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Research Themes in Time-Domain Astrophysics

(Explosive) Rarities & Extreme Objects

Origin & Nature of gamma-ray bursts & supernovae 1104.2274

Intelligent Data Collection/Action Agents

Pl of Peters Automated Infrared Imaging Telescope
Co-Pl of RATIR, Exec Committee LS4

Time-Domain Informatics

Novel Discovery & Inference Frameworks

JOSHUA S. BLOOM

What Are
Gamma-Ray Bursts?

http://voeventnet.caltech.edu/about/
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http://voeventnet.caltech.edu/about/

Black Hole Energetics, Tests of General Relativity

EHT, Akiyama+21

Gravitational Wave Background, Massive Binary Black Holes Exoplanet Atmospheres
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Machine Learning:
A Brief Primer



Forms of Practical/Practiced Machine Learning Tasks

> classification - event discovery, sorting
> regression - weather forecasting, model based inference,

time-series prediction Al/ML Definetion

> Imputation - data cleaning, inference of missing information “Field of study that give
) . : - computers the ability to
recommend?tlon - rar?klrlg, product recommendation, learn without being
Netflix prize explicitly programmed.”

> clustering - event segmentation, structure discovery Arthur Samuel. 1959

> outlier detection - anomaly identification, process control B ————e e
>~ dimensionality reduction - visualization, manual insight

> iInformation retrieval - search, indexing, document retreival

> generative - text-to-image, code creation

> navigation & planning - interacting systems (e.g., self-driving cars, robotics)



Machine Learning Approaches

e | abeled data
 Direct feedback
 Predict outcome/future

Supervised

Unsupervised Reinforcement
* No labels e Decision process
* No feedback  Reward system
* “Find hidden structure” e |earn series of actions

S. Raschka (2015)



https://www.slideshare.net/SebastianRaschka/nextgen-talk-022015/8-Learning_Labeled_data_Direct_feedback

Machine Learning Approaches

Supervised Unsupervised
_
L
_
. =
g B
_
_
I
Labelled (outcome) data No labels
Direct/quantifiable metrics No explicit feedback

on learning efficacy (score)

Also, self-supervised, semi-supervised



Regression (Supervised)

Goal: predict a continuous outcome y variable from a vector of

observable input features X. Use training set of (X, y) pairs to
learn this mapping: f(x) =y

Theory-driven vs. data-driven approach...

Some non-neural algorithms that are still very useful and performant:

- Linear Regression: f, (X) = wy+ wiX; + ... + WX,
- Lasso & Ridge
- Gaussian Process Regression

- k-Nearest Neighbor Regression
- Regression Forests



Classification (Supervised)

Goal: predict a discrete class y, (n classes) from a vector of

observable input features X. Use training set of (X, y,) pairs to
learn this mapping: f(x) =y,

Some of the non-neural algorithms that are still useful:

- Logistic Regression

- KNN Classification

- LDA / QDA

- Naive Bayes

- Random Forest & boosted trees



Classification (Supervised)
kKNearestNeighbors (KNN)

s---"

For each test point, X find the k-nearest
Instances in the training data
Classify the point according to the majority vote of their
class labels



Classification (Supervised)
kNearestNeighbors (KkNN)

Kis a
hyperparameter
: - : that must be

A o learned/tuned

All ML models have
their own set of
hyperparameters

Dataset




Classification

Decision Trees

Classify as %
green class ®
Classifyas  Classify as Classification and regression trees (CART)

blue class red class

http://www.robots.ox.ac.uk/~az/lectures/ml/lect5.pdf



http://www.robots.ox.ac.uk/~az/lectures/ml/lect5.pdf

Classification Building Trees Rigorously (Node Splitting Criteria)

. data before split class distribution
Decision Trees y P \
S 0.8
(V)
v 0.6
O
T 0.4
0
0.2
SY \s° °
top bottom
1 1
o 0.8 0.8
= 0.6 0.6
Information gain _ Q
- |32‘H - A 0.4 0.4
- ()_.Z S (5°) 0.2 0.2
ic{1.2}
0 0
Shannon’s entropy left right
H(S)=—-) p(c)log(p(c)) 1 1
ceC ~ 0.8 0.8
. = 0.6 0.6
Node training %
0" = arg max I 0.4 0.4
BeT 0.2 0.2
0 ()

A. Criminisi, J. Shotton and E. Konukoglu (2012). Decision Forests: A Unified Framework
for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning- pp 97.



Classification

Decision Trees

> Half tables taken?

Yes

/

No

AN

Random Forests
ensembles generally increase robustness

Food look good?|

> 3 stars on Yelp
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Classification Random Forests

Decision Trees ensembles generally increase robustness
Vv V
| l
Tree t=1 t=3

i 'M\
m A0 i :ﬁr i

The ensemble model i 1

Forest output probability p(c|v) = %;m(clv) < P ll

>
C



Classification Random Forests

Decision Trees ensembles generally increase robustness

= Tree ensembles (RF, xgboost, lightGBM, ...) are natural and
usually SOTA approaches for tabular data

- Splits are performed in the natural units of each feature
(as opposed to ad hoc normalization & weighting)

- Feature importance and (“out of bag”) error estimatation are
natural

- (Frequentist) probabilities are natural



relevant elements
[ ]

CIaSSification Mapplng P(CIaSS) tO Other false negatives true negatives

Decision Trees evaluation metrics
0.08 true positives false positives
— 0.07}
o
=
L 0.06f
g
© 0.05
o
2 0.04}
e
(O
S 0.03
=z retrieved elements
g 0.02
m .
- 0.01f Prr = 0.8 \- toms are relevants toms are retrieved?
0.00 - -
10~ 10™
False Positive Rate [FPR] Precision = Recall =
wikipedia.org/wiki/F-score



Anomaly Detection
|Isolation Forests

10 lines are needed
to isolate this data point
(not anomalous)

O o

Only 4 lines are needed

to isolate this data point
(highly anomalous)



Neural Networks

Dendrites
N
Nucleus
Y
AXon F(z) = max(0, z)
Activation
function
[
el body (non-linearity)
>@@ -
Neuron-inspired math (1958) “1 layer” perceptron

WSDM2016 (J. Dean)



Neural Networks

Feed-Forward Neural Network

Inputs enter Input has
the input layer weights
assigned to it

Outputsare
x1 ° predid’ed Predicted
Inputs \ \ output
Outputs ® Error - difference
. W between predicted

>
@ ) output and actual
' Actual output
Output

InputLayer Hidden Layer Output Layer

https://www.analyticsvidhya.com/blog/2023/01/gradient-descent-vs-backpropagation-whats-the-difference/



Neural Networks

Backpropagation

Error is sent back to
each neuron in backward

Gradient of error is direction

calculated with respect to
each weight

x1 >
’ Outputs Error - difference
‘ W — »  Error — befween predicted
‘ Predicted output and actual
°' output output

>

InputLayer Hidden Layer Output Layer

https://www.analyticsvidhya.com/blog/2023/01/gradient-descent-vs-backpropagation-whats-the-difference/



A mostly complete chart of

Neural Networks

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

DAY
B Noisy Input Cell

Backfed Input Cell
Q pu Deep Feed Forward (DFF)

'\

Perceptron (P) Feed Forward (FF)  Radial Basis Network (RBF) AT X
9.9 9
() n«."‘

- - o AN
‘ Hidden Cell : o - /_‘ ’[‘“\'v,
- . QA
© Probablistic Hidden Cell . u »
@ spiking Hidden Cell

‘ Output Cell | . . :
‘ Match Input Output Cell : '1‘5;'#%'1 - " KR

(P (PN
"""\ T

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)

B
a7

' Recurrent Cell

M
© wmemory cel Auto Encoder (AE)  Variational AE (VAE) Denoising AE (DAE)
‘ Different Memory Cell

Kernel O
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Basic Training & Hyperparameter Optimization

» Vary hyperparameters to obtain best valdiation score. Use best model and
report its quality on test set



Basic Training & Hyperparameter Optimization

R User inputs lterations Training scores Leaderboard
o ] Rank Model  Score
== Data P A' Features + Algorithm + Parameters W) 50%

1 95%
—_ - 2 -
 — Target metric —» Features + Algorithm + Parameters W) 76% —» 2 76%

W ——

3 PN 53%

: 3
L Cpnstramts > /‘L\ Features + Algornthm + Parameters W 53%
(time/cost)

1 4
/%) Features + Algorithm + Parameters W 95%

M n .
é«:& Features + Algonthm + Parameters W) 43%

Optimization strategies: grid search, random, Bayes (hyperopt, automi)
Model training management: Weights & Biases, Tensorboard, ...



Basic Training & Hyperparameter Optimization
Scoring metrics are domain-specific...be thoughtful about this

10000
' _ 8000} \
Scalar proxies:
6000} !
- RMSE 8 i
- RMSLE S 4000]
5 4000 %
2 N
O g 4 \
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2000F
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Example Use Cases



Why do ML? Too Many Transients Tax (Follow-Up) Resources

Palomar Transient Factory Zwicky Transient Factory Large Synoptic Survey Telescope
(PTF) (ZTF) (LSST)
2009-2016 2017-2024 2024-2034
Image data rate 1 GB/90s 3 GB/45 s 6 GB/5 s
Transient
4x104 3x10>° 2x106

Alerts per night

“cheap” discovery

N
1y 4
) 118 ¥

/
)
N
d

Hubble Space Telescope (HST) James Webb Space Telescope (JWST) Thirty-Meter Telescope (TMT)
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Harvard College Observatory c. 1890



Example Classification Task: Discovery for Astro Survey Images

1000 to 1 needle In the
haystack problem

“bogus’ fr_amework t_o discover
variable/transient sources
.... e peOpIe

e fast (compared to people)

e parallelizable

e transparent

e deterministic

e versionable

“real,, ....

Image “subtractions”



Real and Bogus
objects in our *
training set of 78k

detections, 42- |

dimensional image =

and context
features on each
candidate

Some classifiers work better than others

ROC Curve

4 A
0.020 ,
Log. regression
Linear SVM

0.015 SVM RFB ]
a Random Forest
©
()]
>
0010k = =\ = & & SN e e e e e N\ C m e e e e e e e e e
o
o
o
o

0.005

0.000 ' | | | | —

0.1 0.2 0.3 0.4 0.5
Missed detection rate
\- Y,
Brink+2012

arXiv.org > astro-ph > arXiv:1209.3775




Better Models...

0045 T T T T T T
- RB2 all features
0.040 - RB2 optimal features -
-—= RB1 features, RB2 training set
0.035r X RBL1 features, old training set |
o 0.030} -
©
2 0.025} -
¢ 0.020} -
©
“ 0.015} Performance Improvement .
0.010} L -
O'OO(?.OS 0.110 0.115 0.120 0.125 0.130 0.135 0.40

Missed detection rate

Brink+2012



Better Models...

0045 I T T T | |
- RB2 all features
0.040 - RB2 optimal features -
-—= RB1 features, RB2 training set
0.035f >Q< RB1 features, old training set |7
0.0! 4 : .
2 More data beats clever algorithms but
2 o.0; better data beats more data.” :
o - Peter Norvig
- 0.0 y
©
“ 0.015} Performance Improvement .
0.010F
0.005f
0-0% 05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Missed detection rate

Brink+2012



- ©Peter Nugent

Supernova Discovery in the Pinwheel Galaxy (M101
11 hr after explosion
nhearest SN la in >3 decades

ML-assisted “real-bogus” discovery

Nugent, ..., JSB+12, Nature, 1110.6201



https://arxiv.org/abs/1110.6201

R/R, (M=1.4M)

Lf 10° 10° 10™ 10 107 10" 107
X-ray limit : 0.5 M, 1.4 M,
— R, (early time) limit ° ® -

107 HST limits . 3.0 M :

X
V
-
-
e
© 108 i
q) s ikl )
Q . m
g =
-
Ia_J 10° ~
s, 1 V471 Tau L0
) T ooirius B (WD) O
= : LN
T i r
+0 SDSS1210 -
Bloom+12
10° S '

10° 10° 10° 10 10" 110%™
Average Density [gm cm™3]

arXiv.org > astro-ph > arXiv:1111.0966

see also Nugent+12, Nature



ConYolutional Neural Networks for Transient Candidate
Vetting in Large-Scale Surveys

Discovery (& classification) on
Imag es IS NOW Aa Cottage IN ustry Fabian Gicsck(z,l*z* Steven Blocmcr}13;4 Cas van den Bogaard,! Tom ‘Hoskcs,]

[achine Learning Classification of SDSS Transient Survey Images

y 1.2.3 1 4'5
12+, N. Sivanandam?f, Bruce A. Bassett"*} and M. Smith

Atransient search using combined humanan 5 du Buisson™

machine classifications
Darryl E. Wright &=, Chris J. Lintott, Stenhen 1 Cma=t

1di - .
Machine Learning Based Real Bogus System ifference Imaging
ject Detecting Pipeline

nG?, Shiang-Yu WANG®,

D. E. Wright & S, J. Smartt, K. W. Smith, P. Miller, R. Kotak, A. Rest, W. S. Burgett
K. C. Chambers, H. Flewelling, K. W. Hodapp ... Show more |

for HSC-SSP Moving Ob

Hsing-Wen LIN', Ying-Tung CHENZ, Jen-Hung WA

Machine-learning Selection of Optical Transient

DEEP-HITS: ROTATION INVARIANT CONVOLUTIONAL NEURAL NETWORK FOR TRANSIENT in Subaru/Hyper Suprime-Cam Survey
DETECTION
Mikio MoRil', Shiro IKEDA', Nozomu TOMINAGA®®, Masaomi TANAKA®*~,

GUILLERMO CABRERA-VIVES'Z"", IgNACIO REYESY!®, FRANCISCO FORSTER™', PABLO A. Estévez®' AND JUAN-CARLOS
MAUREIRA®
EMAIL: GCABRERAGIDIM.UCHILE.CL

Adapted from D. Goldstein
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50k variables, 26 classes, 810 with known labels (timeseries, colors)

Richards+11, 12
Also, Amstrong+16 (10k K2 stars)



Self-Supervised (Autoencoder) Recurrent NN

IR sampled light curves using an

information bottleneck (B)

A recurrent neural network for

. a a a [ ] [ ]
classification of unevenly sampled variable — —
YT - — TR R
stars E ( TR REEE Y A L ) — D@ ~ BT Em R T
A T R Ry g o IR A S R
Brett Naul , Joshua S. Bloom, Fernando Pérez & StéfanvanderWalt — R
[ ] [ ]
— —
[ ] [ ]
Nature Astronomy (2017) Received: 30 May 2017
doi:10.1038/s41550-017-0321-z Accepted: 24 October 2017 B
Download Citation Published online: 27 November 2017

2. Use B as features and learn a
traditional classifier (e.g., random
forest)

» self-supervised feature learning — leverage
large corpus of unlabelled light curves

S. van der Walt F Peréz

DOI 10.5281/zenodo.1045560 SOTA permutation invariant version: Zhang & Bloom (ICLR20, arxiv:2011.01243)



Self-Supervised (Autoencoder) Recurrent NN
Extensions/Active Research

» Co-training across multiple surveys & multiple bandpasses
« Semi-supervised topology + metadata (“Kitchen Sink”)

Source
Metadata

I

I Classification Su perVised

Source ——>p
Time series

Loss ~ Lts + A Lclass

Time series Self-supervised

Reconstruction

Bottleneck

Jamal & JSB 2020, arxiv:2003.08618



Probabilistic Classification Of Variable Stars
- Inform the use of precious followup resources

12 new
mass-radii

50.0/

4 ]
20.0

10.0
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~‘~.$ O O
~.~

5.0 \O ]

©

&

2.0 e
1.0/ g :
_ e .

~~~

Radius (R)

0.5

0.2} N
50.0 20.0 10.0 5.0 2.0 1.0 0.5 0.2

I . Mass (M )
MN\ . The Highly-Eccentric Detached Eclipsing Binaries in
W\ Galactic ACVS and MACC
iy DYPer Stars

| Local Distance Ladder: Spectroscopic Metallicity

DISCOVERY OF BRIGHT GALACTIC R CORONAE BOREALIS AND DY PERSEI VARIABLES: - -
RARE GEMS MINED FROM ACVS measurements for RRL, Cepheids, Mira...



12) 32 32 64 32 32 1
Lo _ \
. %,. : -
0 ate >l ————— >l R
32 64 64 128 64 64
deepCR™*:
§|*I->I —> I+I->I Network
% - Architecture
- . - = =Jp» conv 3 x 3+ RelLU ¢ T
=P conv i1 64 128 128
=» transpose conv 3 x 3 <
BEY 5 = maxpool 2 x 2 3"’.". *d CR- K &
K. Zhaﬂg = copy and concatenate © =P mas

deepCR-inpaint

JOSS 10.21105/joss.01651 § astro-ph 1907.09500 UNet: Ronneberger et al. 2015

Zhang & Bloom, NeurlPS 1907.09500




12) 32 32 64 32 32 1
s >l —— PP+l
32 64 64 128 64 64
deepCR™*:
§|*I->I —> I+I->I Network
% - Architecture
T - = =Jp» conv 3 x 3+ RelLU ¢ T
=P convix1 64 128 128
=» transpose conv 3 x 3 <
BEY 5 = maxpool 2 x 2 3"’.". *d CR- K &
K. Zhaﬂg =3 copy and concatenate © °eP mas

deepCR-inpaint

JOSS 10.21105/joss.01651 § astro-ph 1907.09500 UNet: Ronneberger et al. 2015

Zhang & Bloom, NeurlPS 1907.09500




Denoising Autoencoders for Imaging Pipelines




Denoising Autoencoders for Imaging Pipelines
deepCR-mask: better”, faster

sparse-exgal dense-gal
100 P J 100 E
90 A 90 A
>
O 80 A 80 A
)
©
—
T
> 704 =T 70 -
+ -
0 =
@) /'/‘
o 601 / 60 e
S5 /'/ deepCR-2-32 + deepCR-2-32 +
+ 50 - i LACosmic + 50 - P LACosmic +
I —— deepCR-2-32 /,-/' —— deepCR-2-32
i' —-—- LACosmic /./' —-—- LACosmic
40 : I I I I 40 < I | I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
false positive rate [%] false positive rate [%]
sparse-exgal dense-gal
Model TPR (0.02%) TPR (0.1%) TPR (0.02%) TPR (0.1%) Time (CPU) Time (GPU)
deepCR-2-4 | 82.8% (97.9%) 92.3% (98.4%) | 58.1% (88.5%)  74.7% (91.8%) | 1.4s 0.3s
deepCR-2-32 | 83.0% (94.7%) 92.4% (96.7%) | 68.3% (88.1%) 81.3% (89.9%) | 7.7s 0.2s
LACosmic 50.4% (84.4%)  60.9% (89.7%) | 24.3% (42.0%) 38.9% (64.5%) | 13.2s -

* at least on Hubble Space Telescope ACS/WFC



Denoising Autoencoders for Imaging Pipelines

Convolution Filters Learned in 1st layer

; H | B
deepCR-mask - 1 l F
B B L
[ N
L B
- | |
B C
L
LACosmic n mamsnnss  Gurrent State of the Art Approach



“although neural networks only work well for an

PhySiCS exponentially tiny fraction of all possible inputs,

the laws of physics are such that the data sets we
Informed care about for machine learning are also drawn
ML from an exponentially tiny fraction of all

1maginable data sets...”

“Why does deep and cheap learning work so well?”
Lin, Tegmark, Rolnick arXiv:1608.08225 (2017)



Impart/impose/imbue physical constraints into architecture

« Computer vision: e.g., Spatial Transformer Network, GVNN (s03 layer Euler,...)

» High-energy physics: “QCD-Aware Recursive NN for Jet Physics”

* Quantum Chemistry: “Ab-Initio Solution of the Many-Electron
Schrodinger Equation with Deep Neural Networks”

Euclidean Neural Networks
rotation-, translation-, & permutation-
equivariant convolutional neural
networks for 3D point clouds for
emulating ab initio calculations &
generating atomic geometries

Tess Smidt

cf. "Machine learning and the physical sciences” Carleo+ 1903.10563


https://arxiv.org/abs/1506.02025
https://arxiv.org/abs/1607.07405
https://arxiv.org/abs/1909/02487
https://arxiv.org/abs/1702.00748

Impart/impose/imbue physical constraints into architecture

 Computer vision: e.g., Spatial Transformer Network, GVNN (s03 layer Euler,...)

* High-energy physics: “Q

* Quantum Chemistry: “A
Schrodinger Equation

Challenge: Find data embeddings &
network architectures that conform
to known taxonomies, conservation

laws, & symmetries al Networks
ation-, & permutation-

olutional neural
networks 1or 3D point clouds for
emulating ab initio calculations &
4 generating atomic geometries

Tess Smidt

cf. "Machine learning and the physical sciences” Carleo+ 1903.10563


https://arxiv.org/abs/1506.02025
https://arxiv.org/abs/1607.07405
https://arxiv.org/abs/1909/02487
https://arxiv.org/abs/1702.00748

Wrapping in a Ring: Polar Coordinate Convolution

CYCLIC-PERMUTATION INVARIANT NETWORKS
FOR MODELING PERIODIC TIME SERIES

Keming Zhang * Joshua S. Bloom

Department of Astronomy Department of Astronomy

University of California at Berkeley University of California at Berkeley

Berkeley, CA 94720, USA Berkeley, CA 94720, USA

kemingz@berkeley.edu joshbloom@berkeley.edu ‘ Classification

ICLR2020 Workshop | T outout
ABSTRACT 1 2 3 4 5 6 7 8 Di‘:'aﬁc‘)'n 4

Recurrent neural networks (RNNs) are sub-optimal for modeling periodic time se- / T / T _
ries data which 1s common in the physical sciences, because their acyclic topology Q Q Q Q 5 Hidden Layer

Dilation = 2
permutation invariant networks, where the symmetry of periodicity is explicitly

embedded in the network architecture by performing convolutions in polar coordi- Q Q Hidden Layer

O
@—

forbids explicit modeling of periodicity. In this paper, we present novel cyclic- / T

nates, instead of Cartesian coordinates. We describe two specific implementations : Dilation = 1
here, one named invariant Temporal Inception Networks (1TINs), which is based on Zero / / T / T / T / T

1-D dilated convolutions, and the other the invariant ResNet (iResNet). Applied to ) :

the classification of periodic variable star light curves, a physically relevant exem- Padding Q : @ @ @ @ @ @ @ Input

plar, the iResNets achieve state-of-the-art accuracy. The methodology we introduce
1s applicable to a wide range of science domains where periodic data abounds due . -
to physical symmetries, and is highly scalable on modern GPU devices. Cartesian Coordinate

Temporal Convolutional Network (TCN)

I INTRODUCTION

Strictly periodic data is common in the physical sciences where periodicity occurs both spatially
and temporally. Neural networks (NNs) for which invariances arising from periodicity are explicitly

ronciderad aither 1in the inninit featnirece anr the Ince fiinetinn have heen nrevinncelu annlied ta nartiele

TCN: Bai et al. 2018



Wrapping in a Ring: Polar Coordinate Convolution

CYCLIC-PERMUTATION INVARIANT NETWORKS
FOR MODELING PERIODIC TIME SERIES
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/ Dilation = 4
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Results: Periodic Variable Star Classification

MACHO

OGLE-Il ASAS-SN

130,484 187,571 418,207

Number of
Class

Sequence
Length

128 128 128

Model MACHO OGLE-III ASAS-SN

iResNet 92.8 % 97.8 % 93.7 %
ResNet 02.7 % 07.6 % 93.3 %

1 (—0.07%100s%)  (—0.16% 10 0an)  (—0.44%7 0 0u)
1TIN 92.8 % 97.7 % 93.7 %
TIN 024 % 07.4 % 033 %

1 (=041%M001%)  (—0.30% 0oen)  (—0.37% 0 05%)
1ITCN 02.7 % 97.7 % 03.6 %

TCN* 02.1 % 97.3 % 93.0 %

~1 o (—054% 00 (—0.32% 0 on)  (—0.67% 0 o)
GRU” 02.5 % 97.5 % 93.3 %

—2  (—0.33%100)  (—0.29%10 %)  (—0.36%1 0 11%)

LSTM* 024 % 07.2 % 03.2 %

2

(—0.43% 10 210)

(—0.65% 0 11%)

(—0.52% "0 055)

1Compared to the invariant version of the same network

2Compared to the best performing network

“Has been previously applied to variable star classification



Surrogate Modeling

Numerical Relativity calculations of black

hole merger waveforms

NR

— = NRSur7dg4 =—— SEOBNRV3

1528 full
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| | | | | | | | | &
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X1 X2 ¢1 o> 0, 0,

L ¢ =3.6x1 = [-0.74, —0.20, —0.21] x> = [~0.38, —0.25, 0.65]
L = 1.04 @y = 5.02
| | | |
— 4000 —3000 —2000 —1000 —
t (M)

"Surrogate models for precessing binary black
hole simulations with unequal masse”

Varma+ 1905.09300



bolometric luminosity (10" ergs™')
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Surrogate Modeling

I ! 1

1

w/ Rollin Thomas, Peter Nugent
NERSC gateway

time since explosion (days)

Supernova (Thomas/Nugent); Exoplanets
(Ford+11)

Chen+ 2016 ApJ 836



Likelihood-Free Inference (LFl) / Simulation-based Inference (SBI)

________________________________________________

Turn inference into density
estimation task using
simulated data
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. ! ,,_;;'.5 | > t(aja < 9) > g approximate
augmented data likelihood
ratio (97,
Simulation Machine Learning Inference

Astro example: ”Fast likelihood-free cosmology with
Brehmer+ 1805.00013 neural density estimators and active learning”

See also Cranmer, Brehnmer & Louppe 2020
Alsing+ 1903.00007



https://arxiv.org/abs/1903.00007

Microlensing for Exoplanet Discovery & Characterization

|

| I | |
;////////////////////////

' — Goal: measure masses, separations,
orbits.

llll

—_
lllll

E - &2 Grid search+MCMC is slow
b - (millions of forward model
T T computations) & require experts in the
’ -2 o 2 loop

N

Magnification
0o
®

Animation: B. S. Gaudi



Microlensina for Exoplanet Discovery & Characterization

Goal: measure masses, separations,

4 n
+0 orbits.

103 o

S - , _
Eaafe o) @ Grid search+MCMC is slow

o oF gd ;‘Chf,o A

102 |- Transit (ground) —, _ % .

. } :“-
»
-

it 5N . (millions of forward model
g Y Il computations) & require experts in the

- Oge .
101 ‘ o . ’ '. :Qo’g'@ﬁ%% ..i"‘,- -t:%}‘- f.

Planet mass (Mg)

Mok o ¢ loop
o0 - mﬂl Jmf_j%\ff é ‘

LT Expecting thousands
10-1 L © of events with Roman.

10_2 : Ll A L1l L L1 1 13l 1 L

102 101 100 101 192 Calls for automated & more
Semi-major axis (AU) efficient inference
approaches

Figure from Zhu & Dong 2021



Fast Inference with Neural Density Estimator

------ | | h e R**
h h h
Featurizer: e MAF ,
ResNet + GRU | ! } | !
| MADE / M, |
...... X 6 R7200 : \ :
( £ : @ H :
l : m
l | output:
| posterior

i Z; = exp(_ai) * (zi+l - Pi) é sz(e) = Rg :j

! | )
J L_\ : e
: ma=oxp@ mta ' R 3
e eeoe e e eeeeoee e ememeee s seememeeeeenes : | Y
tlme 9

—~~____5seconds _—

iInput: light-curve

— Amortized inference, 10° faster Zhang et al., AJ 161 262 (2021)
Zhang, JSB, ... NeurlPS MP4PS (2010.04156)
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Automating Inference of Binary Microlensing Events
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a e - Discovery of Magnification
Degeneracies

<] KMT181976
/A KMT190253
0.1 - $3 KMT191339
\/ MOA08310
> MOA08379
<] MOA12505
YV MOA15337
() MOA16319
"~ OGLE110526
0 - ¥r OGLE110950
\/ OGLE120724

Continuous set of
“offset” degenerate light curves with
inner-outer/close-wide as limiting cases

& O oaLEtd0aTs
Be > OGLE150954 ) ; , ]
Zo1{Poamems | BN suggests the existence of a deeper symmetry in
Jonewss | g O i the equations governing two-body lenses than
/\ OGLE180677 el @) & - , “
o gomer - P previously recognized.
~0.2 { V Kojima-t ¢ S P —
,’/ 0.01 - /,
vt ah . .
Hj | | Reanalysis of 23 previous 2-mode
037 | | S solutions shows one source location
-0.3 0.2 0.1 0 0.1 predicts the other
Y
sin(a) SA = % (2)6() — (s — 1/sp) + \/[ZX() — (s — I/SB)]Z + 4>

Zhang, Gaudi Bloom, Nat. Ast. 2022



Advancing astronomy by guiding human intuition with Al...

Letter | Published: 23 May 2022
A ubiquitous unifying degeneracy in two-body
microlensing systems

Keming Zhang &, B. Scott Gaudi & Joshua S. Bloom

[ Tars 7 Frry rsrara T FN- I rT

Nature Astronomy 6, 78

THE ASTROPHYSICAL JOURNAL LETTERS, 936:L22 (8pp), 2022 September 10 https:/ /doi.org/10.3847/2041-8213 /ac8c2b
© 2022. The Author(s). Published by the American Astronomical Society.

A Mathematical Treatment of the Offset Microlensing Degeneracy

Keming Zhang (3kAJ4&)' ©® and B. Scott Gaudi’
Departrnent of Astronomy, University of California, Berkeley, CA 94720-3411, USA; kemingz@berkeley.edu
Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA
Received 2022 May 11, revised 2022 August 19; accepted 2022 August 22; published 2022 September 9

CrossMark

.while Al is unlikely to replace scientists in the foreseeable future, [this work]
demonstrates that it can be harnessed to help us understand deeper

mathematical patterns in the underlying theory.
Mroz, Nat. Ast. News and Views (2022)

See also Davies et al. Nature, 2021
https://joshbloom.org/post/just_the_beginning/




Overcome Resource Constraints

Computation

Less o n 1 . * Accelerate physics-based simulation
[

« Simulation-based inference

D O n ,t d o Hardware

 Data trangport bottlenecks
VIL unless S e e
People

you have to o
» Scaling decision support

» Automated Hypothesis generation

» Guided exploration & discovery




All Models Have Flaws

“Its common to forget the flaws

of the model that you are most

familiar...while the flaws of new
models get exaggerated.”

vacuum

ARREARA

accordion



All Models Have Flaws

“Its common to forget the flaws
of the model that you are most
familiar...while the flaws of new

models get exaggerated.”

assault rifle stethoscope digital clock

paddle vacuum

accordion

Nguyen et al, CVPR 2015

LCeci nest nas une fufie.

task . festom: | o1/NO9 LabelMe PASCAL ImageNet Caltechl0] MSRC
Train on:
SUNO09 28.2 29.5 16.3 14.6 16.9 21.9
LabelMe 14.7 34.0 16.7 22.9 43.6 24.5
S | PASCAL 10.1 25.5 35.2 43.9 44.2 39.4
¥ | ImageNet 11.4 29.6 36.0 57.4 52.3 42.7
. & | Caltech101 75 31.1 19.5 33.1 96.9 42.1
S & | MSRC 9.3 27.0 24.9 32.6 40.3 68.4
* © | Mean others 10.6 28.5 22.7 294 394 34.1

P e

Magritte, ICML, 1929



Optimization Metric

1.0
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<$50k Prize -

Netflix

0.0 0.2 0.4 0.6

best Normalized Entry Metric

benchmark

0.8

Leaderboard data from Kaggle & Netflix

1.0
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©
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©
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0.994+

Percentile With Worse Metric
o
O
O
N

0.990 ' ' ' '
0.95 0.96 0.97 0.98 0.99 1.00

Normalized Entry Metric

many teams get within
~few % of optimum

sO which iIs easier to
put into production?
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On the RIARENR ™ Prize

“We evaluated some of the new methods
offline but the additional accuracy gains
that we measured did not seem to justify the
engineering effort needed to bring them into
a production environment.”

Xavier Amatriain and Justin Basilico (April 2012)

62



Lesson 2: The simplest is usually the
Choose the best
right tool

Results from simple

fOI" the approaches are, at worst,
good benchmarks for you to
problem

beat with more complex
solutions




Optimization INnterpretability
Space

/

Accuracy

Implementabllity
7



Machine Learning Algorithmic Trade-Off

High
19 * on real-world data sets
Lasso
p—_ Linear/Logistic
_-I: Regression
pu— Decision Trees
LD
m : Bagging
"q'; Naive Bayes Decision Forests
- Splines
Q. NNfeahrsst Boosting
- _ eighbors
D Warn\ng 8 Gaussian/
wd . f\C Dirichlet
= unscient i Processes
o opinionated: SVMs
Neural Nets Deep Learning
Low
Low High

Accuracy

65



All ML in production is

a Systems Challenge

Algorithm/Model ~ -S@Ming rate, convexity, error What are we optimizing for?
bounds, scaling, ...

Component

Accuracy, Memory usage, Disk

+ Software/Hardware usage, CPU needs, time to
learn, time to predict

. . - multi-axis optimizations in a given
time to implement, people/

+ Project Staff resource costs, reliability, component
maintainabllity, experimentability ) high|y Coupled optimization

direct value, useability, considerations between components
+ Consumers explainability, actionability, . .
security, privacy - myopic view can be costly further up
the stack

+ Society indirect value, ethics




Lession 3:
Writing papers

IS easy, but ML
In Production
Is Hard

Only real test of the model
IS If its falsifiable on data that
does not yet exist

Since all models are fallible &
people are always on the
recelving end, we need to
iInvest in how model are hot-
swapped, predictions are
consumed & acted upon



The mail you want, not the spam you don’t

Posted: Thursday, July 09, 2015 g+ 23| 2 n

Posted by Sri Harsha Somanchi, Product Manager

The Gmail team is always working hard to make sure that every message you care
about arrives in your inbox, and all the spam you don’t want remains out of sight. In
fact, less than 0.1% of email in the average Gmail inbox is spam, and the amount of
wanted mail landing in the spam folder is even lower, at under 0.05%.

Official Gmail Blog

News, tips and tricks from Google's Gmail
team and friends.




Linus Torvalds
Shared publicly - Jul 17,2015

Dear Google Mail Team,

I've said very nice things about your spam filter in the past, but I'm afraid | am
going to have to take it all back. I'm curigistly going through the spam for the last
week, and have gone through about a third of it.

Something you did recently has been an unmitigated disaster. Of the roughly 1000
spam threads I've gone through so far, right now 228 threads were incorrectly
marked as spam.

That's not the 0.1% false positive rate you tried to make such a big deal about last
week. No. That's over 20% of my spambox being real emails with patches and pull
requests. Almost a quarter!

| don't know how to even describe the level of brokenness in those kinds of spam



SHON IS

Animation for ages 5to 7 ® Documentaries @

=

planet earth

“Yes Netflix,
because my 6 year
old will enjoy the
animated fun of

" ::; ”s. WY
——
p—

Sons of Anarchy”

N |

!

&2 LS

Mr. NOBODY

https://www.reddit.com/r/funny/comments/3e/7gy4/yes_netflix_because _my_6_year_old_will_enjoy_the/




“Weak Contracts”

e.
Abstractions within
components bleed through
to other components

-xample (via Bottou)

1. A smart programmer makes an
inventive use of a trained object
recognizer.

2. The object recognizer receives data that
does not resemble the testing data and
outputs nonsense.

3. The code of the smart programmer does
not work.

Society
Consumers

Project Staff

Haraware

Software

Algorithms




“It may be surprising to the
academic community to know Machine Learning:

that only a Iraction ‘Zf the coae The High-Interest Credit Card of Technical Debt
... Is actually doing ‘machine
learning’. A mature system
mlght end.Up belng-(at mOSt) D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov
5% machine learning code Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young
and (at /east) 95% glue code 7 {dsculley, gholt,dgqg, edavydov}@google.com

{toddphillips, ebner,vchaudhary, mwycung}@google.com
Google, Inc

- Complex models erode abstraction Absiract
bO U nd al‘i eS Machine learning offers a fantastically powerful toolkit for building complex sys-
tems quickly. This paper argues that it 1s dangerous to think of these quick wins
: as coming for free. Using the framework of technical debt, we note that it 1s re-
) Data dependenCIeS cost more than markably casy to incur massive ongoing maintenance costs at the system level
COde dependenCie S we ak contracts when applying machine learning. The goal of this paper 1s highlight several ma-

chine learning specific risk factors and design patterns to be avoided or refactored

: where possible. These include boundary crosion, entanglement, hidden feedback

° SyStem'Ievel Spaghettl loops, undeclared consumers, data dependencies, changes 1in the external world,
and a variety of system-level anti-patterns.

- Changing External World

1 Machine Learning and Complex Systems

see also, Bottou (Facebook) ICML

Real world software engineers are often faced with the challenge of moving quickly to ship new
products or services, which can lead to a dilemma between speed of execution and quality of en-



http://research.google.com/pubs/pub43146.html

Lession 4;
Get the people and roles right



8 OREILLY’

What are machine learning engineers?

A new role focused on creating data products and making data science work in production.

By Ben LoricaMike Loukides June 6, 2017

who are building intelligent products from data

who increasingly develop prototypes using
notebooks

Tools, talent, and org

structure should align with

who are responsible for statistical this reality
analysis and modeling

who carry out ad-hoc analysis and
reporting




Doing ML is a Team Sport

H vs.

deep domain skill’lknowledge/training deep domain or methodological skill’/knowledge/training
deep methodological knowledge/skill strong methodological or domain knowledge/skill




Summary

~ Wide range of ML approaches
Decision Forests are the go-to for tabular data, neural approaches for
most other types of data.
BUT always try simple approaches first -> benchmark

> Clear exemples of scientific acceleration with ML, but do not do ML
unless you HAVE to...

~ ML in production is HARD. Easy to convince yourself of efficacy of ML
solutions with off-the-shelf data...only real testing data is that that has not
been created yet

>~ Work in domain and techically diverse teams. It's more fun.

https://github.com/profjsb/ml_course
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https://twitter.com/hashtag/PhysML19?src=hashtag_click

