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Generative Models in Media
•Learn underlying distribution of data

•Produce realistic new samples

•Recently gained attention for AI art 

generation (Dall-E 2, Imagen, 
Midjourney) 

particle shower in a calorimeter in the style of egon schiele, Dall-E 2
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Classification 
High Dim.  

Data
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Classification 
High Dim.  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Classification
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Classification

Prediction
Model  

f(Ω) Cat/Dog?

High Dim.  
Data
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Generation

Model  
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Generation
Training a generative model

1. Start from random noise

2. Use network to transform noise to data

3. Use loss function that gauges quality of generated data
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Generation
Training a generative model

1. Start from random noise

2. Use network to transform noise to data

3. Use loss function that gauges quality of generated data
    This is where it gets tricky
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Classification Loss Functions
• Easy to understand model outputs

• Predictions for a given data sample

• Accuracy, Area Under Curve, directly measure network 

performance
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Classification Loss Functions
• Easy to understand model outputs

• Predictions for a given data sample

• Accuracy, Area Under Curve, directly measure network 

performance

• Directly compare network output to true prediction

• Wide range of available loss functions

• Mean Squared Error

• Cross-Entropy
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Generative Loss Functions
• How do you measure the model performance?

• How is this expressed mathematically (and differentiable)
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Generative Loss Functions
• How do you measure the model performance?

• How is this expressed mathematically (and differentiable)

http://thesecatsdonotexist.com
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• Image Set:

• Does the new set have the same properties as the data?

Generative Difficulties

Training  
Data:
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• Image Set:

• Does the new set have the same properties as the data?

Generative Difficulties

Training  
Data:

Generated  
Data:
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Training DataAccurate GenerationLow Sample QualityOverfittingMode CollapseComposition Mismodel

Generative Difficulties
Image Set

Ideal generative outcome
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Training DataAccurate GenerationLow Sample QualityOverfittingMode CollapseComposition Mismodel

Generative Difficulties
Image Set

Ideal generative outcome

Low sample quality
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Training DataAccurate GenerationLow Sample QualityOverfittingMode CollapseComposition Mismodel

Generative Difficulties
Image Set

Ideal generative outcome

Low sample quality

Overfitting
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Training DataAccurate GenerationLow Sample QualityOverfittingMode CollapseComposition Mismodel

Generative Difficulties
Image Set

Ideal generative outcome

Low sample quality

Overfitting

Mode collapse



08.13.2024S. Diefenbacher Generative Models 21

Training DataAccurate GenerationLow Sample QualityOverfittingMode CollapseComposition Mismodel

Generative Difficulties
Image Set

Ideal generative outcome

Low sample quality

Overfitting

Mode collapse

Incorrect composition
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Generative Difficulties
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Generative Adversarial Network

Model  
f(Ω)Noise

High Dim.  
DataLatent 

Space
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Generative Adversarial Network
•Generator Network G(z)=x

•Maps noise Z to Data X 

Generator

Discr.

Noise
x x'z

Output

Real

Fake

Real Data
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Generative Adversarial Network
•Generator Network G(z)=x

•Maps noise Z to Data X 

•Discriminator D(G(z)) and D(x)

•Learns difference between 

real and fake 
Generator

Discr.

Noise
x x'z

Output
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Generative Adversarial Network
•Generator Network G(z)=x

•Maps noise Z to Data X 

•Discriminator D(G(z)) and D(x)

•Learns difference between 

real and fake 

•D(G(z)) is differentiable function 

measuring performance

•Use D(G(z)) as loss to update G

Generator

Discr.

Noise
x x'z

Output

Real

Fake

Real Data
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Generative Adversarial Network

•Discriminator of GAN approximates Jensen Shannon Divergence

•Guides Generated distribution to match real distribution

Goodfellow et al.- arXiv:1406.2661
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Generative Adversarial Network
Upsides 

• Intuitive approach

• Easy to introduce 

additional constraints

• Well explored with 

several improvements 
(WGANs, normalisations)

Difficulties

• Difficult to train

• Gen. and disc. needs to 

be balanced

• Can fail to converge

• Prone to mode collapse
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Variational AutoEncoder

Decoderx x'z

OutputReal Data

Encoder

Latent

KLD

MSE
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AutoEncoder

•Encoding function E(x)=z map high dimensional data X to low 
dimensional latent space Z
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AutoEncoder

•Encoding function E(x)=z map high dimensional data X to low 
dimensional latent space Z

•Decoding function D(z)=x map latent space Z back to data X 
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AutoEncoder

•Encoding function E(x)=z map high dimensional data X to low 
dimensional latent space Z

•Decoding function D(z)=x map latent space Z back to data X 

•Compare Input and Output pixel by pixel with mean squared error
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• Sample for Z and pass it to D(Z)        Generate new samples

Variational AutoEncoder

Decoderx x'z

OutputReal Data

Encoder

Latent

KLD

MSE

Decoderx x'z

OutputReal Data

Encoder

Latent

KLD

MSE
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• Sample for Z and pass it to D(Z)        Generate new samples

• Problem: Need regularised later space to sample form


     Variational AutoEncoder

Variational AutoEncoder

Decoderx x'z

OutputReal Data

Encoder

Latent

KLD

MSE

Decoderx x'z

OutputReal Data

Encoder

Latent

KLD

MSE



08.13.2024S. Diefenbacher Generative Models 35

Variational AutoEncoder

Decoderx x'z

OutputReal Data

Encoder

Latent

KLD

MSE

• Latent space: Series of Gaussians, regularised match N(μ=0, σ=1)

• Using Gaussians lets us use Kullback–Leibler divergence 

• Compare Input and Output again using MSE
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Variational AutoEncoder
Upsides 

• Directly evaluates log 

likelihood

• Stable in training

Difficulties

• MSE loss insufficient for 

certain data sets

• Needs to balance KLD 

and MSE loss terms
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Normalizing Flows
• Variational AutoEncoder: map data to normal distribution and 

back using two networks

• Can we do this with a single network instead?

•     Normalising Flow

x z

LatentReal Data
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Normalizing Flows
• Train invertible model          to map data to Normal distribution

• Well understood loss function:

Latent Normal 
distribution

How well does the transformed 
sample match the latent distribution

Jacobean of 
transformation
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Normalizing Flows

x z

LatentReal Data
Training direction

Generative direction
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Normalizing Flows
• Train invertible model          to map data to Normal distribution

• Well understood loss function:

Latent Normal 
distribution

How well does the transformed 
sample match the latent distribution

Jacobean of 
transformation
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Normalizing Flows
• Train invertible model          to map data to Normal distribution

• Well understood loss function:

Latent Normal 
distribution

How well does the transformed 
sample match the latent distribution

Jacobean of 
transformation
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Invertible Neural Networks
• Dense layer: matrix multiplication

• Invertible if square matrix with det > 0

• Difficult in practice, use Coupling layers instead
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Invertible Neural Networks
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Invertible Neural Networks
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Normalizing Flows
Upsides 

• Directly evaluates log 

likelihood

• Stable in training

• High generative quality

• Easy to train and use

Difficulties

• Fixed dimensionality 

through entire flow

• Slow generation times 

for large models/data
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Score-Based Models
• Normalizing Flow: learn map of data to Normal distribution

• Do we need to explicitly learn this?

• Map data to Normal distribution by repeatedly adding noise

•      Diffusion Models
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• Repeatedly add noise to data point 

• Learn to undo noise at every step

• Possible using Stochastic Differential Equation and score function 

Score-Based Models
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• Approximating the score function of the data 

• Equivalent to approximating the score function of a smearing func.

Score func.

Score func.  
of smearing

For gaussian 
smearing

Score-Based Models
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Upsides 

• Superior generation 

quality

• State of the Art for 

generative models

Difficulties

• Conceptually complex

• Difficult to train for non-

standard data-sets


Score-Based Models
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Physics Use Cases
Generative Models can 

• Learn underlying distribution from a given dataset

• Quickly sample from learned distribution


What HEP uses can such models have?

• Fast simulation
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Physics Use Cases
Generative Models can 

• Learn underlying distribution from a given dataset

• Quickly sample from learned distribution


What HEP uses can such models have?

• Fast simulation

• Anomaly detection

• Many more!
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•MC simulation large part of computing

•Speed up:

•Train ML model on small dataset

•Draw majority of samples form ML model


        Amplify original data set

        Significantly faster

Catmore et. al. ATLAS HL-LHC 
Computing Conceptual Design Report, 
CERN-LHCC-2020-015 ; LHCC-G-178 

Butter et al.: Amplifying Statistics using 
Generative Models: NeurIPS ML4PS 
2020, 2008.06545

Generative Simulation

https://cds.cern.ch/record/2729668
https://arxiv.org/abs/2008.06545
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Generative Simulation
Event Generation



08.13.2024S. Diefenbacher Generative Models 54

Event Generation

Butter et al.: How to GAN LHC 
Events: (2019), 1907.03764

•Generation of event 4-momenta, ordered list, O(10) dimensions

•Using GAN model with additional MMD loss for mass peaks

https://arxiv.org/abs/1907.03764
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Event Generation
•Normalizing flow approach improves precision

•Bayesian network enables uncertainty estimation

Butter et al.: Generative Networks for 
Precision Enthusiasts (2021), 2110.13632

https://arxiv.org/abs/2110.13632
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Generative Simulation
Detector SimulationEvent Generation
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Detector Simulation
•Fixed output geometry  

O(100-10,000) 
dimensions

•Common in detector 

simulation, e.g. ATLAS 
FastCaloGAN 

•Already in use for fast 

simulation of calorimeter 
showers

ATLAS Collaboration, AtlFast3: the next 
generation of fast simulation in ATLAS 
(2021), 2109.02551 

https://arxiv.org/abs/2109.02551
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Detector Simulation
•ATLAS FastCaloGAN

•300 total networks for 

particle types and 𝜂 slices


ATLAS Collaboration, AtlFast3: the next 
generation of fast simulation in ATLAS 
(2021), 2109.02551 

https://arxiv.org/abs/2109.02551
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Detector Simulation

ATLAS Collaboration, AtlFast3: the next 
generation of fast simulation in ATLAS 
(2021), 2109.02551 

https://arxiv.org/abs/2109.02551
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High Granularity Calorimeter
Training data:

•Photons / charged Pions

•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle

•Project to grid

•30×30×30 / 25×25×48

Photon shower 

Buhmann et. al. Hadrons, Better, Faster, 
Stronger: (2021) 2112.09709 

Charged pion shower

Buhmann et al.: Getting High: High Fidelity 
Simulation of High Granularity Calorimeters 
with High Speed (2020) 2005.05334 

https://arxiv.org/abs/2112.09709
https://arxiv.org/abs/2005.05334
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Photons Pions

High Granularity Calorimeter
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Anomaly Detection

https://www.tatvic.com/blog/detecting-real-time-anomalies-using-r-google-analytics-360-data/

So far: no new discoveries of 
particles beyond the Standard 
Model

•Maybe not enough data


→ Previous ML methods

•Not looking for the right theory


→ Anomaly detection
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Anomaly Detection
Semi-Supervised AD:

•Find unexpected samples

•Cut out part of data

•Use generative model to 

learn data
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Anomaly Detection
Semi-Supervised AD:

•Find unexpected samples

•Cut out part of data

•Use generative model to 

learn data

•Predict cut out part

Generative  
Model
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Anomaly Detection
Semi-Supervised AD:

•Find unexpected samples

•Cut out part of data

•Use generative model to 

learn data

•Predict cut out part

•Compare prediction and 

cut out

Classifier 
Model
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Anomaly Detection
Classifying Anomalies THrough Outer 
Density Estimation (CATHODE)

• Divide data into Signal Region (SR) 

and Side Bands (SB)

• SR contains suspected signal (is 

scanned over in real search

• Train Normalizing Flow on SB

• Extrapolate into SR

Hallin et. al. Classifying Anomalies 
THrough Outer Density Estimation 
(CATHODE), 2109.00546 

https://arxiv.org/pdf/2109.00546.pdf://cds.cern.ch/record/2729668
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Anomaly Detection

• Train Classifier on real SR vs. extrapolates SR

• Learns to find signal events Hallin et. al. Classifying Anomalies 

THrough Outer Density Estimation 
(CATHODE), 2109.00546 

https://arxiv.org/pdf/2109.00546.pdf://cds.cern.ch/record/2729668
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Online Data Compression

Measurement

Trigger

ONLINEFLOW generate  
synthetic 
events

Analysis

save
few 

 events

LVL1

HLT

Analysis

Update

Online Offline



Hands-On Tutorial


https://github.com/ml4fp/2024-lbnl


git clone https://github.com/ml4fp/2024-lbnl.git


Or (if already cloned) 

git add -u

git commit -m ‘past tutorials’

git pull

https://github.com/ml4fp/2024-lbnl
https://github.com/ml4fp/2024-lbnl.git
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Introduction

70

Info (N real points) 
Little advantage to be gained from generative model

Common point of criticism: Information in new samples 

• Assume generative model trained on N events

• Used to generate M >> N new events

generative model can speed up simulations

Info (M new points) =

Info (N real points) Info (M new points) <



08.13.2023S. Diefenbacher Backup: GANplifying Event Samples

1-D Toy Model
• Camel back function: double peak Gaussian 

71

p(X) =
1

2
(N�4,1(x) +N4,1(x))
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Quantiles
• Measurement how well 

function is described

• Define N quantiles on true 

distribution

• Each quantile contains equal 

probability

72
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Training Sample
• Draw 100 points from true 

camel back distribution

• This is designated as the 

(training) sample

• Calculate fraction of points in 

each quantile

• Baseline comparison

73
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Quantile Measure

74
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Quantile Measure
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Quantile Measure
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Quantile Measure
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Quantile Measure
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Quantile Measure
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Quantile Measure
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Quantile Measure
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Quantile Measure
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Quantile Measure
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• Fit 5 parameter camel back 
function to training samples 
 
 

• Analytically calculate integral 
for each quantile


• Gives upper performance 
benchmark

Parameter Fit

84

p(X) = a Nµ1,�1(x)

+(1� a)Nµ2,�2(x)
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• Train GAN on 100 data points from training sample

Generative Adversarial Network

85

• Mode-collapse and 
overfitting problematic

• Dropout

• Added training noise

• Batch-statistics
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• Generate             data points 
using GAN


• Calculate fraction of points in 
each quantile


• Compare to train and fit

Generative Network

86

O(107)
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• For 100 training samples,  
100 fits and 100 GANs 
compare MSE


• GAN describes distribution 
better than training data


• Needs 10,000 GANed points 
to match 150 true points


• Shifts statistical uncertainty 
to systematic uncertainty

Generative Network

87
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• How is this possible? 

• In terms of information:

• sample: only data points

• fit: data + true function

• GAN: data + smooth, 

continuous function

• This allows the GAN to 

interpolate

Generative Network

88
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Intermediate Conclusion

89

Info (N real points) 
Little advantage to be gained from generative model

Common point of criticism: Information in new samples 

• Assume generative model trained on N events

• Used to generate M >> N new events

generative model can speed up simulations

Info (M new points) =

Info (N real points) Info (M new points) <


