, which involves either inferring stellar summary quantities such as mass and
radius, which can then be used to deduce the equation of state as in earlier work [18–21] or inference of EOS directly

from stellar spectra, as is demonstrated in this study.

physics, often increasing the statistical power of di�cult-
to-collect data [23] while allowing robust handling of un-
certainties [24]. Where earlier neural networks were lim-
ited in size, computing progress especially in the form
of Graphical Processing Units (GPUs), has enabled the
deployment of larger and deeper networks that can han-
dle more complex and higher-dimensional data [25, 26],
allowing direct analysis of data without requiring dimen-
sional reduction, or other preprocessing steps, that can
often sacrifice useful information. The full power of these
techniques has not yet been brought to bear on many as-
trophysical tasks.

In the context of the inference of neutron star EOS,
recent work by Fujimoto et al. [18, 19] demonstrated the
ability of deep networks to regress the EOS directly from
a set of stellar mass-radius pairs, without the need to
extract the functional relationship between mass and ra-
dius. Their analysis used a toy model to describe the
uncertainties in mass and radius, assuming uncorrelated
Gaussian errors randomly drawn from ad-hoc priors.
Real measurements, of course, do not often obey these
simplifying assumptions, and show complex correlations
between mass and radius [27]. Related work [20] has
demonstrated similar regression, again assuming Gaus-
sian uncertainty on mass and radius values, but with
clever e↵orts to reduce dependence on EOS parameter-
ization. An alternative approach [21] uses both neural
networks and support vector machines to regress the EOS
from stellar radii and tidal deformations.

More realistic characterization of the uncertainties in
the mass-radius plane can be extracted using the state-

of-the-art tool xspec [28], which assumes a theoretical
model for the star and telescope response, allowing for
explicit calculation of the likelihood of telescope spectra
for various mass and radius values. The likelihood can
be used in the standard way to extract best-estimates
and uncertainty contours of any shape in the mass-radius
plane. However, these complex mass-radius likelihoods
cannot be trivially incorporated into the existing EOS
inference schemes, motivating the simplifying assump-
tions of uncorrelation normal distributions which can be
described by two width values. An additional concern
is that xspec’s contours rely on the simplifying assump-
tions of the theoretical model.

What has received less attention in the literature are
likelihood-free methods to infer the EOS directly from
the telescope spectra, without the intermediate stepping
stone of the mass-radius determination and the chal-
lenges of its representation. This would allow for the full
propagation of realistic uncertainties and the relaxation
of assumptions about the theoretical model.

In this paper, we present a technique of EOS infer-
ence which allows for the full propagation of the uncer-
tainties in the X-ray spectra, without making simplify-
ing assumptions about the shape of the contours in the
mass-radius plane. We proceed in three steps, begin-
ning from an approach similar to the state of the art but
with realistic uncertainty propagation, and moving to-
wards end-to-end infererence. In the first step, our neu-
ral network model infers the neutron star EOS from a
set of stellar masses and radii extracted from xspec, but
rather than making simplifying assumptions or extract-

JCAP.020P.0922: Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, Fridolin Weber
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radius, which can then be used to deduce the equation of state as in earlier work [18–21] or inference of EOS directly

from stellar spectra, as is demonstrated in this study.

physics, often increasing the statistical power of di�cult-
to-collect data [23] while allowing robust handling of un-
certainties [24]. Where earlier neural networks were lim-
ited in size, computing progress especially in the form
of Graphical Processing Units (GPUs), has enabled the
deployment of larger and deeper networks that can han-
dle more complex and higher-dimensional data [25, 26],
allowing direct analysis of data without requiring dimen-
sional reduction, or other preprocessing steps, that can
often sacrifice useful information. The full power of these
techniques has not yet been brought to bear on many as-
trophysical tasks.

In the context of the inference of neutron star EOS,
recent work by Fujimoto et al. [18, 19] demonstrated the
ability of deep networks to regress the EOS directly from
a set of stellar mass-radius pairs, without the need to
extract the functional relationship between mass and ra-
dius. Their analysis used a toy model to describe the
uncertainties in mass and radius, assuming uncorrelated
Gaussian errors randomly drawn from ad-hoc priors.
Real measurements, of course, do not often obey these
simplifying assumptions, and show complex correlations
between mass and radius [27]. Related work [20] has
demonstrated similar regression, again assuming Gaus-
sian uncertainty on mass and radius values, but with
clever e↵orts to reduce dependence on EOS parameter-
ization. An alternative approach [21] uses both neural
networks and support vector machines to regress the EOS
from stellar radii and tidal deformations.

More realistic characterization of the uncertainties in
the mass-radius plane can be extracted using the state-

of-the-art tool xspec [28], which assumes a theoretical
model for the star and telescope response, allowing for
explicit calculation of the likelihood of telescope spectra
for various mass and radius values. The likelihood can
be used in the standard way to extract best-estimates
and uncertainty contours of any shape in the mass-radius
plane. However, these complex mass-radius likelihoods
cannot be trivially incorporated into the existing EOS
inference schemes, motivating the simplifying assump-
tions of uncorrelation normal distributions which can be
described by two width values. An additional concern
is that xspec’s contours rely on the simplifying assump-
tions of the theoretical model.

What has received less attention in the literature are
likelihood-free methods to infer the EOS directly from
the telescope spectra, without the intermediate stepping
stone of the mass-radius determination and the chal-
lenges of its representation. This would allow for the full
propagation of realistic uncertainties and the relaxation
of assumptions about the theoretical model.

In this paper, we present a technique of EOS infer-
ence which allows for the full propagation of the uncer-
tainties in the X-ray spectra, without making simplify-
ing assumptions about the shape of the contours in the
mass-radius plane. We proceed in three steps, begin-
ning from an approach similar to the state of the art but
with realistic uncertainty propagation, and moving to-
wards end-to-end infererence. In the first step, our neu-
ral network model infers the neutron star EOS from a
set of stellar masses and radii extracted from xspec, but
rather than making simplifying assumptions or extract-

JCAP.020P.0922: Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, Fridolin Weber

NPs

https://arxiv.org/abs/2209.02817


37

Application in Astrophysics: Full propagation of uncertainties

2

!
"#
#

$"%&'# ()*+,-./*)#&0-

1+
*#
#'
+*

!"#$%&'()
*+,&-.!/(0'1&

2($'134.!'&1
5&66.&4).,&)"$6

78$&'"34.
39.!'&'(.:7;!<

()*+,-

12
30
3)

#.4
.#

!/(0'1&.=.2>.'3.7;!.,(?1(66"34

:5@,<.'3.7;!.,(?1(66"34!/(0'1&.=.2>.'3.:5@,<.,(?1(66"34

FIG. 1: Overview of the regression task, which involves either inferring stellar summary quantities such as mass and
radius, which can then be used to deduce the equation of state as in earlier work [18–21] or inference of EOS directly

from stellar spectra, as is demonstrated in this study.
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More realistic characterization of the uncertainties in
the mass-radius plane can be extracted using the state-
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model for the star and telescope response, allowing for
explicit calculation of the likelihood of telescope spectra
for various mass and radius values. The likelihood can
be used in the standard way to extract best-estimates
and uncertainty contours of any shape in the mass-radius
plane. However, these complex mass-radius likelihoods
cannot be trivially incorporated into the existing EOS
inference schemes, motivating the simplifying assump-
tions of uncorrelation normal distributions which can be
described by two width values. An additional concern
is that xspec’s contours rely on the simplifying assump-
tions of the theoretical model.

What has received less attention in the literature are
likelihood-free methods to infer the EOS directly from
the telescope spectra, without the intermediate stepping
stone of the mass-radius determination and the chal-
lenges of its representation. This would allow for the full
propagation of realistic uncertainties and the relaxation
of assumptions about the theoretical model.

In this paper, we present a technique of EOS infer-
ence which allows for the full propagation of the uncer-
tainties in the X-ray spectra, without making simplify-
ing assumptions about the shape of the contours in the
mass-radius plane. We proceed in three steps, begin-
ning from an approach similar to the state of the art but
with realistic uncertainty propagation, and moving to-
wards end-to-end infererence. In the first step, our neu-
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FIG. 14: Estimation of the mass and radius of a
neutron star from the underlying stellar spectra, by
MR Net . Each pane represents one star, and shown
(green) are estimates for several independent values of
the nuisance parameters drawn from the associated
priors, and the mean value (red). Top two cases have

loose priors, bottom two have tight. The dashed ellipse,
whose widths are set to the standard deviation of the
mass and radius estimates, is a demonstration of the

inadequacy of a simple uncertainty model.

FIG. 15: Neural network regression of the EOS
parameters �1 and �2 of a set of 10 neutron stars from

from their masses and radii as estimated by
MR Net from each stars spectrum. Each pane

represents an example dataset of 10 simulated stars,
and shown (green) are EOS estimates for several

independent values of the stellar nuisance parameters
drawn from the associated priors, and the mean value

(red). Top two cases have loose priors, bottom two have
tight.
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Figure 1. The pipeline for neos. The dashed line indicating the backward pass involves
updating the weights ' of the neural network via gradient descent.

1.1. Related work
The most similar work to neos is INFERNO [2], which also targets the optimisation of a
summary statistic with respect to an inference-aware loss function. We compare our approach
to INFERNO below both qualitatively and quantitatively. Other attempts to incorporate
robustness to systematic uncertainties include: directly parameterising the neural network in
the relevant nuisance parameters that model systematic uncertainties [3], and including an
adversarial term in the loss that penalises dependence on these nuisance parameters [4].

2. Making HEP Analysis Di↵erentiable
Given a pre-filtered dataset, an analysis pipeline in HEP involves the following stages:

(i) Construction of a learnable 1-D summary statistic from data (with parameters ')

(ii) Binning of the summary statistic, e.g. through a histogram

(iii) Statistical model building, using the summary statistic as a template

(iv) Calculation of a test statistic, used to perform a frequentist hypothesis test of signal versus
background

(v) A p-value (or CLs
1 value) resulting from that hypothesis test, used to characterise the

sensitivity of the analysis

We can express this workflow as a direct function of the input dataset D and observable
parameters ':

CLs = f(D,') = (fsensitivity � ftest stat � flikelihood � fhistogram � fobservable)(D,'). (1)

In the common case where fobservable is a neural network, it seems possible to optimise this
composition end-to-end, i.e. train the network to directly optimise the analysis sensitivity. This
is exactly the task that neos sets out to accomplish, with a full workflow detailed in Figure 1.
To train this network by gradient descent, our choice of loss = CLs requires us to be able to
calculate @ CLs/@'. However, this is a stronger condition than it seems, and in fact necessitates
the di↵erentiablility of each individual analysis step via the chain rule applied to Equation 1.

Owing to the fact that neural networks are already di↵erentiable, the last term @fobservable/@'
isn’t an issue, but none of the rest of the steps are di↵erentiable by default. The following sections
detail solutions for calculating the gradient of each intermediate step.

1 CLs is a modification of the p-value that protects against rejecting the null hypothesis when the test is not
sensitive to the alternative hypothesis (e.g. through largely overlapping test statistic distributions).

Following Inferno [de Castro et al.]

https://arxiv.org/abs/2203.05570
https://arxiv.org/abs/1806.04743
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is exactly the task that neos sets out to accomplish, with a full workflow detailed in Figure 1.
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calculate @ CLs/@'. However, this is a stronger condition than it seems, and in fact necessitates
the di↵erentiablility of each individual analysis step via the chain rule applied to Equation 1.
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detail solutions for calculating the gradient of each intermediate step.
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Following Inferno [de Castro et al.]

Requires ‘relaxation tricks’ to pass gradients through non-differentiable operations
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Applied to CMS open data

to a value closer to zero with the inferno model. The variance of ✓JES converges to a
lower value with inferno compared to the bce classifier. This indicates that the in-
ferno algorithm makes optimal use of the data in order to decorrelate the parameter
of interest s from the nuisance parameter ✓JES, which results in a lower variance for s
compared to a model trained with bce. The class predictions for the validation set for
the output of the inferno training are shown in the left panel of Fig. 6.

The summary statistics produced in the training with inferno are then used in a profile
likelihood fit implemented in the cabinetry [27] package. Only the nuisance parameter
✓ corresponding to the Jet Energy Scale variation is included in the fit, such that the
same conditions as in the inferno training are given. The minos algorithm [31] is used

Figure 6: Left panel: class prediction of the inferno model trained with the JES vari-
ation. Here the classes are not, e.g. signal and background, but rather the bins of the
summary statistic that is learnt by the network: no ordering of the fractional population
of signal and background in these bins is to be expected. Right panel: profile likelihood
scan for inferno trained with the JES variation.

to calculate the 68% confidence interval, while the uncertainty of the nuisance parameter
and the correlation coefficient is calculated from the hesse estimate. The measured con-
fidence interval for the signal strength µ evaluated on Asimov data based on the inferno
and bce summary statistics is:

µA
bce = 1.000+0.113

�0.094

µA
inf = 1.000+0.091

�0.087

, (13)

the post-fit value of the nuisance parameter ✓ obtained from the hesse estimate is:

✓Abce = 0.000± 0.905
✓Ainf = 0.000± 0.602

(14)

, and the correlation coefficient ⇢ between µ and ✓ has been evaluated to:

⇢Abce = �0.42
⇢Ainf = �0.10 .

(15)
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A scan of the profile likelihood for the parameter µ is shown in the right panel of Fig. 6,
both for the inferno and bce model.

The above results illustrate that the inferno summary statistic yields a narrower con-
fidence interval for the signal strength µ compared to the bce model if a ShapeNorm

nuisance parameter is present. It further shows that the estimates of the covariance
matrix in the inferno training are good estimates of the values obtained from the fit of
the Asimov data. As observed during the training, the inferno algorithm reduces the
correlations between µ and ✓. This suggests that the main improvement obtained with
inferno is due to reduced correlations between the POI and the nuisance parameters.

4.3 Training and Inference with all Nuisance Parameters

The study for the Jet Energy Scale variation described in the previous section has been
repeated for all relevant systematic uncertainties that affect the shape and normalization
of the classifier. In Fig. 7 the minos uncertainty for µ, the uncertainty of the corre-
sponding nuisance parameter ✓ and the correlation coefficient ⇢ is shown. Comparing

Figure 7: Comparison of the confidence intervals for µ (top panel), uncertainty of the
respective ShapeNorm nuisance parameter ✓ (middle panel) and the correlation coefficient
⇢ obtained in a profile likelihood fit for each of the considered ShapeNorm nuisance
parameters.

the results between the inferno and bce model shows that an improvement is mainly
possible for the JES nuisance parameter, where inferno manages to decorrelate it from

14

arXiv:2301.10358: Layer et al

Improvement over traditional analysis in mitigating effects of systematics
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Theory uncertainties often describe our lack of understanding / 
ability to calculate

No statistical origin for them (such as auxiliary measurement)

result of approximations when performing calculations and are also due to parameter free-

dom in phenomenological models that are needed when first-principles calculations are not

possible. The canonical examples for these two types of uncertainties are perturbative

uncertainties from series truncation and fragmentation modeling. For the former, calcu-

lations are truncated at a fixed order in perturbation theory and the result depends on

unphysical scales. These scales are varied typically by factors of two in order to determine

the uncertainty. Fragmentation modeling uncertainties are often evaluated by comparing

two di↵erent models, such as the string model [29, 30] in the Pythia [31, 32] parton shower

Monte Carlo (PSMC) and the cluster model [33, 34] in the Herwig [35, 36] PSMC. These

variations are then interpreted as a one standard deviation uncertainty and combined with

other sources of uncertainty in a final statistical analysis.

We examine the interplay of decorrelation with theory uncertainties. In particular,

we will show that constructing a classifier that is independent of a given theory nuisance

parameter does not mean that the theory uncertainty is zero. Instead, it means that

the only handle to determine the theory uncertainty is eliminated. Figure 1 illustrates the

intuition behind why this might be the case. As concrete examples, we study fragmentation

modeling for Lorentz-boosted W boson jet classification and factorization scale variations

when classifying events as either from W+jets or t-channel single top quark events.

Pythia

Herwig

Sherpa

Next year’s 
generator

Nature

Estimated Uncertainty

Without Decorrelation

Pythia
Herwig

Sherpa

Next year’s 
generator

Nature

Estimated Uncertainty

With Decorrelation

Figure 1. An illustration of the potential impact of training a classifier to be decorrelated to
two-point uncertainties. The distance between Pythia and Herwig is treated as the uncertainty.
Left: Without decorrelation, the uncertainty covers nature even if nature does not lie on the line
connecting Pythia and Herwig. Right: The distance between Pythia and Herwig is reduced
due to the decorrelation requirement, resulting in a smaller estimate of the uncertainty, which no
longer covers nature. These diagrams are meant only to be intuitive illustrations.

This paper is organized as follows. Section 2 briefly introduces existing decorrela-

tion techniques. Numerical examples of both two-point and continuous uncertainties are

provided in Sec. 3. The paper ends with conclusions and outlook in Sec. 4.
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• Use difference in performance of your data analysis 
algorithm on Pythia simulator vs Herwig simulator ad-hoc 
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Adversarial decorrelation

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

Figure 1: Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The
adversary r models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through
the output f(X; ✓f ) of the classifier. By maximizing the antagonistic objective Lr(✓f , ✓r), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance
parameter Z and therefore pivotal.

type of the nuisance parameter (discrete or continuous) or of its prior. Finally, we demonstrate the
effectiveness of the approach with a toy example and examples from particle physics.

2 Problem statement

We begin with a family of data generation processes p(X,Y, Z), where X 2 X are the data, Y 2 Y
are the target labels, and Z 2 Z are the nuisance parameters that can be continuous or categorical. Let
us assume that prior to incorporating the effect of uncertainty in Z, our goal is to learn a regression
function f : X ! S with parameters ✓f (e.g., a neural network-based probabilistic classifier) that
minimizes a loss Lf (✓f ) (e.g., the cross-entropy). In classification, values s 2 S = R|Y| correspond
to the classifier scores used for mapping hard predictions y 2 Y , while S = Y for regression.

We augment our initial objective so that inference based on f(X; ✓f ) will be robust to the value
z 2 Z of the nuisance parameter Z – which remains unknown at test time. A formal way of enforcing
robustness is to require that the distribution of f(X; ✓f ) conditional on Z (and possibly Y ) be
invariant with the nuisance parameter Z. Thus, we wish to find a function f such that

p(f(X; ✓f ) = s|z) = p(f(X; ✓f ) = s|z0) (1)

for all z, z0 2 Z and all values s 2 S of f(X; ✓f ). In words, we are looking for a predictive function
f which is a pivotal quantity with respect to the nuisance parameters. This implies that f(X; ✓f ) and
Z are independent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is imposed with respect to p(X|Z) where Y is
marginalized out. In some situations however (see e.g., Sec. 5.2), class conditional independence of
f(X; ✓f ) on the nuisance Z is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y .

3 Method

Joint training of adversarial networks was first proposed by (Goodfellow et al., 2014) as a way to
build a generative model capable of producing samples from random noise z. More specifically, the
authors pit a generative model g : Rn ! Rp against an adversarial classifier d : Rp ! [0, 1] whose
antagonistic objective is to recognize real data X from generated data g(Z). Both models g and d are
trained simultaneously, in such a way that g learns to produce samples that are difficult to identify by
d, while d incrementally adapts to changes in g. At the equilibrium, g models a distribution whose
samples can be identified by d only by chance. That is, assuming enough capacity in d and g, the
distribution of g(Z) eventually converges towards the real distribution of X .

2
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LClassifier = LClassification − λ ⋅ LAdversary

To fool the adversary, classifier output 
should be decorrelated to Z  

Learning to Pivot, Louppe et al.

Similar ideas: Blance et al., Stevens et 
al., Wunsch at al., 

Estrade at al. 
Kasieczka at al. 

S vs B Regress NP

NN 
output

Learning to Pivot, Louppe et al.
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Figure 2: Toy example. (Left) Conditional probability densities of the decision scores at Z = ��, 0,� without
adversarial training. The resulting densities are dependent on the continuous parameter Z, indicating that f is
not pivotal. (Middle left) The associated decision surface, highlighting the fact that samples are easier to classify
for values of Z above �, hence explaining the dependency. (Middle right) Conditional probability densities of
the decision scores at Z = ��, 0,� when f is built with adversarial training. The resulting densities are now
almost identical to each other, indicating only a small dependency on Z. (Right) The associated decision surface,
illustrating how adversarial training bends the decision function vertically to erase the dependency on Z.

where � � 0 is a hyper-parameter controlling the trade-off between the performance of f and its
independence with respect to the nuisance parameter. Setting � to a large value will preferably
enforces f to be pivotal while setting � close to 0 will rather constraint f to be optimal. When the
lower bound is strict, let us note however that there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase in accuracy would exactly be compensated
by a decrease in pivotality and vice-versa. How to best navigate this Pareto frontier to maximize a
higher-level objective remains a question open for future works.

Interestingly, let us finally emphasize that our results hold using only the (1D) output s of f(·; ✓f ) as
input to the adversary. We could similarly enforce an intermediate representation of the data to be
pivotal, e.g. as in (Ganin and Lempitsky, 2014), but this is not necessary.

5 Experiments

In this section, we empirically demonstrate the effectiveness of the approach with a toy example
and examples from particle physics. Notably, there are no other other approaches to compare to in
the case of continuous nuisance parameters, as further explained in Sec. 6. In the case of binary
parameters, we do not expect results to be much different from previous works.

5.1 A toy example with a continous nuisance parameter

As a guiding toy example, let us consider the binary classification of 2D data drawn from multivariate
gaussians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x|Z = z ⇠ N
✓
(1, 1 + z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z here represents our uncertainty about the location of the mean
of the second gaussian. Our goal is to build a classifier f(·; ✓f ) for predicting Y given X , but such
that the probability distribution of f(X; ✓f ) is invariant with respect to the nuisance parameter Z.

Assuming a gaussian prior z ⇠ N (0, 1), we generate data {xi, yi, zi}Ni=1, from which we train a
neural network f minimizing Lf (✓f ) without considering its adversary r. The network architecture
comprises 2 dense hidden layers of 20 nodes respectively with tanh and ReLU activations, followed
by a dense output layer with a single node with a sigmoid activation. As shown in Fig. 2, the resulting
classifier is not pivotal, as the conditional probability densities of its decision scores f(X; ✓f ) show
large discrepancies between values z of the nuisance parameters. While not shown here, a classifier
trained only from data generated at the nominal value Z = 0 would also not be pivotal.
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illustrating how adversarial training bends the decision function vertically to erase the dependency on Z.

where � � 0 is a hyper-parameter controlling the trade-off between the performance of f and its
independence with respect to the nuisance parameter. Setting � to a large value will preferably
enforces f to be pivotal while setting � close to 0 will rather constraint f to be optimal. When the
lower bound is strict, let us note however that there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase in accuracy would exactly be compensated
by a decrease in pivotality and vice-versa. How to best navigate this Pareto frontier to maximize a
higher-level objective remains a question open for future works.

Interestingly, let us finally emphasize that our results hold using only the (1D) output s of f(·; ✓f ) as
input to the adversary. We could similarly enforce an intermediate representation of the data to be
pivotal, e.g. as in (Ganin and Lempitsky, 2014), but this is not necessary.

5 Experiments

In this section, we empirically demonstrate the effectiveness of the approach with a toy example
and examples from particle physics. Notably, there are no other other approaches to compare to in
the case of continuous nuisance parameters, as further explained in Sec. 6. In the case of binary
parameters, we do not expect results to be much different from previous works.

5.1 A toy example with a continous nuisance parameter

As a guiding toy example, let us consider the binary classification of 2D data drawn from multivariate
gaussians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x|Z = z ⇠ N
✓
(1, 1 + z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z here represents our uncertainty about the location of the mean
of the second gaussian. Our goal is to build a classifier f(·; ✓f ) for predicting Y given X , but such
that the probability distribution of f(X; ✓f ) is invariant with respect to the nuisance parameter Z.

Assuming a gaussian prior z ⇠ N (0, 1), we generate data {xi, yi, zi}Ni=1, from which we train a
neural network f minimizing Lf (✓f ) without considering its adversary r. The network architecture
comprises 2 dense hidden layers of 20 nodes respectively with tanh and ReLU activations, followed
by a dense output layer with a single node with a sigmoid activation. As shown in Fig. 2, the resulting
classifier is not pivotal, as the conditional probability densities of its decision scores f(X; ✓f ) show
large discrepancies between values z of the nuisance parameters. While not shown here, a classifier
trained only from data generated at the nominal value Z = 0 would also not be pivotal.

5

Classifier output for various 
values of Z

Adversarial Decorrelation

Similar ideas: Blance et al., Stevens et 
al., Wunsch at al., 

Estrade at al. 
Kasieczka at al. 

Learning to Pivot, Louppe et al.
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Figure 2: Schematic representation of the architectures of (a) VAE, (b) the first GAN, [10] (c)

updated GAN (with a trainable swish[14] activation), used in this study.

1 when evaluated on an image that is a randomly weighted average of an image from the

real (Geant4) and generated (from the generative network’s) distribution. The hyperparameter

associated with the additional loss term is known as the gradient penalty weight (�GP ). The

model is implemented in Keras 2.0.8 [12] using TensorFlow 1.3.0 [13] as the backend.

An updated GAN architecture (Fig. 2c) is later used to improve the energy resolution

(discussed in section 4). It was observed that lower gradient penalty weights improved the

energy resolution at the expense of other physics distributions, therefore two discriminators

with di↵erent gradient penalty weights are used. While the original discriminator has a

gradient penalty weight of 10, the additional discriminator has a smaller gradient penalty weight
of 10

�8
, and it receives the total energy of an image as the input, instead of the image itself.

The updated GAN is further conditioned on the extrapolated position of the particle inside the

impact cell (Fig. 1). Changing the optimiser from Adam to RMSProp allowed for the training

to remain stable on 50% of the dataset, which further improved results.

An L1 activity regularizer is applied on the generator output to encourage sparsity of cell

energies. When performing an optimization of the hyperparameters, four GANs are trained with

di↵erent random seeds and their average performance is compared to avoid picking up random

fluctuations. As a control, average performance of four GANs is compared with two other sets

of four GANs, all trained with the same hyperparemters but di↵erent random seeds.

The training takes 80 h for 15000 epochs on 50% of the dataset for the updated GAN,

performed on an NVIDIA
R�

Kepler
TM

GK210 GPU with a processing power of 2496 cores,

each clocked at 562MHz. The card has a video RAM size of 12 GB with a clock speed of 5GHz.

4. Results
This section presents comparisons between physics properties of the synthesised showers from

the generative models and the full simulation.

The energy deposited in the middle layer of the calorimeter, is shown in Fig. 3a for photons

with an energy of approximately 65GeV in the range 0.20 < |⌘| < 0.25. Both VAE and GAN

accurately describe the bulk of the energy deposits but with reduced agreement in the tails of

the distribution. They reproduce the energy weighted average ⌘ of the middle calorimeter layer,

shown in Fig. 3b, to a large extent. The shower depth, d =
1
E

P
i2layers Eidi, calculated from the

energy weighted mean of the longitudinal center of all calorimeter layers, is shown in Fig. 3c.

ATLAS Collaboration [A. Ghosh], 2019
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |� | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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Figure 10: Energy response of the calorimeter as function of the true photon energy for particles in the range
0.20 < |� | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (red markers) and a GAN (blue markers). The shown error bars indicate the
resolution of the simulated energy deposits.
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(e)

Figure 3: (a) The energy deposited, (b) the average ⌘ distribution in the middle calorimeter

layer, and (c) the shower depth for photons with 65GeV energy in the range 0.20 < |⌘| < 0.25.

The full simulation (black markers) is compared to a VAE (solid red line) and a GAN (solid

blue line). The underflow and overflow is included in the first and last bin of each distribution,

respectively. (d) Energy response of the calorimeter as function of the true photon energy, where

the shown error bars indicate the resolution of the simulated energy deposits, and (e) the same

for the updated GAN (green) [10, 11]

Both VAE and GAN reproduce the shape of shower depth simulated by Geant4, but with a

slight shift.

Fig. 3d shows the simulated energy as a function of true photon energy. The modeling

of the total energy response reflects the modeling of the underlying distributions, i.e. the

energy deposited in the calorimeter layers, and enhances the mismodeling of the tails due to

underestimating the underlying correlations observed in these. Both generative models simulate

a wider spread of energies than Geant4. The updated GAN architecture was conceived to

improve the modeling of this distribution, and Fig. 3e shows considerable improvement in the

updated GAN.

5. Conclusion
This document presents the first application of generative models for simulating particle showers

in the ATLAS calorimeter. Two algorithms, a VAE and a GAN, have been used to learn the

response of the EM calorimeter for photons with energies between approximately 1 and 260 GeV

in the range 0.20 < |⌘| < 0.25. The properties of synthesized showers show promising agreement

Paganini et al.
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(a) Each dot represents one energy deposit from Geant4 and
the color of the dot encodes the energy. The absorber-gap

structure is clearly visible, where most of the energy is lost in
the absorber.
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(b) Discretized version of (a), in which energy depositions are
assigned to individual, discrete detector cells.

FIG. 1: The electromagnetic shower from one 10 GeV
electron event. The boundaries of the cells are shown,

projecting out the � segmentation.

and the hypothesized image from the current layer, I,
and learns a per-pixel attention weight W via a weighting
function !(I, I

0
) such that the pre-ReLU version of the

current layer is W � I + (1 � W ) � I
0
, where � is the

Hadamard product. This end-to-end trainable unit can
utilize information about the two layers to decide what
information to propagate through from the previous par-
ticle deposition. An alternative architectural choice that
includes a recurrent connection will be subject of future
studies.

Leaky Rectified Linear Units [57] are chosen as activa-
tion functions throughout the system, with the exception
of the output layers of G, in which we prefer Rectified
Linear Units [58] for the creation of sparse samples [19].

In the discriminator (shown in Fig. 5), the feature
space produced by each LAGAN-style output stream is

η
z

φ

FIG. 2: Three-dimensional representation of a 10 GeV e
+

incident perpendicular to the center of the detector.
Not-to-scale separation among the longitudinal layers is

added for visualization purposes.

FIG. 3: Two-dimensional, per-layer representation of the
same shower as in Fig. 2.

augmented with a sub-differentiable version of sparsity
percentage [59], as well as minibatch discrimination [48]
on both the standard locally connected network-produced
features and the output sparsity itself, to ensure a well
examined space of sparsities. These are represented in
Fig. 5 by the ‘features’ vector.

The discriminator is further customized with domain-
specific features to ensure fidelity of samples. Given
the importance of matching the requested energy E, D
directly calculates the empirical energy per layer Êi, i 2
{0, 1, 2}, as well as the total energy Êtot. Minibatch
discrimination is performed on this vector of per-layer
energies to ensure a proper distributional understanding.
We also add |E�Êtot| as a feature, as well as I{|E�Êtot|>"}
with " = 5 GeV – a binary, sub-differentiable feature which
encodes the tolerance for GAN-produced scatterings to
be incorrect in their reconstructed energy.

Further specifications of the exact hyper-parameter
and architectural choices as well as software versioning
constraints are available in the source code [60].

Two additional architectural modifications were tested
in order to build a particle-type conditioning system di-
rectly into the learning process. Neither the AC-GAN [43]
nor the conditional GAN [44] frameworks were able to
handle the substantial differences among the three particle

7

FIG. 6: Average e
+ Geant4 shower (top), and average

e
+ CaloGAN shower (bottom), with progressive

calorimeter depth (left to right).

FIG. 7: Average � Geant4 shower (top), and average �

CaloGAN shower (bottom), with progressive
calorimeter depth (left to right).

FIG. 8: Average ⇡
+ Geant4 shower (top), and average

⇡
+ CaloGAN shower (bottom), with progressive

calorimeter depth (left to right).

FIG. 9: Five randomly selected e
+ showers per

calorimeter layer from the training set (top) and the five
nearest neighbors (by euclidean distance) from a set of

CaloGAN candidates.

B. Shower Shapes

Electron and photon classification and energy calibra-
tion use properties of the calorimeter shower [64–67].
These same features can be used to quantitatively as-
sess the quality of the GAN samples. The list of features
used for evaluation is provided in Table IV in Appendix A.
The key physical quantity that governs the shapes of these
distributions is the number of radiation lengths X0 that
are traversed by the particle. By definition, X0 is the
distance an electron will travel before its energy is reduced
to 1/e on average. The equivalent distance for photons is
slightly further (by 9/7 [68]) and is set by the mean free
path for pair production. The transverse shower size is
also proportional to X0. For a brief review, see e.g. [68].

The 1-dimensional distributions for Geant4- and GAN-
generated samples are available in Fig. 12. Although the
sparsity levels per layer are only roughly matched, note
that, for the majority of the remaining variables, the GAN
picks up on complex features in the distributions across
several orders of magnitude and all particles types. The
unique features that pions exhibit, compared to the other
particles, make it unfavorable to train a single model for
multiple particle types.

Note that shower shape variables were not explicitly

https://cds.cern.ch/record/2680531/files/ATL-SOFT-PROC-2019-007.pdf
https://arxiv.org/abs/1712.10321
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 12: Sum and RMS of the energy in all voxels normalized to the true momentum for (a) photons, (b) electrons
and (c) pions with 0.2 < |[ | < 0.25 as a function of the true momentum. The calorimeter response for G����4 (solid
black line) is compared with FastCaloGAN (dashed red line), which is also abbreviated to FGAN. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS values is shown in the bottom panel. The error
bars in the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the
markers.
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(d)

Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.

33



Evaluating Fast Calo Simulators

0.1 0.2 0.3 0.4

Energy [GeV]

0

0.02

0.04

0.06

0.08

0.1

0.12

U
ni

t N
or

m
al

iz
ed

256 MeV

0.3 0.4 0.5 0.6 0.7

Energy [GeV]

0

0.02

0.04

0.06

0.08

0.1

U
ni

t N
or

m
al

iz
ed

512 MeV

0.7 0.8 0.9 1 1.1 1.2

Energy [GeV]

0

0.02

0.04

0.06

0.08

0.1

U
ni

t N
or

m
al

iz
ed

1024 MeV

1.6 1.8 2 2.2

Energy [GeV]

0

0.02

0.04

0.06

0.08

0.1

U
ni

t N
or

m
al

iz
ed

2.0 GeV

3.6 3.8 4 4.2 4.4

Energy [GeV]

0

0.02

0.04

0.06

0.08

0.1

U
ni

t N
or

m
al

iz
ed

4.1 GeV

7.5 8 8.5

Energy [GeV]

0

0.02

0.04

0.06

0.08

0.1

U
ni

t N
or

m
al

iz
ed

8.2 GeV

15 15.5 16 16.5 17

Energy [GeV]

0

0.02

0.04

0.06

0.08

0.1

0.12

U
ni

t N
or

m
al

iz
ed

16.4 GeV

30 31 32 33

Energy [GeV]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

U
ni

t N
or

m
al

iz
ed

32.8 GeV

60 62 64 66

Energy [GeV]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

U
ni

t N
or

m
al

iz
ed

65.5 GeV

120 125 130

Energy [GeV]

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

0.22

U
ni

t N
or

m
al

iz
ed

131.1 GeV

245 250 255 260 265

Energy [GeV]

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

0.22

U
ni

t N
or

m
al

iz
ed

262.1 GeV

480 500 520 540

Energy [GeV]

0

0.05

0.1

0.15

0.2

0.25

U
ni

t N
or

m
al

iz
ed

524.3 GeV

950 1000 1050

Energy [GeV]

0

0.05

0.1

0.15

0.2

0.25

U
ni

t N
or

m
al

iz
ed

1.0 TeV

1900 2000 2100

Energy [GeV]

0

0.05

0.1

0.15

0.2

0.25

U
ni

t N
or

m
al

iz
ed

2.1 TeV

3800 4000 4200 4400

Energy [GeV]

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

0.22

U
ni

t N
or

m
al

iz
ed

4.2 TeV

G4

FastCaloGAN

G4

FastCaloGAN

ATLAS
Simulation 

|<0.25�0.20<|�

Epoch: 983000
/NDF = 5657/419 = 13.52�

Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 12: Sum and RMS of the energy in all voxels normalized to the true momentum for (a) photons, (b) electrons
and (c) pions with 0.2 < |[ | < 0.25 as a function of the true momentum. The calorimeter response for G����4 (solid
black line) is compared with FastCaloGAN (dashed red line), which is also abbreviated to FGAN. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS values is shown in the bottom panel. The error
bars in the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the
markers.
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Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.
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Figure 21: Number of cells in the leading cluster for pions in the barrel at di�erent energies in G����4 (black
triangles), FastCaloSim V2 (red diamonds) and FastCaloGAN (blue stars). The statistical uncertainties are shown but
may be smaller than the markers.

the energy from G����4. For electrons and photons the spline for the energy response is fitted down to
16 MeV, below which a linear extrapolation is used. For hadrons the energy response is fitted down to a
kinetic energy of 200 MeV, below which G����4 is used for the simulation.

7.4 Corrections

Four di�erent corrections are applied to the calorimeter parameterization in AtlFast3. However, the energy
resolution correction discussed in Section 7.4.1 and the energy q-modulation correction discussed in
Section 7.4.2 are only applied to FastCaloSim V2.

7.4.1 Energy resolution correction

The simulation of the resolution of the total energy in FastCaloSim V2 is improved by reweighting the
distribution of simulated energies produced by FastCaloSim V2 to the distribution from G����4. The ratio
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 12: Sum and RMS of the energy in all voxels normalized to the true momentum for (a) photons, (b) electrons
and (c) pions with 0.2 < |[ | < 0.25 as a function of the true momentum. The calorimeter response for G����4 (solid
black line) is compared with FastCaloGAN (dashed red line), which is also abbreviated to FGAN. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS values is shown in the bottom panel. The error
bars in the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the
markers.
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Figure 13: Sum and RMS of the energy in all voxels as a function of |[ | for (a) photons, (b) electrons and (c) pions
of momentum 65 GeV. The calorimeter response for G����4 (solid black line) is compared with FastCaloGAN
(dashed red line), which is also abbreviated to FGAN, while their ratio is shown in the ratio plots. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS is shown in the bottom panel. The error bars in
the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the markers.
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Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.
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Figure 21: Number of cells in the leading cluster for pions in the barrel at di�erent energies in G����4 (black
triangles), FastCaloSim V2 (red diamonds) and FastCaloGAN (blue stars). The statistical uncertainties are shown but
may be smaller than the markers.

the energy from G����4. For electrons and photons the spline for the energy response is fitted down to
16 MeV, below which a linear extrapolation is used. For hadrons the energy response is fitted down to a
kinetic energy of 200 MeV, below which G����4 is used for the simulation.

7.4 Corrections

Four di�erent corrections are applied to the calorimeter parameterization in AtlFast3. However, the energy
resolution correction discussed in Section 7.4.1 and the energy q-modulation correction discussed in
Section 7.4.2 are only applied to FastCaloSim V2.

7.4.1 Energy resolution correction

The simulation of the resolution of the total energy in FastCaloSim V2 is improved by reweighting the
distribution of simulated energies produced by FastCaloSim V2 to the distribution from G����4. The ratio
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).

25

2.5 3 3.5 4 4.5 5 5.5 6 6.5
/MeV)

truth
(p

10
Log

0.8

1

1.2

1.4

R
M

S 
FG

AN
/G

4 2.5 3 3.5 4 4.5 5 5.5 6 6.5
/MeV)

truth
(p

10
Log

0.96

0.98

1

1.02

 F
G

AN
/G

4
〉E〈

2.5 3 3.5 4 4.5 5 5.5 6 6.5
/MeV

truth
 p

10
Log

0.7

0.8

0.9

1

1.1

1.2

tru
th

 a
nd

 R
M

S/
p

tru
th

/p〉E〈

ATLAS Simulation
|<0.25η 0.20<|γ

G4

FastCaloGAN

G4

FastCaloGAN

(a)

2.5 3 3.5 4 4.5 5 5.5 6 6.5
/MeV)

truth
(p

10
Log

1

1.5

2

R
M

S 
FG

AN
/G

4 2.5 3 3.5 4 4.5 5 5.5 6 6.5
/MeV)

truth
(p

10
Log

0.95

1

 F
G

AN
/G

4
〉E〈

2.5 3 3.5 4 4.5 5 5.5 6 6.5
/MeV

truth
 p

10
Log

0.6

0.7

0.8

0.9

1

1.1

1.2tru
th

 a
nd

 R
M

S/
p

tru
th

/p〉E〈

ATLAS Simulation
|<0.25η 0.20<|-e

G4

FastCaloGAN

G4

FastCaloGAN

(b)

2.5 3 3.5 4 4.5 5 5.5 6 6.5
/MeV)

truth
(p

10
Log

0.8

1

1.2

1.4

R
M

S 
FG

AN
/G

4 2.5 3 3.5 4 4.5 5 5.5 6 6.5
/MeV)

truth
(p

10
Log

0.95

1

 F
G

AN
/G

4
〉E〈

2.5 3 3.5 4 4.5 5 5.5 6 6.5
/MeV

truth
 p

10
Log

0.2

0.4

0.6

0.8

1

1.2tru
th

 a
nd

 R
M

S/
p

tru
th

/p〉E〈

ATLAS Simulation
|<0.25η 0.20<|±π

G4

FastCaloGAN

G4

FastCaloGAN

(c)

Figure 12: Sum and RMS of the energy in all voxels normalized to the true momentum for (a) photons, (b) electrons
and (c) pions with 0.2 < |[ | < 0.25 as a function of the true momentum. The calorimeter response for G����4 (solid
black line) is compared with FastCaloGAN (dashed red line), which is also abbreviated to FGAN. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS values is shown in the bottom panel. The error
bars in the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the
markers.
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Figure 13: Sum and RMS of the energy in all voxels as a function of |[ | for (a) photons, (b) electrons and (c) pions
of momentum 65 GeV. The calorimeter response for G����4 (solid black line) is compared with FastCaloGAN
(dashed red line), which is also abbreviated to FGAN, while their ratio is shown in the ratio plots. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS is shown in the bottom panel. The error bars in
the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the markers.
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6 Simulation of muon punch-through

Secondary particles created in hadronic showers inside the calorimeter can escape through the back of the
calorimeter and generate hits in the muon spectrometer. This e�ect is referred to as muon punch through.
These particles are reconstructed in the muon spectrometer and need to be well modelled to accurately
describe the backgrounds of reconstructed muons. A dedicated treatment of these particles is required
because the information about the path of the particles is lost due to the parameterization of the calorimeter
response in AtlFast3. Figure 14 shows the probability of a single pion entering the calorimeter to create
at least one secondary particle which escapes the calorimeter volume with an energy of at least 50 MeV
determined using the G����4 simulation. The probability increases with increasing momentum ? and
varies as a function of [. Particles with energies below 50 MeV are not simulated in the muon spectrometer
because they would have negligible impact.
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Figure 14: The probability of a single-pion event to produce at least one punch-through particle with an energy of at
least 50 MeV as a function of the [ and ? of the incoming pion determined from G����4.

The AtlFast3 punch-through parameterization is derived separately for the five types of secondary particles
that can emerge from the back of the calorimeter: photons, electrons, pions, muons, and protons. These
account for 92% of the total punch through. The parameterizations of their multiplicity and kinematics
are determined from single-pion samples simulated using G����4. As the properties of the secondary
particles depend significantly on the [ direction and energy of the incoming pion, the reference samples
within the acceptance of the muon spectrometer |[ |  2.7 and with momenta between 65 GeV and 4.2 TeV
are used to determine the parameterization. The small number of secondary particles in lower-energy
samples did not allow a parametrization of primary particles with an energy lower than 65 GeV.

The properties of the secondaries described by the parameterization include their energy, and their position
and momentum relative to that of the incoming pion. The position and momentum of the secondaries are
determined via deflection angles, �\ and �q, relative to the direction of propagation of the incoming pion.
As an example, Figures 15 and 16 show the histograms extracted from the G����4 simulation and used
to parameterize the secondaries produced by primary pions with an energy of 524 GeV and |[ |  0.4.
The peak at 1 GeV is the most probable value of the energy of the secondary pions emerging form the
calorimeter.
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(d)

Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.
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Figure 21: Number of cells in the leading cluster for pions in the barrel at di�erent energies in G����4 (black
triangles), FastCaloSim V2 (red diamonds) and FastCaloGAN (blue stars). The statistical uncertainties are shown but
may be smaller than the markers.

the energy from G����4. For electrons and photons the spline for the energy response is fitted down to
16 MeV, below which a linear extrapolation is used. For hadrons the energy response is fitted down to a
kinetic energy of 200 MeV, below which G����4 is used for the simulation.

7.4 Corrections

Four di�erent corrections are applied to the calorimeter parameterization in AtlFast3. However, the energy
resolution correction discussed in Section 7.4.1 and the energy q-modulation correction discussed in
Section 7.4.2 are only applied to FastCaloSim V2.

7.4.1 Energy resolution correction

The simulation of the resolution of the total energy in FastCaloSim V2 is improved by reweighting the
distribution of simulated energies produced by FastCaloSim V2 to the distribution from G����4. The ratio
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 12: Sum and RMS of the energy in all voxels normalized to the true momentum for (a) photons, (b) electrons
and (c) pions with 0.2 < |[ | < 0.25 as a function of the true momentum. The calorimeter response for G����4 (solid
black line) is compared with FastCaloGAN (dashed red line), which is also abbreviated to FGAN. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS values is shown in the bottom panel. The error
bars in the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the
markers.
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Figure 13: Sum and RMS of the energy in all voxels as a function of |[ | for (a) photons, (b) electrons and (c) pions
of momentum 65 GeV. The calorimeter response for G����4 (solid black line) is compared with FastCaloGAN
(dashed red line), which is also abbreviated to FGAN, while their ratio is shown in the ratio plots. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS is shown in the bottom panel. The error bars in
the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the markers.
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6 Simulation of muon punch-through

Secondary particles created in hadronic showers inside the calorimeter can escape through the back of the
calorimeter and generate hits in the muon spectrometer. This e�ect is referred to as muon punch through.
These particles are reconstructed in the muon spectrometer and need to be well modelled to accurately
describe the backgrounds of reconstructed muons. A dedicated treatment of these particles is required
because the information about the path of the particles is lost due to the parameterization of the calorimeter
response in AtlFast3. Figure 14 shows the probability of a single pion entering the calorimeter to create
at least one secondary particle which escapes the calorimeter volume with an energy of at least 50 MeV
determined using the G����4 simulation. The probability increases with increasing momentum ? and
varies as a function of [. Particles with energies below 50 MeV are not simulated in the muon spectrometer
because they would have negligible impact.
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Figure 14: The probability of a single-pion event to produce at least one punch-through particle with an energy of at
least 50 MeV as a function of the [ and ? of the incoming pion determined from G����4.

The AtlFast3 punch-through parameterization is derived separately for the five types of secondary particles
that can emerge from the back of the calorimeter: photons, electrons, pions, muons, and protons. These
account for 92% of the total punch through. The parameterizations of their multiplicity and kinematics
are determined from single-pion samples simulated using G����4. As the properties of the secondary
particles depend significantly on the [ direction and energy of the incoming pion, the reference samples
within the acceptance of the muon spectrometer |[ |  2.7 and with momenta between 65 GeV and 4.2 TeV
are used to determine the parameterization. The small number of secondary particles in lower-energy
samples did not allow a parametrization of primary particles with an energy lower than 65 GeV.

The properties of the secondaries described by the parameterization include their energy, and their position
and momentum relative to that of the incoming pion. The position and momentum of the secondaries are
determined via deflection angles, �\ and �q, relative to the direction of propagation of the incoming pion.
As an example, Figures 15 and 16 show the histograms extracted from the G����4 simulation and used
to parameterize the secondaries produced by primary pions with an energy of 524 GeV and |[ |  0.4.
The peak at 1 GeV is the most probable value of the energy of the secondary pions emerging form the
calorimeter.
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Figure 15: The punch-through probability as a function of the punch-through pion (a) multiplicity and (b) energy.
The error bars indicate the statistical uncertainty and the overflow is not included in the final bins.

During the simulation of AtlFast3, the muon punch-through parameterization is invoked whenever particles
that have some probability of punching through enter the calorimeter. For each incoming particle, the
number of secondaries and their energy, position and momentum are selected randomly from the punch-
through parameterization histograms (see Figures 15 and 16), using them as probability density functions.
The parameterization is interpolated linearly for [ and logarithmically for ?T to values between the discrete
points used to determine the parameterization. Two sets of correlations are accounted for in the modelling
of the secondaries: the correlations between the relative position and energy and correlations between the
relative momentum and energy. After the multiplicity and properties of the punch-through secondaries
have been determined, their propagation through the muon spectrometer is simulated using G����4.

7 The combination of FastCaloSim V2 and FastCaloGAN: AtlFast3

7.1 Configuration of AtlFast3

The new fast simulation tool, AtlFast3, is defined by combining the fast simulation tools described above in
a way that balances modelling performance needs with CPU requirements. AtlFast3 uses the Integrated
Simulation Framework (ISF), which allows di�erent simulation tools to be combined in a flexible way [64].
AtlFast3 uses the following configuration as illustrated in Figure 17:

• G����4 is used to simulate all particles in the inner detector and muons in all detectors. Hadrons
with kinetic energies below 400 MeV (200 MeV for pions) in the calorimeter are also simulated in
G����4.
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Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.
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Figure 21: Number of cells in the leading cluster for pions in the barrel at di�erent energies in G����4 (black
triangles), FastCaloSim V2 (red diamonds) and FastCaloGAN (blue stars). The statistical uncertainties are shown but
may be smaller than the markers.

the energy from G����4. For electrons and photons the spline for the energy response is fitted down to
16 MeV, below which a linear extrapolation is used. For hadrons the energy response is fitted down to a
kinetic energy of 200 MeV, below which G����4 is used for the simulation.

7.4 Corrections

Four di�erent corrections are applied to the calorimeter parameterization in AtlFast3. However, the energy
resolution correction discussed in Section 7.4.1 and the energy q-modulation correction discussed in
Section 7.4.2 are only applied to FastCaloSim V2.

7.4.1 Energy resolution correction

The simulation of the resolution of the total energy in FastCaloSim V2 is improved by reweighting the
distribution of simulated energies produced by FastCaloSim V2 to the distribution from G����4. The ratio
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 12: Sum and RMS of the energy in all voxels normalized to the true momentum for (a) photons, (b) electrons
and (c) pions with 0.2 < |[ | < 0.25 as a function of the true momentum. The calorimeter response for G����4 (solid
black line) is compared with FastCaloGAN (dashed red line), which is also abbreviated to FGAN. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS values is shown in the bottom panel. The error
bars in the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the
markers.
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Figure 13: Sum and RMS of the energy in all voxels as a function of |[ | for (a) photons, (b) electrons and (c) pions
of momentum 65 GeV. The calorimeter response for G����4 (solid black line) is compared with FastCaloGAN
(dashed red line), which is also abbreviated to FGAN, while their ratio is shown in the ratio plots. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS is shown in the bottom panel. The error bars in
the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the markers.

27

6 Simulation of muon punch-through

Secondary particles created in hadronic showers inside the calorimeter can escape through the back of the
calorimeter and generate hits in the muon spectrometer. This e�ect is referred to as muon punch through.
These particles are reconstructed in the muon spectrometer and need to be well modelled to accurately
describe the backgrounds of reconstructed muons. A dedicated treatment of these particles is required
because the information about the path of the particles is lost due to the parameterization of the calorimeter
response in AtlFast3. Figure 14 shows the probability of a single pion entering the calorimeter to create
at least one secondary particle which escapes the calorimeter volume with an energy of at least 50 MeV
determined using the G����4 simulation. The probability increases with increasing momentum ? and
varies as a function of [. Particles with energies below 50 MeV are not simulated in the muon spectrometer
because they would have negligible impact.
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Figure 14: The probability of a single-pion event to produce at least one punch-through particle with an energy of at
least 50 MeV as a function of the [ and ? of the incoming pion determined from G����4.

The AtlFast3 punch-through parameterization is derived separately for the five types of secondary particles
that can emerge from the back of the calorimeter: photons, electrons, pions, muons, and protons. These
account for 92% of the total punch through. The parameterizations of their multiplicity and kinematics
are determined from single-pion samples simulated using G����4. As the properties of the secondary
particles depend significantly on the [ direction and energy of the incoming pion, the reference samples
within the acceptance of the muon spectrometer |[ |  2.7 and with momenta between 65 GeV and 4.2 TeV
are used to determine the parameterization. The small number of secondary particles in lower-energy
samples did not allow a parametrization of primary particles with an energy lower than 65 GeV.

The properties of the secondaries described by the parameterization include their energy, and their position
and momentum relative to that of the incoming pion. The position and momentum of the secondaries are
determined via deflection angles, �\ and �q, relative to the direction of propagation of the incoming pion.
As an example, Figures 15 and 16 show the histograms extracted from the G����4 simulation and used
to parameterize the secondaries produced by primary pions with an energy of 524 GeV and |[ |  0.4.
The peak at 1 GeV is the most probable value of the energy of the secondary pions emerging form the
calorimeter.
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Figure 15: The punch-through probability as a function of the punch-through pion (a) multiplicity and (b) energy.
The error bars indicate the statistical uncertainty and the overflow is not included in the final bins.

During the simulation of AtlFast3, the muon punch-through parameterization is invoked whenever particles
that have some probability of punching through enter the calorimeter. For each incoming particle, the
number of secondaries and their energy, position and momentum are selected randomly from the punch-
through parameterization histograms (see Figures 15 and 16), using them as probability density functions.
The parameterization is interpolated linearly for [ and logarithmically for ?T to values between the discrete
points used to determine the parameterization. Two sets of correlations are accounted for in the modelling
of the secondaries: the correlations between the relative position and energy and correlations between the
relative momentum and energy. After the multiplicity and properties of the punch-through secondaries
have been determined, their propagation through the muon spectrometer is simulated using G����4.

7 The combination of FastCaloSim V2 and FastCaloGAN: AtlFast3

7.1 Configuration of AtlFast3

The new fast simulation tool, AtlFast3, is defined by combining the fast simulation tools described above in
a way that balances modelling performance needs with CPU requirements. AtlFast3 uses the Integrated
Simulation Framework (ISF), which allows di�erent simulation tools to be combined in a flexible way [64].
AtlFast3 uses the following configuration as illustrated in Figure 17:

• G����4 is used to simulate all particles in the inner detector and muons in all detectors. Hadrons
with kinetic energies below 400 MeV (200 MeV for pions) in the calorimeter are also simulated in
G����4.
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Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.
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Figure 20: Distribution of the number of constituents in the jets in a 1.8 < ?T < 2.5 TeV dÚet sample in G����4
(black triangles) and the combination of FastCaloSim V2 and FastCaloGAN with transitions in the range 4–8 GeV
(blue stars), 8–16 GeV (red diamonds) and 16–32 GeV (green crosses). Here ‘hybrid’ refers to the combination of
FastCaloSim V2 and FastCaloGAN. The statistical uncertainties are shown but may be smaller than the markers.

7.2.5 Muon punch-through

The muon punch-through parameterization described in Section 6 is used to simulate particles punching
through the calorimeter. After the multiplicity and properties of the secondaries are determined using the
punch-through parameterization, their path through the muon spectrometer is simulated using G����4.

7.3 Energy interpolation

The FastCaloSim V2 and FastCaloGAN parameterizations are derived using samples with logarithmically
spaced discrete energies, which need to be extrapolated to particles of all energies. In FastCaloSim V2, a
piece-wise third order polynomial spline function is fitted to the total energy response in order to interpolate
to intermediate energies. Furthermore, linear extrapolation is used to reach energies beyond those of
the simulated input samples. The spline interpolations are generated for each particle and each [ slice
and are used to rescale the total energy response from the parameterization points. An example of the
energy response and fitted splines for photons and pions in the barrel region is shown in Figure 22. The
energy response for high-energy photons is slightly reduced due to leakage into the Tile calorimeter. In
FastCaloGAN, the conditioning on the particle momentum creates a model that can produce particles of
any energy.

In addition to the interpolation of the total energy response, the other longitudinal and lateral shower
shape properties also need to be interpolated. In FastCaloGAN the shape properties are interpolated
automatically by the GANs, while in FastCaloSim V2 the shape interpolation is done by randomly selecting
the parameterization from the nearest energy point with a probability linear in log(⇢kin) and fitted such
that unit probability is reached for the grid energy points.

In the two transition regions between FastCaloSim V2 and FastCaloGAN (for hadrons in the ranges
8–16 GeV and 256–512 GeV), a spline is used to interpolate between the two models. A smooth energy-
response transition between the two models is obtained since the simulated energies are always scaled to
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Figure 21: Number of cells in the leading cluster for pions in the barrel at di�erent energies in G����4 (black
triangles), FastCaloSim V2 (red diamonds) and FastCaloGAN (blue stars). The statistical uncertainties are shown but
may be smaller than the markers.

the energy from G����4. For electrons and photons the spline for the energy response is fitted down to
16 MeV, below which a linear extrapolation is used. For hadrons the energy response is fitted down to a
kinetic energy of 200 MeV, below which G����4 is used for the simulation.

7.4 Corrections

Four di�erent corrections are applied to the calorimeter parameterization in AtlFast3. However, the energy
resolution correction discussed in Section 7.4.1 and the energy q-modulation correction discussed in
Section 7.4.2 are only applied to FastCaloSim V2.

7.4.1 Energy resolution correction

The simulation of the resolution of the total energy in FastCaloSim V2 is improved by reweighting the
distribution of simulated energies produced by FastCaloSim V2 to the distribution from G����4. The ratio
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 12: Sum and RMS of the energy in all voxels normalized to the true momentum for (a) photons, (b) electrons
and (c) pions with 0.2 < |[ | < 0.25 as a function of the true momentum. The calorimeter response for G����4 (solid
black line) is compared with FastCaloGAN (dashed red line), which is also abbreviated to FGAN. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS values is shown in the bottom panel. The error
bars in the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the
markers.
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Figure 13: Sum and RMS of the energy in all voxels as a function of |[ | for (a) photons, (b) electrons and (c) pions
of momentum 65 GeV. The calorimeter response for G����4 (solid black line) is compared with FastCaloGAN
(dashed red line), which is also abbreviated to FGAN, while their ratio is shown in the ratio plots. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS is shown in the bottom panel. The error bars in
the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the markers.
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6 Simulation of muon punch-through

Secondary particles created in hadronic showers inside the calorimeter can escape through the back of the
calorimeter and generate hits in the muon spectrometer. This e�ect is referred to as muon punch through.
These particles are reconstructed in the muon spectrometer and need to be well modelled to accurately
describe the backgrounds of reconstructed muons. A dedicated treatment of these particles is required
because the information about the path of the particles is lost due to the parameterization of the calorimeter
response in AtlFast3. Figure 14 shows the probability of a single pion entering the calorimeter to create
at least one secondary particle which escapes the calorimeter volume with an energy of at least 50 MeV
determined using the G����4 simulation. The probability increases with increasing momentum ? and
varies as a function of [. Particles with energies below 50 MeV are not simulated in the muon spectrometer
because they would have negligible impact.

    
0.

22
5     

0.
47

5     
0.

72
5     

0.
97

5     
1.

22
5     

1.
47

5     
1.

72
5     

1.
97

5     
2.

22
5     

2.
47

5    
2.

67
5

|ηPrimary Pion |

4096

8192

16384

32768

65536

131072

262144

524288

1048576

2097152

4194304

Pr
im

ar
y 

Pi
on

 p
 [M

eV
]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Pr
ob

ab
ilit

y 
of

 P
un

ch
 T

hr
ou

ghATLAS Simulation

Figure 14: The probability of a single-pion event to produce at least one punch-through particle with an energy of at
least 50 MeV as a function of the [ and ? of the incoming pion determined from G����4.

The AtlFast3 punch-through parameterization is derived separately for the five types of secondary particles
that can emerge from the back of the calorimeter: photons, electrons, pions, muons, and protons. These
account for 92% of the total punch through. The parameterizations of their multiplicity and kinematics
are determined from single-pion samples simulated using G����4. As the properties of the secondary
particles depend significantly on the [ direction and energy of the incoming pion, the reference samples
within the acceptance of the muon spectrometer |[ |  2.7 and with momenta between 65 GeV and 4.2 TeV
are used to determine the parameterization. The small number of secondary particles in lower-energy
samples did not allow a parametrization of primary particles with an energy lower than 65 GeV.

The properties of the secondaries described by the parameterization include their energy, and their position
and momentum relative to that of the incoming pion. The position and momentum of the secondaries are
determined via deflection angles, �\ and �q, relative to the direction of propagation of the incoming pion.
As an example, Figures 15 and 16 show the histograms extracted from the G����4 simulation and used
to parameterize the secondaries produced by primary pions with an energy of 524 GeV and |[ |  0.4.
The peak at 1 GeV is the most probable value of the energy of the secondary pions emerging form the
calorimeter.
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Figure 15: The punch-through probability as a function of the punch-through pion (a) multiplicity and (b) energy.
The error bars indicate the statistical uncertainty and the overflow is not included in the final bins.

During the simulation of AtlFast3, the muon punch-through parameterization is invoked whenever particles
that have some probability of punching through enter the calorimeter. For each incoming particle, the
number of secondaries and their energy, position and momentum are selected randomly from the punch-
through parameterization histograms (see Figures 15 and 16), using them as probability density functions.
The parameterization is interpolated linearly for [ and logarithmically for ?T to values between the discrete
points used to determine the parameterization. Two sets of correlations are accounted for in the modelling
of the secondaries: the correlations between the relative position and energy and correlations between the
relative momentum and energy. After the multiplicity and properties of the punch-through secondaries
have been determined, their propagation through the muon spectrometer is simulated using G����4.

7 The combination of FastCaloSim V2 and FastCaloGAN: AtlFast3

7.1 Configuration of AtlFast3

The new fast simulation tool, AtlFast3, is defined by combining the fast simulation tools described above in
a way that balances modelling performance needs with CPU requirements. AtlFast3 uses the Integrated
Simulation Framework (ISF), which allows di�erent simulation tools to be combined in a flexible way [64].
AtlFast3 uses the following configuration as illustrated in Figure 17:

• G����4 is used to simulate all particles in the inner detector and muons in all detectors. Hadrons
with kinetic energies below 400 MeV (200 MeV for pions) in the calorimeter are also simulated in
G����4.
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Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.
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Figure 20: Distribution of the number of constituents in the jets in a 1.8 < ?T < 2.5 TeV dÚet sample in G����4
(black triangles) and the combination of FastCaloSim V2 and FastCaloGAN with transitions in the range 4–8 GeV
(blue stars), 8–16 GeV (red diamonds) and 16–32 GeV (green crosses). Here ‘hybrid’ refers to the combination of
FastCaloSim V2 and FastCaloGAN. The statistical uncertainties are shown but may be smaller than the markers.

7.2.5 Muon punch-through

The muon punch-through parameterization described in Section 6 is used to simulate particles punching
through the calorimeter. After the multiplicity and properties of the secondaries are determined using the
punch-through parameterization, their path through the muon spectrometer is simulated using G����4.

7.3 Energy interpolation

The FastCaloSim V2 and FastCaloGAN parameterizations are derived using samples with logarithmically
spaced discrete energies, which need to be extrapolated to particles of all energies. In FastCaloSim V2, a
piece-wise third order polynomial spline function is fitted to the total energy response in order to interpolate
to intermediate energies. Furthermore, linear extrapolation is used to reach energies beyond those of
the simulated input samples. The spline interpolations are generated for each particle and each [ slice
and are used to rescale the total energy response from the parameterization points. An example of the
energy response and fitted splines for photons and pions in the barrel region is shown in Figure 22. The
energy response for high-energy photons is slightly reduced due to leakage into the Tile calorimeter. In
FastCaloGAN, the conditioning on the particle momentum creates a model that can produce particles of
any energy.

In addition to the interpolation of the total energy response, the other longitudinal and lateral shower
shape properties also need to be interpolated. In FastCaloGAN the shape properties are interpolated
automatically by the GANs, while in FastCaloSim V2 the shape interpolation is done by randomly selecting
the parameterization from the nearest energy point with a probability linear in log(⇢kin) and fitted such
that unit probability is reached for the grid energy points.

In the two transition regions between FastCaloSim V2 and FastCaloGAN (for hadrons in the ranges
8–16 GeV and 256–512 GeV), a spline is used to interpolate between the two models. A smooth energy-
response transition between the two models is obtained since the simulated energies are always scaled to
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Figure 21: Number of cells in the leading cluster for pions in the barrel at di�erent energies in G����4 (black
triangles), FastCaloSim V2 (red diamonds) and FastCaloGAN (blue stars). The statistical uncertainties are shown but
may be smaller than the markers.

the energy from G����4. For electrons and photons the spline for the energy response is fitted down to
16 MeV, below which a linear extrapolation is used. For hadrons the energy response is fitted down to a
kinetic energy of 200 MeV, below which G����4 is used for the simulation.

7.4 Corrections

Four di�erent corrections are applied to the calorimeter parameterization in AtlFast3. However, the energy
resolution correction discussed in Section 7.4.1 and the energy q-modulation correction discussed in
Section 7.4.2 are only applied to FastCaloSim V2.

7.4.1 Energy resolution correction

The simulation of the resolution of the total energy in FastCaloSim V2 is improved by reweighting the
distribution of simulated energies produced by FastCaloSim V2 to the distribution from G����4. The ratio
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7.2.2 Low-energy hadrons

At low energies, the distribution of the average hadron energy response becomes complex and has a
significant dependence on both ⇢kin and |[ | as shown in Figure 19(b). This is because the measured energy
depends strongly on the extent to which these shorter showers develop within the active liquid argon
of the electromagnetic calorimeter or within the inactive lead absorbers. As an example, Figure 19(a)
shows the ratio of the average energy response to ⇢kin as a function of ⇢kin for charged pions in the range
0.20 < |[ | < 0.25. For pions with a kinetic energy of 100 MeV the largest amount of deposited energy is
typically within the liquid argon of the Presampler, which leads to a spike in the energy response. On the
other hand, pions with a kinetic energy of 10 MeV deposit far less energy in the active liquid-argon regions
and more in the inactive regions. In addition, the energy calibration of the Presampler is derived using
high-energy particles, which deposit much less energy in the Presampler, which means that the measured
fraction of shower energy in the Presampler increases further for ⇢kin ⇡ 100 MeV.

The dependence of the energy response to low-energy charged pions on [ is due to the di�erent amount
of material that the charged pion passes through, which shifts the values of the kinetic energy at which
the spike in the response occurs. Deriving a parameterization for such low-energy hadrons would require
a significantly more complex method for deriving parameterizations in order to achieve high accuracy.
Therefore, in AtlFast3 pions below 200 MeV and all other hadrons below 400 MeV (as shown in Table 6)
are instead simulated by G����4. Above these energy thresholds their total energy response is modelled
using AtlFast3. This choice does not significantly a�ect the speed of AtlFast3 because the simulation of
low-energy hadrons requires only a comparatively small amount of CPU time.

Table 6: Hadron energies below which AtlFast3 relies on G����4 for their simulation

Particle ⇢kin [MeV]
c
± 200

 
±,  L, ?/?̄, =/=̄ 400
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There has been a recent explosion in research into machine-learning-based generative modeling
to tackle computational challenges for simulations in high energy physics (HEP). In order to use
such alternative simulators in practice, we need well defined metrics to compare di↵erent generative
models and evaluate their discrepancy from the true distributions. We present the first systematic
review and investigation into evaluation metrics and their sensitivity to failure modes of generative
models, using the framework of two-sample goodness-of-fit testing, and their relevance and viabil-
ity for HEP. Inspired by previous work in both physics and computer vision, we propose two new
metrics, the Fréchet and kernel physics distances (FPD and KPD), and perform a variety of exper-
iments measuring their performance on simple Gaussian-distributed, and simulated high energy jet
datasets. We find FPD, in particular, to be the most sensitive metric to all alternative jet distribu-
tions tested and recommend its adoption, along with the KPD and Wasserstein distances between
individual feature distributions, for evaluating generative models in HEP. We finally demonstrate
the e�cacy of these proposed metrics in evaluating and comparing a novel attention-based gener-
ative adversarial particle transfomer to the state-of-the-art message-passing generative adversarial
network jet simulation model.

I. INTRODUCTION

In high energy physics (HEP), accurate simulations are
critical for precision measurements and searches such as
those performed at the CERN Large Hadron Collider
(LHC). These are traditionally performed using Monte
Carlo (MC) event generators, detailed modeling of parti-
cles’ propagation and interaction through detectors (typ-
ically with the GEANT4 [1] package), and reconstruction
algorithms to unfold detector measurements back to par-
ticles and high-level objects such as jets. While these
methods have been highly successful for the physics goals
of the LHC, scaling up to the simulation challenges of
the upcoming high-luminosity phase of the LHC (HL-
LHC) [2] necessitates significant advancements in speed
and resource requirements [3–5], while maintaining the
quality of current simulations.

To tackle this problem, a plethora of techniques for
fast simulation of calorimeter showers and jets have been
developed and explored in the last few years, particularly
using generative modeling techniques in machine learn-
ing (ML) [6–22]. Reviews of these approaches can be
found in Refs. [23, 24]. For an experimental collabora-
tion to apply one of these techniques in real data anal-
yses, however, they require methods to objectively com-
pare the performance of di↵erent simulation techniques
and extensively validate the produced simulations. This

⇤
Also at Fermilab; rkansal@ucsd.edu

calls for the study and adoption of standard quantitative
evaluation metrics for generative modeling in HEP.

Recently, several metrics have been proposed to ad-
dress this challenge. However, to our knowledge, there
has been no systematic investigation of their sensitivity
to expected failure modes of generative models, and their
relevance to validation and feasibility for broad adoption
in HEP. To this end, we study the performance of pro-
posed metrics from HEP and computer vision. Inspired
by both domains, we develop two novel metrics we call
the Frèchet and kernel physics distances (FPD and KPD,
respectively), and find them to collectively have excellent
sensitivity to all tested data mismodeling, and to satisfy
practical requirements for evaluation and comparison of
generative models in HEP. We conclude our experiments
by recommending the adoption of FPD and KPD, along
with quantifying di↵erences in individual feature distri-
butions using the Wasserstein 1-Distance, and demon-
strate their use in evaluating a novel attention-based gen-
erative model we call the generative adversarial particle
transformer, or GAPT.

This paper is structured as follows. In Section II we
define our criteria for evaluation metrics in HEP and re-
view existing metrics. We present results on the perfor-
mance of these metrics on Gaussian-distributed synthetic
toy data and simulated high energy jets in Sections III
and IV respectively. Based on these experiments, we pro-
vide our recommendations and concretely illustrate their
application by evaluating and comparing GAPT to the
current state-of-the-art (SOTA) MPGAN [17] model in
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FIG. 1. Samples of (mixtures of) Gaussian distributions used for testing evaluation metrics.

B. Distributions

We use a 2D Gaussian with 0 means and covariance
matrix ⌃ = ( 1.00 0.25

0.25 1.00 ) as the true distribution. We test
the sensitivity of the above metrics to the following dis-
tortions, shown in Figure 1.

1. A large shift in x (1 standard deviation �);

2. A small shift in x (0.1�);

3. Removing the covariance between the parameters
— this tests the sensitivity of each metric to corre-
lations;

4. Multiplying the (co)variances by 10 — tests sensi-
tivity to quality;

5. Dividing (co)variances by 10 — tests sensitivity to
diversity; and, finally,

6 & 7. Two mixtures of two Gaussian distributions with
the same combined means, variances, and covari-
ances as the truth — this tests sensitivity to the
shape of the distribution.

C. Results

1. Bias

We first discuss the performance of each metric in dis-
tinguishing between two sets of samples from the truth
distribution in Figure 2, e↵ectively estimating the null

distributions of each test statistic. A fourth-order poly-
nomial kernel for MMD is shown as it proved most sensi-
tive. We see that indeed FGD1 and MMD are e↵ectively
unbiased, while the values of others depend on the sam-
ple size. This is a significant drawback; even if the same
number of samples are specified for each metric to mit-
igate the e↵ect of the bias, as discussed in Ref. [48], in
general there is no guarantee that the level of bias for
a given sample size is the same across di↵erent distribu-
tions. One possible solution is to use a su�ciently large
number of samples to ensure convergence within a cer-
tain percentage of the true value. However, from a prac-
tical standpoint, the Wasserstein distance quickly be-
comes computationally intractable beyond O(1000) sam-
ples, before which, as we see in Figure 2, it does not con-
verge even for a two-dimensional distribution. Similarly,
density and coverage require a large number of samples
for convergence, which is impractical given their O(n2)
scaling, while precision and recall su↵er from the same
scaling but converge faster.

2. Sensitivity

Table I lists the means and errors of each metric per
dataset for the largest sample size tested for each. A sim-
ilar plot to Figure 2 for each alternative distribution can
be found in Appendix A. The scores most discrepant per
distribution with the truth values of the respective metric
are highlighted in bold. This is conceptually equivalent to

https://arxiv.org/abs/2211.10295


Gaussian Study

6

FIG. 2. Scores of each metric on samples from the true distribution for varying sample sizes.

TABLE I. Values and errors of metrics, as defined in Section IIIA, for each (mixture of) Gaussian distribution(s), for the
largest sample size tested. The scores most discrepant with the truth per distribution are highlighted in bold.

Metric Truth
Shift µx by

1�
Shift µx by

0.1�
Zero

covariance

Multiply
(co)variances

by 10

Divide
(co)variances

by 10

Mixture of
Two

Gaussians 1

Mixture of
Two

Gaussians 2

Wasserstein 0.016± 0.004 1.14± 0.02 0.043± 0.008 0.077± 0.006 9.8± 0.1 0.97± 0.01 0.036± 0.003 0.191± 0.005

FGD1 ⇥103 0.08± 0.03 1011± 1 11.0± 0.1 32.3± 0.2 9400± 8 935.1± 0.7 0.07± 0.03 0.03± 0.03

MMD 0.01± 0.02 16.4± 0.9 0.07± 0.04 0.40± 0.08 19k± 1k 4.3± 0.1 0.06± 0.02 0.35± 0.03

Precision 0.972± 0.005 0.91± 0.01 0.976± 0.004 0.969± 0.006 0.34± 0.01 1.0± 0.0 0.975± 0.003
0.9976±
0.0007

Recall 0.997± 0.001 0.992± 0.003 0.997± 0.001
0.9976±
0.0006 0.998± 0.001 0.58± 0.02 0.996± 0.001

0.9970±
0.0009

Density 3.23± 0.06 2.48± 0.08 3.19± 0.07 3.1± 0.1 0.60± 0.02 5.7± 0.3 2.99± 0.09 0.989± 0.009

Coverage 0.876± 0.002 0.780± 0.006 0.872± 0.005 0.872± 0.004 0.60± 0.01 0.406± 0.008 0.871± 0.002 0.956± 0.006

assuming a Gaussian null (truth) distribution3, and high-
lighting the test statistic producing a central value with
the highest p-value per alternative distribution. We can
infer several properties of each metric from these mea-
surements.

Focusing first on the holistic metrics (Wasserstein,
FGD1, and MMD), we find that each converges to ⇡0

3
We note that this is not necessarily the case, particularly for the

Wasserstein distance, which has a biased estimator. However,

this is not a significant limitation because, as can be seen in

Table I, there is rarely a significant overlap between the null and

alternative distributions which would require an understanding

of the shape of the former.

on the truth distribution, indicating their estimators are
consistent. We can evaluate the sensitivity to each alter-
native distribution by considering the di↵erence in scores
versus the truth scores. With the notable exception of
FGD1 on the mixtures of two Gaussian distributions, we
observe that all three metrics find the alternatives to be
significantly discrepant from the true distribution, where
significant is defined as the central value of the distri-
bution score being two standard deviations away from
the truth score. This is equivalent to again assuming a
Gaussian null distribution and requiring a p-value on the
alternative distribution to be  0.05.

As expected, despite the clear di↵erence in the shapes
of the mixtures compared to the truth, since FGD1 only
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• , MMD unbiased

• W too expensive for large N
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 most promising 

(with caveats)
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FIG. 3. The probability, in arbitrary units (A.U.), of the relative jet mass for truth and distorted gluon jet distributions. On
the left are distribution-level distortions, and right particle-level.

TABLE II. Values and errors of metrics, as defined in Sections III A and IVB, for each jet distribution, for the largest sample
size tested. EFP and PN refer to metrics using EFPs and ParticleNet activations as their input features, respectively. The
scores most discrepant with the truth per distribution are highlighted in bold.

Metric Truth Smeared Shifted Removing tail

Particle Particle Particle Particle

features ⌘rel prelT prelT

smeared smeared smeared shifted

WM
1 ⇥ 103 0.28± 0.05 2.1± 0.2 6.0± 0.3 0.6± 0.2 1.7± 0.2 0.9± 0.3 0.5± 0.2 5.8± 0.2

Wasserstein EFP 0.02± 0.01 0.09± 0.05 0.10± 0.02 0.016± 0.007 0.19± 0.08 0.03± 0.01 0.03± 0.02 0.06± 0.02

FGD1 EFP ⇥103 0.01± 0.02 21.5± 0.3 26.8± 0.3 2.31± 0.07 23.4± 0.3 3.59± 0.09 2.29± 0.05 28.9± 0.2

MMD EFP ⇥103 �0.006± 0.005 0.17± 0.06 0.9± 0.1 0.03± 0.02 0.35± 0.09 0.08± 0.05 0.01± 0.02 1.8± 0.1

Precision EFP 0.9± 0.1 0.94± 0.04 0.978± 0.005 0.88± 0.08 0.7± 0.1 0.94± 0.06 0.7± 0.1 0.79± 0.09

Recall EFP 0.9± 0.1 0.88± 0.07 0.97± 0.01 0.92± 0.06 0.83± 0.05 0.92± 0.07 0.8± 0.1 0.8± 0.1

Wasserstein PN 1.65± 0.06 1.7± 0.1 2.4± 0.4 1.71± 0.08 4.5± 0.1 1.79± 0.05 4.0± 0.4 7.6± 0.2

FGD1 PN ⇥103 0.8± 0.7 40± 2 193± 9 5.0± 0.9 1250± 10 20± 1 1230± 10 3640± 10

MMD PN ⇥103 �2± 2 4± 8 80± 10 �1± 4 500± 100 3± 2 560± 60 1100± 40

Precision PN 0.68± 0.07 0.64± 0.04 0.71± 0.06 0.73± 0.03 0.09± 0.04 0.75± 0.08 0.08± 0.04 0.39± 0.08

Recall PN 0.70± 0.05 0.61± 0.04 0.61± 0.08 0.73± 0.06 0.014± 0.009 0.7± 0.1 0.01± 0.01 0.57± 0.09

Classifier LLF AUC 0.50 0.52 0.54 0.50 0.97 0.81 0.93 0.99

Classifier HLF AUC 0.50 0.53 0.55 0.50 0.84 0.64 0.74 0.92

distortions.
In conclusion, we find from these experiments that

FGD1 is in fact the most sensitive metric to all dis-
tortions tested. Additionally, applying it on hand-
engineered physical features — Fréchet physics distance
(FPD) in short — is not only practically beneficial, in
terms of ease of standardisation and interpretability, but

also results in similar, if not better, performance to using
ParticleNet activations. Despite the Gaussian assump-
tion, it is clear that access to the first order moments
of the distribution is su�cient for it to have high power
against the relevant alternative distributions we expect
from generative models. Hence, we propose FPD as a
novel e�cient, interpretable, and highly sensitive met-

•  on EFPs does quite well 
in these tests


• Would be interesting to see it 
used and stress tested !

FGD∞
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FIG. 1. Schematic of the black-box guided search in Sec. II B. In each iteration of this strategy, the relative decision ordering of
signal/background pairs between the fixed black-box network (BBN, black triangle) and a trainable network of HL observables
(HLN, white triangle) is used to identify the subset (red box) in which pairs are di↵erently ordered. From a large space of HL
observables (circles), the one with the largest ADO in the misordered space (blue circle) is selected for the next iteration. The
schematic above corresponds to the n = 4 iteration. Note that the BBN is not retrained in each iteration, but the network of
HL observables is.

These steps are repeated until ADO[BBN,HLNn+1] gets
as close to 1 as desired.

Isolating the di↵erently-classified pairs in Eq. (8) is
similar in spirit to the boosting step of BDTs [69, 70].
This approach focuses attention only on the subspace
of pairs where the BBN disagrees with the current set
of HL observables, allowing us to identify new HL ob-
servables that make signal-background ordering decisions
most similar to the BBN in that subspace. It is worth
emphasizing that the ADO, or some other metric for net-
work decision similarity, is essential for this approach to
work.

Later in Sec. VC, we will compare this black-box
guided approach to a label guided approach. Instead
of using the ADO, the label guided approach uses the
AUC with respect to ground truth information. It is
straightforward to understand why the ADO is superior
to the AUC for guiding purposes. To the extent that the
BBN is well trained, it represents a good approximation
to the Neyman–Pearson optimal classifier. Achieving the
correct DO relative to the optimal classifier for every sig-
nal/background training pair is the best one could ever
hope to do. Therefore, if the black-box guiding strategy
is working correctly, then the subsets Xn will get smaller
and smaller until almost all signal/background pairs have
been correctly ordered relative to the BBN.

By contrast, the AUC captures DO relative to truth
labels. Unless the BBN is able to achieve AUC = 1, there
will inevitably be signal/background pairs that are incor-

rectly ordered even by the theoretically optimal classifier.
Instead of getting smaller and smaller, the subsets Xn

will stall at the set of signal/background pairs that can
never be ordered correctly. This in turn means that the
classification performance of HLNn will stall well below
the theoretical maximum in the label guided approach.
That is why we advocate for the selection of HL observ-
ables to be guided by the ADO, since then the classifi-
cation performance of the HLNn will eventually match
that of the BBN, as desired.
As with any “greedy algorithm”, our black-box guided

strategy cannot identify situations where two HL observ-
ables could be combined simultaneously to match the
BBN decision surfaces. This means that we might miss
sets of observables that are individually poor classifiers
but perform well jointly. If the goal were to just to max-
imize performance, this would be an undesirable feature.
In the context of mapping a black-box ML strategy to
a physically-interpretable space, though, we are indeed
looking for individual observables with high information
content relevant for classification, so this greedy strategy
is the one most likely to yield physical insight.

III. A CASE STUDY IN JET SUBSTRUCTURE

We now apply the technique introduced in Sec. II to
a specific case study involving jet classification at the
LHC. In this section, we review boosted W boson clas-

10

Rank EFP  � Chrom # ADO[EFP,CNN]X6 AUC[EFP] ADO[6HL + EFP,CNN]Xall AUC[6HL + EFP]

1 2 1
2 3 0.6207 0.8031 0.9714 0.9528± 0.0003

2 2 1
2 3 0.6205 0.8203 0.9714 0.9524

3 0 – 1 0.6205 0.6737 0.9715 0.9525

4 2 1
2 3 0.6199 0.8301 0.9715 0.9527

5 2 1
2 3 0.6197 0.8290 0.9714 0.9527

6 2 1
2 3 0.6196 0.8251 0.9715 0.9522

7 0 1
2 2 0.6187 0.7511 0.9715 0.9526

8 2 1
2 3 0.6184 0.8257 0.9712 0.9527

9 2 1
2 3 0.6182 0.8090 0.9714 0.9527

10 2 1
2 3 0.6180 0.8314 0.9714 0.9526

60 0 1 2 0.6163 0.7194 0.9715 0.9525

341 �1 1
2 4 0.6142 0.6286 0.9714 0.9509

589 0 2 2 0.6109 0.7579 0.9714 0.9523

3106 �1 – 1 0.5891 0.5882 0.9714 0.9510

3519 1
2

1
2 2 0.5664 0.7698 0.9715 0.9524

3521 1
2 – 1 0.5663 0.7093 0.9714 0.9522

5531 1 2 1 0.5290 0.7454 0.9714 0.9507

5554 1 1
2 2 0.5279 0.8210 0.9713 0.9505

5610 2 – 1 0.5245 0.7117 0.9714 0.9507

5657 1 1 3 0.5224 0.8257 0.9712 0.9506

5793 1 1 2 0.5191 0.8640 0.9714 0.9505

6052 1 2 3 0.5153 0.8500 0.9716 0.9504

7438 1 2 2 0.5011 0.8835 0.9716 0.9506

TABLE II. A selection of EFPs, sorted by their similarity with the CNN, evaluated using ADO in the di↵erently-ordered
subspace X6. This corresponds to one step in the black-box guiding technique depicted in Fig. 1. After the top 10, EFPs are
shown if they correspond to a dot graph, appear in the C2/D2 observables from Eqs. (16) and (17), or have the highest ADO
among graphs with a given value of , �, or chromatic number.

particle directions, making it an e↵ective probe for devi-
ations from (c � 1)-prong substructure. The  = 2 and
c = 3 EFPs found by our guided strategy therefore probe
IRC-unsafe deviations from 2-prong substructure (as one
might expect for boosted W tagging), with a particular
emphasis on the higher energy particles inside the jet.

By contrast, the only  = 2 observable that has re-
ceived any significant attention in the jet substructure

literature is pD
T

[65, 66]. In the EFP language, pD
T

is a
c = 1 graph with no edges:

(=2) =
NX

a=1

z2a. (24)

Here, we see that pD
T

is only ranked 5610th by ADO.
Apparently, generic IRC-unsafe information is not, by it-

Faucett et al.

Energy flow polynomials:

A complete basis to describe jet substructure


arXiv:1712.07124: Komiske et al

https://arxiv.org/pdf/2010.11998.pdf
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FIG. 5. Performance of the black-box guided search strategy
to map the CNN solution into human-interpretable observ-
ables. Here, we start from just the basic jet features pT and
Mjet and iteratively add one EFP at a time. The performance
is shown in terms of AUC (top) and ADO (bottom) as a func-
tion of the scan number. The performance of a brute-force
scan of the EFP space (Sec. VB) and a truth-label guided
search (Sec. VC) are also shown. For reference, the per-
formance of the CNN and of the existing 6HL features are
indicated by horizontal lines.

W boson mass peak, and either pT or Mjet would su�ce
for this purpose.

We begin from both pT and Mjet for two reasons. The
first is that they are ubiquitous jet observables appearing
in myriad collider studies. The second is to streamline
the selection of EFPs. Naively, Mjet could be derived
from pT using the EFP in Eq. (15) with  = 1 and � = 2:

(=1,�=2) ⇡
M2

jet

p2
T

. (26)

With the choice of ✓a variable in Eq. (15), though,
Eq. (26) is only approximately true, so multiple EFPs
are needed to map out the mass information if pT is the
only dimensionful scale. We checked that the black-box
strategy is still e↵ective starting from just pT or from just
Mjet, but the chosen EFPs tend to be more mass-like in
their structure. By contrast, starting from both pT and
Mjet yields more variation in the types of EFPs selected.

We start by training an NN on just the pT and Mjet

FIG. 6. The same as Fig. 5, but now plotted in terms of the
cumulative computing time.

information:

HLN0 ⌘ NN
⇥
pT,Mjet

⇤
. (27)

This yields an AUC of 0.9119, which is substantially be-
low the CNN performance for boosted W boson tagging.
We then restrict our attention to the subset of events that
are di↵erently ordered by these minimal features relative
to the CNN:

X0 =
n
(x, x0)

���DO
⇥
CNN,HLN0

⇤
(x, x0) = 0

o
. (28)

The ADO between the CNN and HLN0 is 0.9150, so X0

contains 8.5% of the original Xall sample, though we only
consider a random subset of 5⇥107 pairs in X0 to reduce
the computational burden. Our aim is to find a set of
EFPs that can order these signal and background events
the same as the CNN decision boundaries.
To identify the n-th EFP, we use the black-box guided

strategy of Sec. II B, adapted to the current notation:

EFPn = argmax
EFP2S

ADO[CNN,EFP]Xn�1 . (29)

We construct a new joint classifier that includes this
EFP:

HLNn ⌘ NN[pT,Mjet,EFP1, . . . ,EFPn]. (30)

This allows us to identify the remaining di↵erently-
ordered subset of events:

Xn =
n
(x, x0)

���DO[CNN,HLNn](x, x
0) = 0

o
, (31)
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for this purpose.

We begin from both pT and Mjet for two reasons. The
first is that they are ubiquitous jet observables appearing
in myriad collider studies. The second is to streamline
the selection of EFPs. Naively, Mjet could be derived
from pT using the EFP in Eq. (15) with  = 1 and � = 2:

(=1,�=2) ⇡
M2

jet

p2
T

. (26)

With the choice of ✓a variable in Eq. (15), though,
Eq. (26) is only approximately true, so multiple EFPs
are needed to map out the mass information if pT is the
only dimensionful scale. We checked that the black-box
strategy is still e↵ective starting from just pT or from just
Mjet, but the chosen EFPs tend to be more mass-like in
their structure. By contrast, starting from both pT and
Mjet yields more variation in the types of EFPs selected.

We start by training an NN on just the pT and Mjet

FIG. 6. The same as Fig. 5, but now plotted in terms of the
cumulative computing time.

information:

HLN0 ⌘ NN
⇥
pT,Mjet

⇤
. (27)

This yields an AUC of 0.9119, which is substantially be-
low the CNN performance for boosted W boson tagging.
We then restrict our attention to the subset of events that
are di↵erently ordered by these minimal features relative
to the CNN:

X0 =
n
(x, x0)

���DO
⇥
CNN,HLN0

⇤
(x, x0) = 0

o
. (28)

The ADO between the CNN and HLN0 is 0.9150, so X0

contains 8.5% of the original Xall sample, though we only
consider a random subset of 5⇥107 pairs in X0 to reduce
the computational burden. Our aim is to find a set of
EFPs that can order these signal and background events
the same as the CNN decision boundaries.
To identify the n-th EFP, we use the black-box guided

strategy of Sec. II B, adapted to the current notation:

EFPn = argmax
EFP2S

ADO[CNN,EFP]Xn�1 . (29)

We construct a new joint classifier that includes this
EFP:

HLNn ⌘ NN[pT,Mjet,EFP1, . . . ,EFPn]. (30)

This allows us to identify the remaining di↵erently-
ordered subset of events:

Xn =
n
(x, x0)

���DO[CNN,HLNn](x, x
0) = 0

o
, (31)

Energy flow polynomials:

A complete basis to describe jet substructure


arXiv:1712.07124: Komiske et al

https://arxiv.org/pdf/2010.11998.pdf
https://arxiv.org/abs/1712.07124


58

Conclusion

• Significant progress in uncertainty quantification, propagation, mitigation in recent years

• Expect to see methods adopted in the bigger experiments in coming years


• Research  in UQ often motivated my needs in science


• We talked about:

• Propagating statistical uncertainties

• Experimental systematic uncertainties

• Caution to be taken for theory uncertainties

• Interpretability 

• Coverage tests and performance evaluation of generative models


• If these questions matter to you, come chat with me!



Thank you !

@Aishik_Ghosh_

https://twitter.com/Aishik_Ghosh_
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Real Physics Dataset with Tau Energy Scale (TES) as Z

Parameter of Interest is Higgs signal strength μ, and 
TES is the nuisance parameter Z

8

2. Data Augmentation

The network comprises 10 hidden layers, each with 64
nodes, a ReLU activation, and L2 kernel regularizers for
all but the first hidden layer and a final layer with sig-
moid activation. The network was trained with an Adam

(a) p⌧t (GeV)

(b) �MET
centrality

(c) mlep,MET
t (GeV)

FIG. 7: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for
background processes. a the transverse momentum of
the hadronic ⌧ , b the centrality in � of the missing

transverse energy vector with respect to the hadronic ⌧

and the lepton, c transverse mass of the missing
transverse energy and the lepton.

optimizer [70], BCE loss and a batch size of 4096.
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Test performance for “observed” data at Z below Nominal

Uncertainty-Aware coincides with classifier trained on 
true Z 


⇒ It is optimal!

10

(a) Systematic Down Data (b) Nominal Data (c) Systematic Up Data

FIG. 9: Physics Dataset: Profiled NLL curves for all four classifiers evaluated on a systematic down (zT = 0.8), b
nominal data (zT = 1.0) and c systematic up data (zT = 1.1) where the true value of µ is 1. Narrower curves

indicate more precise measurements having accounted for systematic and statistical uncertainties.

Narrower is better

Up is better

μ = 1, Z= 0.8

(Signal Strength)
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Test performance for “observed” data at nominal and above nominal Z

In every case the Aware Classifier is as good as the optimal one, no other technique 
matches its performance everywhere

10

(a) Systematic Down Data (b) Nominal Data (c) Systematic Up Data

FIG. 9: Physics Dataset: Profiled NLL curves for all four classifiers evaluated on a systematic down (zT = 0.8), b
nominal data (zT = 1.0) and c systematic up data (zT = 1.1) where the true value of µ is 1. Narrower curves

indicate more precise measurements having accounted for systematic and statistical uncertainties.

Aware and Baseline coincide

10

(a) Systematic Down Data (b) Nominal Data (c) Systematic Up Data

FIG. 9: Physics Dataset: Profiled NLL curves for all four classifiers evaluated on a systematic down (zT = 0.8), b
nominal data (zT = 1.0) and c systematic up data (zT = 1.1) where the true value of µ is 1. Narrower curves

indicate more precise measurements having accounted for systematic and statistical uncertainties.

Aware and locally optimal 
coincide

μ = 1, Z= 1 (nominal)
μ = 1, Z= 1.1
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Idea fascinating also to ML researchers !
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• ML researchers assume i.i.d


• This technique exploits correlations between samples – a different paradigm


• Interesting applications outside of physics
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Abstract

A fundamental assumption of most machine learning algorithms is that the training
and test data are drawn from the same underlying distribution. However, this as-
sumption is violated in almost all practical applications: machine learning systems
are regularly tested under distribution shift, due to changing temporal correlations,
atypical end users, or other factors. In this work, we consider the problem setting
of domain generalization, where the training data are structured into domains and
there may be multiple test time shifts, corresponding to new domains or domain
distributions. Most prior methods aim to learn a single robust model or invariant
feature space that performs well on all domains. In contrast, we aim to learn models
that adapt at test time to domain shift using unlabeled test points. Our primary
contribution is to introduce the framework of adaptive risk minimization (ARM),
in which models are directly optimized for effective adaptation to shift by learning
to adapt on the training domains. Compared to prior methods for robustness, in-
variance, and adaptation, ARM methods provide performance gains of 1-4% test
accuracy on a number of image classification problems exhibiting domain shift.

1 Introduction

The standard assumption in empirical risk minimization (ERM) is that the data distribution at test
time will match the training distribution. When this assumption does not hold, i.e., when there is
distribution shift, the performance of standard ERM methods can deteriorate significantly [54, 38].

Figure 1: An example of ambiguous data
points in handwriting classification, eval-
uated quantitatively in Section 5.

As an example which we study quantitatively in Section 5,
consider a handwriting classification model that, after
training on data from past users, is deployed to new end
users. Each new user represents a new test distribution that
differs from the training distribution. Thus, each test set-
ting involves dealing with shift. In Figure 1, we visualize
a batch of 50 examples from a test user, and we highlight
an ambiguous example which may be either a “2” (written
with a loop) or an “a” (in the double-storey style) depend-
ing on the user’s handwriting. Due to the biases in the
training data, an ERM trained model incorrectly classifies
this example as “2”. However, we can see that the batch of
images from this test user contains other examples of “2”
(written without loops) and “a” (also double-storey) from
this user. Can we somehow leverage this unlabeled data
to better handle test shifts caused by new users?

⇤equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.
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Idea fascinating also to ML researchers !

For my handwriting this is ‘2’, for yours it might be ‘a’

ARM: Adapt to the individual + classify
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• ML researchers assume i.i.d
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• Interesting applications outside of physics

arXiv:2007.02931

Adaptive Risk Minimization:
Learning to Adapt to Domain Shift

Marvin Zhang⇤1, Henrik Marklund⇤2, Nikita Dhawan⇤1,
Abhishek Gupta1, Sergey Levine1, Chelsea Finn2

1 UC Berkeley, 2 Stanford University

Abstract

A fundamental assumption of most machine learning algorithms is that the training
and test data are drawn from the same underlying distribution. However, this as-
sumption is violated in almost all practical applications: machine learning systems
are regularly tested under distribution shift, due to changing temporal correlations,
atypical end users, or other factors. In this work, we consider the problem setting
of domain generalization, where the training data are structured into domains and
there may be multiple test time shifts, corresponding to new domains or domain
distributions. Most prior methods aim to learn a single robust model or invariant
feature space that performs well on all domains. In contrast, we aim to learn models
that adapt at test time to domain shift using unlabeled test points. Our primary
contribution is to introduce the framework of adaptive risk minimization (ARM),
in which models are directly optimized for effective adaptation to shift by learning
to adapt on the training domains. Compared to prior methods for robustness, in-
variance, and adaptation, ARM methods provide performance gains of 1-4% test
accuracy on a number of image classification problems exhibiting domain shift.

1 Introduction

The standard assumption in empirical risk minimization (ERM) is that the data distribution at test
time will match the training distribution. When this assumption does not hold, i.e., when there is
distribution shift, the performance of standard ERM methods can deteriorate significantly [54, 38].

Figure 1: An example of ambiguous data
points in handwriting classification, eval-
uated quantitatively in Section 5.

As an example which we study quantitatively in Section 5,
consider a handwriting classification model that, after
training on data from past users, is deployed to new end
users. Each new user represents a new test distribution that
differs from the training distribution. Thus, each test set-
ting involves dealing with shift. In Figure 1, we visualize
a batch of 50 examples from a test user, and we highlight
an ambiguous example which may be either a “2” (written
with a loop) or an “a” (in the double-storey style) depend-
ing on the user’s handwriting. Due to the biases in the
training data, an ERM trained model incorrectly classifies
this example as “2”. However, we can see that the batch of
images from this test user contains other examples of “2”
(written without loops) and “a” (also double-storey) from
this user. Can we somehow leverage this unlabeled data
to better handle test shifts caused by new users?

⇤equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

ar
X

iv
:2

00
7.

02
93

1v
4 

 [c
s.L

G
]  

1 
D

ec
 2

02
1

https://arxiv.org/pdf/2007.02931.pdf
https://arxiv.org/pdf/2007.02931.pdf


NPsNPsNPs

64

Learn forward process to access the likelihood

11

p(M,R|�1,�2) = �(h�[M ]�R) p(M |�1,�2),

where h�[M ] ! R is a function that gives the allowed value of R for a value of M , determined by the EOS parameters
�1, �2. The function h�[M ] encodes all of the physics which translates the EOS into stellar mass and radius, and
is not available analytically or tractable numerically. It is possible, however, to train a neural network to learn this
function, as we do below. Assuming h�[M ] is available, we choose to integrate over mass, as each mass is mapped
to a unique R; the same is not true for scanning in R, see Figure 6. The range of the mass integral is limited to the
physical region, from 1.2M� to 1.6� 3.25M�, depending on the radius, see Figure 6.

The delta function reduces the double integral in M �R to a single integral over mass:

p(s|�1,�2) =

Z
dM p(M |�1,�2) p(s|M,R = h�[M ]),

which leads to an expression for the joint probability over the set of stars:

p(S|�1,�2) =
nstarsY

i

Z
dMi p(Mi|�1,�2) p(si|Mi, Ri = h�[Mi]).

The equation for p(s|M,R) now allows for the expression of a joint likelihood over the stars and the bins:

LS(�1,�2) = p(S|�1,�2) =
nstarsY

i

Z
dMi p(M |�1,�2)

Z
d⌫

nbinsY

j

Pois(N�

ij
, µij(Mi, Ri = h�[Mi], ⌫)p(⌫),

where we can replace each of the µij as we did above with f [M,R, ⌫]�t

LS(�1,�2) = p(S|�1,�2) =
nstarsY

i

Z
dMi p(M |�1,�2)

Z
d⌫

nbinsY

j

Pois(N�

ij
, µij = f [Mi, h�[Mi], ⌫]j�t)p(⌫). (3)

This expression can be evaluated, assuming one can learn a function h�[M ] ! R. With the appropriate function,
the determination of the likelihood LS(�1,�2) is shown schematically in Fig 5.
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FIG. 5: Schematic diagram of determining the likelihood of EOS from stellar spectra.

13

FIG. 7: Scans of the likelihood for two example sets of stellar spectra s (left, right) versus EOS parameters �1 and
�2. Top demonstrates the ideal nuisance parameter (NP) conditions where the NPs are fixed to their true values.
For the same specra, center shows a more realistic “tight” scenario in which uncertainty has be integrated out, and

bottom shows a “loose” scenario in which the NPs are not well constrained by priors.

In the case of M ,R-estimation for an individual star, the performance of the ML-Likelihood method matches the
performance of xspec when the nuisance parameters are known. This is an important validation of the technique,
as the simulated samples are generated by xspec and so its internal likelihood estimation represents something
of an upper bound on possible performance. Though xspec can provide point estimates and other analysis, ML-
Likelihood in this case is valuable as a building block for further analysis, as xspec does not provide an e�cient
interface to its internal calculations. For example, in the cases where nuisance parameters weaken the inference,
ML-Likelihood is able to improve on xspec ’s performance by marginalizing over the stellar nuisance parameters.
Given access to the full likelihood, one could also choose to profile over the nuisance parameters. In addition, while
xspec ’s inference is linked to a particular theoretical model, ML-Likelihood can be trained on a variety or mixture
of models, providing a smooth interpolation between otherwise distinct conceptual approaches [49].

The M,R-likelihood estimation is a building block toward the the estimation of EOS parameters for sets of stars.
In this case, as well, the likelihood provides for reliable inference of the EOS parameters. The residuals in this case
again are narrower than the pure regression approach, nearly matching the performance of xspec in the true case,
and exceeding it in the realistic case where nuisance parameter uncertainty is important.

The neural networks developed for this work enable end-to-end, fast simulation of neutron star spectra for a range
of EOS parameters and nuisance parameters, including the intermediate step of generating plausible neutron star
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Forward process step-by-step

Learn EOS to M-R

12

FIG. 6: Relationship between neutron star mass and radius, as determined by equation of state parameters �1,�2.
Each color represents a single choice of EOS parameters, which determine a curve in the mass-radius plane.

Individual calculations as described in the text are shown (X), as compared with the output of a neural network
function h�[M ] (solid line), which estimates the radius corresponding to an input value of M as determined by the

EOS parameters.

A. Learning the Model h�[M ] for Stellar Radius

The approximate likelihood above requires learning a function h�[M ] which estimates the stellar radius for a given
stellar mass as determined by the EOS parameters �1,�2. Note that one could equivalently estimate the mass from
the radius, but this has the additional complication of degenerate outputs for some radii, see Figure 6.

We model h�[M ] with a network that is comprised of 10 hidden layers with 32 nodes and ReLU activations, and a
single node output layer with linear activation, trained with a Mean Squared Error (MSE) loss and an Adam optimizer.
Figure 6 demonstrates how the network h�[Mi] ! R performs for a few example values of the EOS parameters �.

B. Results

The two networks which model the missing functions f and h allow for an approximate evaluation of the likelihood,
Eq. 3 as a function of the EOS parameters. Figure 7 shows examples for two individual sets of simulated stars under
the three nuisance parameter scenarios.

To estimate the EOS parameters from a fixed set of stellar spectra, the likelihood is maximized via a course scan
over EOS parameter space followed by the use of an optimization algorithm for a more refined location of the optimal
EOS parameters. Each evaluation of the likelihood involves nested loops over the stars, an integral over possible
masses, and a loop over the spectral bins. Performance and comparison with benchmarks are shown in Fig 8 and
Table III. We note that the data used in evaluations are generated via xspec , not from the models f and h, allowing
for a test of the fidelity of the models. Experiments in which simulated spectra are generated using the models f and
g show equivalent performance, indicating that bias due to the estimation is negligible in this context.

VIII. DISCUSSION

The results above demonstrate that machine-learning-derived likelihoods are useful statistical tools, allowing for
traditional inference such as parameter estimation for quantities of interest (eg star M and R) as well as profiling
over nuisance parameters (eg stellar distances and temperatures).

Intermediate steps remain interpretable physical quantities
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Learn {M,R,NPs} to Spectrum
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FIG. 2: Comparison of neutron star X-ray spectra predictions (dashed) from our network f [M,R, ⌫] described in the

text, as compared to training data generated by xspec (solid). Each pane shows the expected rate of photons (dN
�
1

dt
)

in Chandra per energy bin, for variations of the parameters of interest (mass M , radius R) as well as for variations
of the nuisance parameters ⌫ (nH , log(Te↵), distance).

VII. EQUATION OF STATE INFERENCE

The ultimate goal is to estimate the EOS parameters (�1,�2) given a set of spectra S = (s1, s2..., snstars). In principle,
this would be straightforward if one could evaluate p(S|�1,�2)p(�1,�2), which would allow for maximization to find
an estimate for �1,�2 for a fixed S.

We begin with the assumption that the EOS parameters have a uniform prior within their physical boundaries of

Intermediate steps remain interpretable physical quantities
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FIG. 3: Scans of the likelihood for two example stellar spectra s (left, right) versus stellar mass and radius. Top
demonstrates the ideal nuisance parameter (NP) conditions where the NPs are fixed to their true values. For the
same specra, center shows a more realistic “tight” scenario in which uncertainty has be integrated out, and bottom

shows a “loose” scenario in which the NPs are not well constrained by priors.

�1 2 [4.75, 5.25],�2 2 �[1.85,�2.05], see Fig 3 of Ref [30]. The remaining step is evaluating p(S|�1,�2).
First we express the probability over the entire set S as the joint probability for each star si:

p(S|�1,�2) =
nstarsY

i

p(si|�1,�2).

The obstacle is that we do not know how to evaluate p(s|�1,�2), only p(s|M,R), which depends on stellar parameters
M and R. Linking these expressions is not trivial, as the EOS parameters �1,�2 do not uniquely determine stellar
parameters M and R, instead they only determine the M -R relation. That is, each point in (�1,�2) space specifies a
curve in M -R space. The solution is to integrate over the M -R curve allowed by the EOS parameters �1,�2. This
is most directly accomplished by expressing the integral over the mass-radius plane, constrained by a delta function
which traces out the M -R curve determined by the EOS parameters �1,�2:
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Uncertainties for active learning
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Scale uncertainty – Problem Setup

be more central (forward) for single top compared with W+jets.

Figure 4. The 12 inputs used to train a classifier to distinguish single top events from W+jets
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Figure 5. The impact of factorization scale variations by a factor of 1/2 and 2, in increments of
0.1 (lighter colors are lower scales).
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Case Study 2: Continuous uncertainty - Result

ROC curve (higher is better)

Figure 6. Top: the performance of the nominal t-channel single top versus W+jets classifier. The
blue band represents the uncertainty estimated by varying the factorization scale by 1

2 and 2 at LO.
Bottom: the same as the top, but for the adversarially trained classifier. Adversarial training only
reduces the di↵erence in performance to factorization scale variations, not the di↵erence to NLO,
indicating that adversarial training provides a reduced estimate of the true uncertainty, which does
not translate to a reduction in the true uncertainty.
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Case Study 1: Two-point uncertainty - Result

Figure 3. The QCD rejection (inverse QCD e�ciency) as a function of the W jet e�ciency for
classifiers applied to Pythia, Herwig, and Sherpa jets. The solid lines correspond to the nominal
classifier trained with Pythia while the dotted lines correspond to the adversarial setup that uses
both Pythia and Herwig. The bottom panel shows the relative absolute di↵erence with respect
to Pythia (nominal or adversarial, as appropriate). Note that the lower panel has a logarithmic
vertical axis. While adversarial training reduces the di↵erence in performance between Pythia and
Herwig, the di↵erence to Sherpa remains large, indicating that the the true uncertainty will be
underestimated if a third independent sample is unavailable.

clustering, implemented using FastJet 3.2.1 [54, 72] and the anti-kt algorithm [55] with

radius parameter R = 0.5. For simplicity, W bosons are forced to decay into muons and

events are required to have at least one isolated and identified muon using the default

reconstruction algorithm in Delphes. Usually, one uses the highest precision method

possible and then scale variations give the uncertainty from the finite truncation of the

perturbative series. In order to compare with the ‘true’ uncertainty, we artificially truncate

the series early and then use the higher-order calculation as the reference uncertainty. In

particular, the nominal simulation is performed at leading order (LO) in the strong coupling

constant and then an additional sample for the t-channel process is simulated at next-to-

leading order (NLO).

For the machine learning, events are represented by 12 numbers: the three-momentum

of the muon, the four-momentum of the leading two jets, and the scalar sum of the trans-

verse momenta of all jets (HT ). Momenta are specified by pT , ⌘, and �. Histograms for

each of the observables for single top t-channel and W+jets are shown in Fig. 4. The jet

pT spectra are harder for single top compared with W jets and the muons (jets) tend to

– 7 –

ROC curve (higher is better)
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Case Study 1: Two-point uncertainty - Result

Figure 3. The QCD rejection (inverse QCD e�ciency) as a function of the W jet e�ciency for
classifiers applied to Pythia, Herwig, and Sherpa jets. The solid lines correspond to the nominal
classifier trained with Pythia while the dotted lines correspond to the adversarial setup that uses
both Pythia and Herwig. The bottom panel shows the relative absolute di↵erence with respect
to Pythia (nominal or adversarial, as appropriate). Note that the lower panel has a logarithmic
vertical axis. While adversarial training reduces the di↵erence in performance between Pythia and
Herwig, the di↵erence to Sherpa remains large, indicating that the the true uncertainty will be
underestimated if a third independent sample is unavailable.
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Overconstraining NP
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From W. Verkerke:

Dealing with over-constraining – introducing more NPs


•  Some systematic uncertainties are not captured well by one 
nuisance parameter. 


•  Written prescription often not clear on number of nuisance 
parameters: 


•  Or does “the JES uncertainty is 5% for all jets” mean 5 NPs?
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Jet pT


i.e. JES miscalibration is not coherent across pT "
but still has 5% uncertainty for each pT bin
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5% 

Dealing with over-constraining – introducing more NPs


•  Some systematic uncertainties are not captured well by one 
nuisance parameter. 


•  Written prescription often not clear on number of nuisance 
parameters: 


•  If you assume one NP – chances are that your physics Likelihood "
                                      will exploit this oversimplified JES model "
                                      to overconstrain JES for high pT jets!
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Jet pT


αJES 

i.e. JES miscalibration is coherent for all jets "
à You can calibrate high pT jets with a low pT jet sample


5% 

Our modelling of NPs might be over-simplified

https://indico.nikhef.nl/event/1399/contributions/1907/attachments/828/998/nikhef_stats2018_lectures_day3.pdf


So.. we can’t use ML to reduce theory uncertainties in our measurements ?



So.. we can’t use ML to reduce theory uncertainties in our measurements ?

Attack the source of the problem !
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Could we learn hadronization directly from Nature ?

PRD.106.096020: Aishik Ghosh, Xiangyang Ju, Benjamin Nachman, and Andrzej Siodmok


Similar effort: arXiv:2203.04983: Ilten et al.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.096020
https://arxiv.org/abs/2203.04983


73

Could we learn hadronization directly from Nature ?

PRD.106.096020: Aishik Ghosh, Xiangyang Ju, Benjamin Nachman, and Andrzej Siodmok


• Bypass theory, learn hadronization directly from data ?


• Proofs of concept on Herwig and Pythia simulations
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Figure 5. Normalized, di↵erential cross-sections of Thurst (top left), Thrust major (top right),
Thrust minor (lower left), and Sphericity (lower right) for Herwig, Herwig with HADML, and for
data from DELPHI at LEP. Error bars on the predictions represent statistical uncertainties.

M↵� =
X

p↵i p
�
i , (3.2)

where ↵,� are the spatial momentum indices, and the sum runs over the same particles as

in Eq. 3.1. Sphericity is defined as 3
2(�2+�3) for eigenvalues �i of the 3⇥ 3 matrix defined

in Eq. 3.2 and �3  �2  �1. Hadronization shifts event shapes (see e.g., Ref. [106]) and so

these observables are sensitive to hadronization modeling. Figure 5 shows that HADML

agrees with Herwig within 10% across most of the spectra, which itself agrees with data at

a similar level. Individual particle spectra are shown in Fig. 6 for the transverse momenta

along the Thurst major and minor directions. The level of agreement is similar to the event

shapes where there is su�cient statistical power.
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Similar effort: arXiv:2203.04983: Ilten et al.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.096020
https://arxiv.org/abs/2203.04983
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• To train on data, we need unfolded events <-—> data from 
experiments after removing detector effects


• Need unbinned unfolding of all observables simultaneously

Similar effort: arXiv:2203.04983: Ilten et al.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.096020
https://arxiv.org/abs/2203.04983


What about scale variation uncertainties ?
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Let’s try to understand scale variation uncertainties

It’s dangerous to use ML methods to mitigate theory uncertainties


But we continue to treat   and  on same footing in 
statistical fits


What even is their statistical behaviour?

Δtheory Δexp

NP infrastructure

Time to re-examine 
some of the  

underlying pieces 

Are they up to the 
task of the precision era? 

Approximation 
made by a grad 
student in 2003

From Daniel Whiteson



Questions

• How accurate are these scale uncertainties ?


• Is 1/2 to 2 a good range ?

tscale =
σNLO − σLO

ΔσLO scale

Study pull distribution



Questions

• How accurate are these scale uncertainties ?


• Is 1/2 to 2 a good range ?

Madgraph paper

(Not a random sampling)

+127 more pp processes from 1405.0301!

Alwall et al.


tscale =
σNLO − σLO

ΔσLO scale

Study pull distribution

https://link.springer.com/article/10.1007/JHEP07(2014)079


Plot the pulls 

tscale =
σNLO − σLO

ΔσLO scale



Plot the pulls 

What does it look like?
Which of these distributions do you expect?

tscale =
σNLO − σLO

ΔσLO scale



Pull distribution
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Figure 1: Performance of the uncertainty estimation in LO cross section calculations.
Shown is the scale-based pull tscale, defined in Eq.(12). Pulls greater than 25 are
shown at 25. Blue entries with |tscale|< 4 are included in the Gaussian fit (red).

example, the pull is almost always greater than zero, which aligns with our expectation that
cross-section estimates tend to grow as additional partonic channels are included beyond LO.
There also appears to be a core distribution which is locally approximately normally distributed
with unit variance, indicating that for many processes, the central scale and the scale variation
are accurate indicators for the NLO result.

In addition, there is a very long positive tail, indicating many processes, where the uncer-
tainty is dramatically underestimated. The complete list of processes and the associated pulls
are given in Tables 2-4. Many of the processes with underestimated uncertainties are those
with many particles and without QCD vertices. Indeed, unlike pure QCD processes, QCD cor-
rections to electroweak processes do not appear to be covered by the scale-based uncertainty
estimate. Numerically, the leading scale dependence in QCD processes is the renormaliza-
tion scale, and this scale dependence is absent in electroweak processes at LO, and is small
at NLO. For instance, di-lepton production at the LHC is a purely electroweak process and
only has a small factorization scale dependence at leading order, which does not cover the
NLO corrections. This problem extends beyond Drell-Yan [43], to di-boson [44], and tri-boson
production [45].

In addition to, generally predicting uncertainty estimates which are too small, electroweak
processes encounter large higher-order corrections for identifiable reasons [46, 47], e.g. due
to flavor symmetries and constrained topologies in Feynman diagrams. An example is the
process qq̄ ! Z bb̄, where the leading topology is qq̄ ! Z g⇤ ! Z bb̄, and a t-channel contri-
bution favoring large mbb only appears when an additional jet is added to the final state. This
challenges the scale variation scheme and leads to large QCD corrections [48]. Enhanced un-
certainties also appear in kinematic tails of electroweak processes, for example as electroweak
Sudakov logarithms and at times as large threshold corrections. Generally, for any observ-
able strongly sensitive to more than one relevant scale, large logarithms of their ratio tend to
enhance perturbative corrections, challenging the standard estimation of their uncertainties.

All these considerations depend on the details of the process and the phase space region
under consideration. While there is sufficient understanding to understand and post-dict pro-

7

Overflow bin

arXiv:2210.15167: Aishik Ghosh, Benjamin Nachman, Tilman Plehn, Lily Shire, Tim M.P. Tait, and Daniel Whiteson

https://arxiv.org/abs/2210.15167
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What processes populate the tail ?The tail



QCD processes follow (an expected) pattern
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cesses for which there are large deviations at NLO not covered by varying the scale of the LO
prediction, it is clear that the treatment of the uncertainty in Eq.(2) with the implementation
of Eq.(7) must be generalized to cover such processes. For this purpose we will define a set of
reference processes, specifically those processes populating the core of Fig. 1.

4 Reference-process method

To define a conservative way of estimating theory uncertainties and the corresponding nui-
sance parameters, we look at some of the processes which form the controlled core in Fig. 1.
The processes where a scale variation by a factor two provides a quantitatively correct esti-
mate of the size of the NLO-corrections are shown in Tab. 1, and include the QCD processes:
top pair production, bottom pair production, di-jet production, and those same processes with
up to two additional jets. We observe that the K-factors for massive and massless quarks are
very similar, despite the fact that the central scale choices and the total or fiducial rates vary
extensively. In addition, the relative uncertainty per final state particle only has a small vari-
ation across these processes, suggesting that the the scale uncertainty indeed simply reflects
the implicit renormalization scale dependence through the corresponding power of ↵s. It also
suggests that one could estimate the uncertainty for a new arbitrary process with n particles
in the final state from the approximately universal values of the re-scaled relative uncertainty
(��/�0)/n.

It suggests that a reasonable treatment for electroweak processes could be to use the set
of QCD processes in Tab. 1 as a reference class by generalizing the QCD-driven uncertainty
estimate from Eq.(6). In practice, one replaces their process-specific LO scale uncertainty with

��ref

�0
= n⇥
⌧
��

n�0

∑

QCD
. (13)

Of course, there will always be certain processes for which our simple generalization does not
describe the underlying physics and therefore will not apply. For example, pp ! H + n jets
production, as discussed above, is a case where the NLO corrections are enhanced by a combi-
nation of the fact that the LO process is loop-induced and has (2! 1)-kinematics, and where

Process
��

�0
n

��

n �0

p p > j j +2.49⇥ 10�1 �1.88⇥ 10�1 2 +1.24⇥ 10�1 �9.40⇥ 10�2

p p > b b +2.52⇥ 10�1 �1.89⇥ 10�1 2 +1.26⇥ 10�1 �9.45⇥ 10�2

p p > t t +2.90⇥ 10�1 �2.11⇥ 10�1 2 +1.45⇥ 10�1 �1.06⇥ 10�1

p p > j j j +4.38⇥ 10�1 �2.84⇥ 10�1 3 +1.46⇥ 10�1 �9.47⇥ 10�2

p p > b b j +4.41⇥ 10�1 �2.85⇥ 10�1 3 +1.47⇥ 10�1 �9.50⇥ 10�2

p p > t t j +4.51⇥ 10�1 �2.90⇥ 10�1 3 +1.50⇥ 10�1 �9.67⇥ 10�2

p p > b b j j +6.18⇥ 10�1 �3.56⇥ 10�1 4 +1.54⇥ 10�1 �8.90⇥ 10�2

p p > b b b b +6.17⇥ 10�1 �3.56⇥ 10�1 4 +1.54⇥ 10�1 �8.90⇥ 10�2

p p > t t j j +6.14⇥ 10�1 �3.56⇥ 10�1 4 +1.53⇥ 10�1 �8.90⇥ 10�2

p p > t t t t +6.38⇥ 10�1 �3.65⇥ 10�1 4 +1.60⇥ 10�1 �9.12⇥ 10�2

p p > t t b b +6.21⇥ 10�1 �3.57⇥ 10�1 4 +1.55⇥ 10�1 �8.93⇥ 10�2

average +1.47⇥ 10�1 �9.34⇥ 10�2

Table 1: Scale dependence for LHC processes with only QCD particles in the final
state. For each process, we report the relative scale uncertainty, the number of final
state particles, and the per-particle relative scale uncertainty.
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Figure 2: Performance of the uncertainty estimation in LO cross section calculations.
Shown is the new pull tref, defined in Eq.(15). Pulls greater than 2.5 are shown at
2.5. Blue entries with |tref|< 1.2 are included in the Gaussian fit.

improved behavior in the tail of underestimated uncertainties which would not be expected
from a naive inflation of the scale variation uncertainties (see Appendix A for a comparison).
This improvement reflects a few aspects of perturbative cross-section predictions:

1. the central peak of the curve indicates that there exist universal patterns in this set of
cross-sections, as observed in Tab. 1;

2. the shifted core of the pull distribution reflects, for instance, additional partonic channels;
3. the seemingly stochastic drop away from the peak indicates that for instance the central

factorization and renormalization scales are indeed described as random choices of the
unphysical parameters;

4. the sizable tails indicate the existence of physics effects which are not accounted for by our
assumption of a homogeneous reference sample.

At this stage one might be tempted to turn the argument around and speculate what can
be learned from the pull distributions about the expected size of NLO predictions. The first
problem in applying Fig. 2 to completely new processes is that they might have a physics
reason for large higher-order corrections. Even if that is not the case, our method is based on
a sample of independent inclusive processes. Even if we assume a stochastic pattern, it does
not provide predictions for individual new processes. The only way we could justify such a
prediction would be through the same equivalence class, i.e. a physics argument based on the
known properties of a given process.

While we do not advocate to use the pull distribution as a theory nuisance parameter, an
estimation of theory uncertainties based on the scale variation of reference processes shows a
very significant improvement over the current scheme for the processes that we have consid-
ered. The implementation of a range of predictions in terms of nuisance parameters is fairly
straightforward for a profile likelihood, but would need to be better understood for Bayesian
marginalization. Moreover, our reference process method should be further tested with regard
to higher orders in perturbation theory and for differential cross-sections. A similar study at
higher orders in perturbation theory may inform us about methods to find more such patterns.
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Figure 2: Performance of the uncertainty estimation in LO cross section calculations.
Shown is the new pull tref, defined in Eq.(15). Pulls greater than 2.5 are shown at
2.5. Blue entries with |tref|< 1.2 are included in the Gaussian fit.
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Figure 3: Comparison of the original and modified relative uncertainty via distribu-
tion of log t, both for the scale-based and the reference-process definition.
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A Comparison to simple correction of uncertainties

The reference-process method of estimating uncertainties improves over the original scale-
variation method in a significant way that cannot be matched by simple corrections of the
original uncertainties. To demonstrate this, in Fig. 4 we compare the method to a simple infla-
tion of all uncertainties by a fixed constant (while several values for the constant were studied,
it is set to 3.78 in the figure, which is the mean of the ratio between the reference-process un-
certainties and the original uncertainties), and a transformation of the original uncertainties
such that their mean is zero and standard deviation is one. The former fails to mitigate the
tails as well as our method, and the latter distorts the core of the distribution.
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Decorrelation to remove background sculpting

on the jet pT, which shows some small pT-dependent
e↵ects, but no large features. As an alternative
strategy, we trained a network using an adversar-
ial strategy with respect to log(m/pT), which more
closely mimics the approach used in Ref. [9]; the
training succeeded in finding a network with a flat
response in log(m/pT), but the distortion in jet mass
was much more significant. In principle, it is possi-
ble to use the adversary to enforce a two-dimensional
decorrelation, but since the pT-dependence is not se-
vere here, we leave this for future study.
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FIG. 4. Signal e�ciency and background rejection
(1/e�ciency) for varying thresholds on the outputs of
several jet-tagging discriminants: traditional networks
trained to optimize classification, networks trained with
an adversarial strategy to optimize classification while
minimizing impact on jet mass, the unmodified ⌧21, and
the two DDT-modified variables ⌧ 0

21, and ⌧ 00
21. The signal

samples have mZ0 = 100 GeV for this example. Gener-
alization to other masses is shown in Sec. VII.

V. STATISTICAL INTERPRETATION

The ability to discriminate jets due the hadronic
decay of a boosted object from those due to a quark
or gluon is an important feature of a jet substruc-
ture tagging tool, but as discussed above it is not the
only requirement. Due to the necessity of accurately
modeling the background, it is desirable that the jet
tagger avoid distortion of the background distribu-
tion. Simpler background shapes are especially pre-
ferred because they allow for robust estimates that
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FIG. 5. Top left, relationship between jet mass and neu-
ral network output in background events for a network
trained to optimize classification compared to an adver-
sarial network trained to optimize classification while
minimizing dependence on jet mass. Top right, rela-
tionship between jet mass and jet substructure variable
⌧21 and the DDT-modified ⌧ 0

21 and ⌧ 00
21 which attempt

to minimize dependence on jet mass. Bottom left, pro-
file of neural network output versus jet mass for the ad-
versarial trained network with varying jet pT thresholds.
Bottom right, contour plot of neural network output ver-
sus jet mass in background events for the adversarially-
trained network. The signal sample used in training has
mZ0 = 100 GeV; generalization to other masses is shown
in Sec. VII.

are constrained by the sidebands; backgrounds that
can be modeled with fewer parameters and inflec-
tions avoid degeneracy with signal features, such as
a peak.

Fig. 5 shows qualitatively that the adversarial net-
work’s response is not strongly dependent on jet
mass. But a quantitative assessment is more dif-
ficult. Mass-independence is not in itself the goal;
instead, we seek reduced dependence on knowledge
of the background shape and reduced sensitivity to
the systematic uncertainties that tend to dilute the
statistical significance of a discovery.

However, our lack of knowledge of the true back-
ground model in general also makes it non-trivial to
rigorously define and estimate the background un-
certainty. In practice, experimentalists use an as-
sumed functional form, with parameters constrained
by background-dominated sidebands to predict the

5

1703.03507

cay. Jets are trimmed by reclustering into kT sub-
jets, with Rtrim = 0.2, and dropping subjets with
less than 3% of the original jet pT.

As the angular separation of the quarks may be
quite small in the case of a high-pT Z 0, we recon-
struct a single large-radius jet with distance param-
eter R = 1.0. To reflect the thresholds imposed by
the ATLAS trigger, we require p�T > 150 GeV and

pjetT > 150 GeV. In the case of multiple large-R jets,
the one with greatest pT is selected.

For the large-radius jets, we calculate various jet
substructure variables such as the N -subjettiness ra-
tio ⌧21 [7, 25], and the Energy Correlation Func-
tions [8, 26]. Recent studies have shown that deep
neural networks applied to lower-level calorimeter
information can match the performance of several
of these higher-level variables in combination [11],
but these higher-level variables capture most of the
discriminative information and are theoretically well
understood.

Distributions of the various kinematic quantities
for jets selected in signal and background processes
are shown in Fig. 2. The neural networks described
below use eleven variables:

• Jet pseudo-rapidity, azimuthal angle, trans-
verse momentum, and invariant mass;

• Jet energy correlation variables, C2 andD2 [8];

• Jet N-subjettiness (⌧21) [7]; and

• Photon energy, pseudo-rapidity, azimuthal an-
gle, transverse momentum.

For comparison with Ref. [9], we additionally ap-
ply the DDT procedure to produce a modified vari-
able, ⌧ 021, which has reduced correlation with jet
mass. However, no simple linear relationship was
seen between the profile of ⌧21 and the jet mass, and
a linear correction does not remove the dependence;
this may be due to the application of jet trimming,
which di↵ers from the treatment in Ref. [9]. To pro-
vide a fair comparison, we extend the DDT-style ap-
proach to use a second-order correction, producing
a variable ⌧ 0021, which demonstrates reasonable inde-
penence from the jet mass (Fig. 5).

III. NEURAL NETWORKS

The strategy outlined in Ref. [16] describes how
to train a classifier which is uncorrelated with a nui-
sance parameter. Here, we apply this strategy to
the closely-related problem of decorrelating the clas-
sifier with respect to the jet invariant mass, as the
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FIG. 2. Distributions of jet variables in simulated Z0+�
signal events, with mZ0 = 100 GeV, as well as �+jet
background events. From top left to bottom right are
shown the jet pseudorapidity, transverse momentum, en-
ergy correlation variables C2 and D2 [8], jet invariant
mass, and N-subjettiness(⌧21) [7]. There are five addi-
tional input variables described in the text (not shown).

nuisance parameter is not well defined; further dis-
cussion of this issue is found below in Sec. V. In
Sec. VII, we extend this strategy to a problem re-
quiring a parameterized solution.

Two neural networks — a jet classifier and an ad-
versary — constitute two distinct segments of the
feedforward architecture shown in Fig. 3. The loss
of the tagger is defined as

Ltagger = Lclassification � �Ladversary,

where � is a positive constant, and Lclassification and
Ladversary are the standard classification-error loss
functions for each segment. The two neural net-
works are trained concurrently; the tagger’s objec-
tive is to minimize Ltagger, while adversary mini-
mizes only Ladversary. The hyperparameter � repre-
sents a tradeo↵ between the two objective terms; we
found that a value of � = 100 was a good tradeo↵
for our task, but in general this hyperparameter can
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FIG. 6. Jet mass distributions for background events
with successively stricter requirements on di↵erent sub-
structure discrimination strategies, giving signal e�cien-
cies of "sig = 50, 60, 70, 80, 90, 100%. Shown are the im-
pact of threshold requirements on a neural network out-
put trained to optimize classification, an adversarial net-
work which attempts to minimize depenence on jet mass,
⌧21 and ⌧ 00

21.

background in the signal region. These assumptions
may be validated by examining control regions in
which the signal is not present, and the background
processes are expected to exhibit physically similar
properties. For example, the tagger selection may be
inverted to yield a sample with high background pu-
rity which may be used as a template. If the tagger
selection induces a distortion of the spectrum, these
techniques are ine↵ective. Moreover, when tagger-
induced distortion depletes data from the sidebands
(as is typically the case), any background model be-
comes more di�cult to constrain. To demonstrate
these e↵ects on the overall statistical performance
of a search, we construct a simplified statistical test
which has the desired behavior of penalizing discrim-
inators which yield excessive distortion of the back-
ground shape.

A threshold is placed on the discriminator out-
put, after which a likelihood fit is performed, binned
in the distribution of reconstructed large-radius jet
masses using signal and background templates from
simulated samples1. An uncertainty on the rate of

1 In principle, the most powerful approach is a likelihood

the background is included in order to model our
lack of knowledge of the background. We calculate
expected discovery significance using a profile like-
lihood ratio [30] with the CLs technique [31, 32],
marginalizing over the unknown background rate.

Though the background shape is fixed via the tem-
plate, the uncertainty on the rate provides the sta-
tistical behavior we seek. Specifically, if the uncer-
tainty in the rate of the background is large enough,
then the discovery significance is sensitive also to
the shape of the background distribution as follows.
In the case that the background is fairly flat, there
are background-dominated sidebands which can con-
strain the rate uncertainty. In the opposite case
that the background is distorted to mimic the sig-
nal, these sideband constraints have reduced power,
and the signal and background are more di�cult to
distinguish statistically. Hence, the presence of rate
uncertainties penalizes a solution which distorts the
background spectrum as desired. Although this sim-
ple approach likely underestimates the true impact
of more realistic systematics, it is su�cient to illus-
trate the e↵ect on sensitivity. In the following, we
take for the small (large)-uncertainty case a relative
uncertainty of 5% (50%) on the overall background
rate.

Examples of the final jet mass distribution are
shown in Figs. 7 and 8 for thresholds on the dis-
criminants which result in signal e�ciency of 90%
and 50% respectively.

VI. RESULTS

The discovery significance is measured for varying
thresholds on the discriminator outputs. While all
of the discriminators exhibit some degree of classi-
fication power, this study explores the question of
whether they provide additional discovery signifi-
cance.

Figure 9 shows the discovery significance as a
function of the signal e�ciency of the discrimina-
tor threshold, for two choices of background uncer-
tainty. In the case of the small uncertainty (5% rel-
ative), applying a tighter threshold on the discrim-
inator improves the discovery significance, despite
lowering the signal e�ciency, due to the heightened
background suppression. Even at fairly low signal ef-
ficiencies of 50%, where the background is sculpted

directly on the output of the discriminator, but this requires
a valid model of the background, which is lacking in this
case.

6

Signal peak at 100 GeV
Traditional NN learns to select 100 GeV events

Event selection sculpts background distribution

https://arxiv.org/pdf/1703.03507.pdf
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FIG. 6. Higgs boson cross section: the nominal detector-level spectra m�� (left) and pT�� (right) with ✏� = 1 reweighted by the
trained w1 conditioned at ✏� = 1.2 and compared to the spectra with ✏� = 1.2.

(GPU) and reproducing the entire notebook takes about
3 hours. The physics data sets are hosted on Zenodo at
Ref. [43].
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Appendix A: Binned maximum likelihood unfolding
with Gaussian examples

In this appendix, we present results of the standard
binned maximum likelihood unfolding (BMLU) with

Gaussian examples. The scenarios are:

• One-dimension in both particle and detector level:
this is the same example as described in Sec. III A.
The prior constraint for ✏ is set to 80%. The re-
sult is shown in Fig. 8 with ✏ fitted to 1.08± 0.02,
which also indicates a degeneracy problem between
particle and detector levels.

• One-dimension in particle level and two-dimension
in detector level: this is the same example as de-
scribed in Sec. III B. The prior constraint for ✏ is
set to 80%. The result is shown in Fig. 9 with ✏
fitted to 1.19 ± 0.003. The degeneracy problem is
resolved after considering an additional spectrum
in the detector level.
All the maximum likelihood fittings are performed
using pyhf [44, 45].
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Inference-aware methods

CHAPTER 4. MACHINE LEARNING

Figure 4.2 – Pseudo-code to illustrate the concept of shadow programs to compute exact gradients
on-the-fly. Automatic di�erentiation packages internally build such a map based on di�erentiation rules

for core mathematical functions.

functions, and knowing the di�erential for this smaller set is su�cient to compute the gradient
of the entire expression with the help of the chain rule, without the need to ever evaluate or
store the full derivative of the expression. An example shadow program is shown in Figure 4.2.

4.3.3 What sets DNNs apart from other ML models

Neural Networks (NN) o�er far more flexibility in terms of architecture compared to other ML
algorithms. They can be trained with multiple objectives, pre-trained on alternative datasets,
and di�erent constrains can be applied to di�erent parts of the architecture. An apparent para-
dox of deeper learning is that over-parameterised networks and very deep networks (networks
with many hidden layers) can often leads to better performance. They also interpolate well
to untrained points in the input space. The reason why over-parameterised networks do not
over-fit, appears to be related to the self-regularised nature of deep neural networks, although
it is still an active research question .

Neural networks could be viewed as an emergent phenomena which requires far more sophisti-
cated tools for interpretability compared to polynomial fits. Nevertheless, introducing inductive
biases in the architecture often lead to better performance, and therefore domain knowledge
remains key to improving performance.

Beyond classification, neural networks can be considered function approximators, or tools for
di�erentiable programming, which opens the door to new approaches to solving experimental
physics problems [63–66].

4.4 Terminology

Listed below are certain useful machine learning terminology, many of which have been used in
this thesis.

50

Auto-differentiation builds shadow functions
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Tricks to make everything easily differentiable

Simpson et al.

Figure 2. Illustration of the bias/smoothness tradeo↵ when tuning the bandwidth of a bKDE,
defined over 200 samples from a bi-modal Gaussian mixture. All distributions are normalised
to unit area. The individual kernels that make up the KDE are scaled down for visibility.

2.1. Binned density estimation (histograms)
Histograms are discontinuous by nature. They are defined for 1-D data as a set of two quantities:
intervals (or bins) over the domain of that data, and counts of the number of data points
that fall into each bin. For small changes in the underlying data distribution, bin counts
will either remain static, or jump in integer intervals as data migrate between bins, both of
which result in ill-defined gradients. We address this inherent non-di↵erentiability through
implementing a di↵erentiable surrogate: a histogram based on a kernel density estimate (KDE),
which produces a non-parametric density p(t) estimate based on samples ti and a kernel function
K(t, ti) = K(t � ti), with the full density given as p(t) = 1/n

P
iK(t, ti). Normally, a popular

kernel function choice is the standard normal distribution, which comes with a parameter called
the bandwidth that a↵ects the smoothness of the resulting density estimate.

Coming back to gradients: in our case, the data ti we construct the density estimate over
are themselves functions of the summary statistic parameters, i.e. ti = f(xi '). The resulting
density estimate p(t|') will then be di↵erentiable as long as the kernel K is di↵erentiable with
respect to ti, and by extension with respect to '. To extend this di↵erentiability in a binned
fashion, we can accumulate the probability mass of the KDE within the bin edges of the original
histogram – equivalent to evaluations of the Gaussian cumulative density function – to convert
p(t|') to a binned KDE (bKDE), i.e. a set of discrete per-bin probabilities pi(').

In the limit of vanishing bandwidth, the bKDE recovers the standard histogram, but gradients
become susceptible to high variance. Increasing the bandwidth can alleviate this, but at the
cost of introducing a bias. There is then a trade-o↵ between decreasing the bandwidth enough
to minimise this bias, and increasing it enough to guarantee gradient stability2. We can see a
demonstration of this behaviour in Figure 2, where the bandwidth is tuned relative to the bin
width.

2.2. Likelihood modelling
A popular framework to build statistical models for binned observations based on “template”
histogram data is HistFactory [5], used widely used across HEP. Thankfully, the resulting log-
likelihood function ph(x) is di↵erentiable with respect to both the observed data x and histogram
data h from which the model is constructed. However, these gradients only recently became
readily accessible in software, owing to the development of pyhf [6, 7]: a Python package for
building these likelihoods that leverages automatic di↵erentiation.

2 How low is low enough when tuning? This relationship between bias and gradient stability is heavily impacted
by the number of data points, and also by the width of the intervals, with more exploration of this planned.

• Histogram -> Kernel Density Estimation

• Straight-through gradients

• NN surrogates

• Implicit differentiation to avoid unnecessary 
gradient propagation


• …

https://arxiv.org/abs/2203.05570
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Figure 1: Block diagram for the optimization of a generic detector. Data from a
simulator (left, cans labeled “Particle-level truth” and “Detector response”) are used
to train and validate a di↵erentiable model (“Di↵erentiable simulator surrogate”) of
the relevant physical processes. Models of pattern recognition, inference extraction,
cost of components, and a loss function may then become a function of detector
geometry and construction layout parameters. A back-propagation loop of loss
derivatives through the functional elements of the system allows their optimization.
The figure is adapted from Ref. [2].

increasing with our technological advancements. Nowadays we can 3D print scintil-
lation detectors [3], as well as design more complex detection elements with thin
layers of AC-coupled resistive silicon sensors [4]. These advancements can best be
exploited if we endow ourselves with the capability of performing continuous scans
of the geometry space of the devices we wish to construct: this is something we
achieve by developing di↵erentiable programming pipelines.

Another reason for revisiting our detector design paradigms while accounting for
the availability and development of new computer science tools is the evolution
of the pattern recognition and inference procedures we have been adopting in the
extraction of information from raw detector readouts. The demands posed to
our instruments are continuously increasing, as we move, e.g., toward the high-
luminosity (HL) phase of the Large Hadron Collider (LHC) [5], or toward larger and
larger detection volumes in cosmic ray and neutrino physics. At the HL-LHC, in a
few years we will be reconstructing high-energy particle collisions within O(200)
pileup interactions taking place during the same bunch crossing; the performance
of standard reconstruction algorithms for charged tracks will be strongly reduced
in the presence of an exponential increase of the combinatorial background. If deep
learning methods will be employed for those pattern recognition tasks (such as those
described in Refs. [6–26]), the question arises of whether the detectors have been
conceived to be optimal for those tools. Such a potential misalignment between
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catholique de Louvain, Belgium

4Chair for Scientific Computing, Technische Universität Kaiserslautern, Germany
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