Generative Models

Sascha Diefenbacher,

ML4FP School 2024

Generative Models in Media

- Learn underlying distribution of data
- Produce realistic new samples
- Recently gained attention for AI art generation (Dall-E 2, Imagen, Midjourney)

Generative Models

particle shower in a calorimeter in the style of egon schiele, Dall-E 2

Classification High Dim. Data

S. Diefenbacher

Generative Models

Latent Space Noise

S. Diefenbacher

Generation

Latent Space Noise

S. Diefenbacher

Generation

Training a generative model

- 1. Start from random noise
- 2. Use network to transform noise to data

3. Use loss function that gauges quality of generated data

Training a generative model

- 1. Start from random noise V
- 2. Use network to transform noise to data V

This is where it gets tricky

3. Use loss function that gauges quality of generated data

Classification Loss Functions

- Easy to understand model outputs
 - Predictions for a given data sample
 - Accuracy, Area Under Curve, directly measure network performance

Classification Loss Functions

- Easy to understand model outputs
 - Predictions for a given data sample
 - Accuracy, Area Under Curve, directly measure network performance

 - Directly compare network output to true prediction Wide range of available loss functions
 - Mean Squared Error
 - Cross-Entropy

Generative Loss Functions

- How do you measure the model performance?
- How is this expressed mathematically (and differentiable)

S. Diefenbacher

Generative Loss Functions

- How do you measure the model performance?
- How is this expressed mathematically (and differentiable)

S. Diefenbacher

http://thesecatsdonotexist.com

- Image Set:

Training Data:

S. Diefenbacher

Generative Models

Does the new set have the same properties as the data?

- Image Set:

Training Data:

S. Diefenbacher

Generative Models

Does the new set have the same properties as the data?

Generated Data:

Image Set

Ideal generative outcome

S. Diefenbacher

Image Set

Ideal generative outcome

Ideal generative outcome

Low sample quality

Overfitting

S. Diefenbacher

Ideal generative outcome

Low sample quality

Overfitting

Mode collapse

Generative Models

S. Diefenbacher

|--|

- Ideal generative outcome
- Low sample quality

Overfitting

Mode collapse

Incorrect composition

Generative Models

GANS *Generative Adversarial Networks*

Normalizing Flows

S. Diefenbacher

Scorebased

VAES Variational Autoencoders

Generative Models

Generative Adversarial Network High Dim. Data

Latent Space Noise

- Generator Network G(z)=x
 - Maps noise Z to Data X

- Generator Network G(z)=x
 - Maps noise Z to Data X
- Discriminator D(G(z)) and D(x)
 - Learns difference between real and fake

Generative Models

- Generator Network G(z)=x
 - Maps noise Z to Data X
- Discriminator D(G(z)) and D(x)
 - Learns difference between real and fake
- D(G(z)) is differentiable function measuring performance
- Use D(G(z)) as loss to update G

Generative Models

(a)

(b)

- Guides Generated distribution to match real distribution

Goodfellow et al.- arXiv:1406.2661

Discriminator of GAN approximates Jensen Shannon Divergence

Upsides

- Intuitive approach
- Easy to introduce additional constraints
- Well explored with several improvements (WGANs, normalisations)

Difficulties

- Difficult to train
- Gen. and disc. needs to be balanced
- Can fail to converge
- Prone to mode collapse

Variational AutoEncoder Output Latent $\boldsymbol{\mu}$ Decoder $\boldsymbol{\mathcal{Z}}$ $|\mathcal{X}|$ σ KLD MSE

Generative Models

AutoEncoder

• Encoding function E(x)=z map high dimensional data X to low dimensional latent space Z

Generative Models

AutoEncoder

- Encoding function E(x)=z map high dimensional data X to low dimensional latent space Z
- Decoding function D(z)=x map latent space Z back to data X

AutoEncoder

- Encoding function E(x)=z map high dimensional data X to low dimensional latent space Z
- Decoding function D(z)=x map latent space Z back to data X Compare Input and Output pixel by pixel with mean squared error

Generative Models

• Sample for Z and pass it to $D(Z) \rightarrow Generate new samples$

Variational AutoEncoder

- Sample for Z and pass it to $D(Z) \rightarrow Generate new samples$
- Problem: Need regularised later space to sample form Variational AutoEncoder

Variational AutoEncoder

- - Using Gaussians lets us use Kullback–Leibler divergence

$$\sum_{i=1}^{n} \sigma_{i}^{2} + \mu_{i}^{2} - \log(\sigma_{i}) - 1$$

Compare Input and Output again using MSE

S. Diefenbacher

Variational AutoEncoder

• Latent space: Series of Gaussians, regularised match N(μ =0, σ =1)

Generative Models

Upsides

- Directly evaluates log likelihood
- Stable in training

Variational AutoEncoder

Difficulties

- MSE loss insufficient for certain data sets
- Needs to balance KLD and MSE loss terms

- back using two networks
- Can we do this with a single network instead?
- Normalising Flow

Real Data

S. Diefenbacher

Variational AutoEncoder: map data to normal distribution and

Generative Models

- Train invertible model T^{*-1} to map data to Normal distribution
- Well understood loss function:

How well does the transformed sample match the latent distribution

$\mathcal{L}_{\text{Flow}} = \frac{1}{N} \sum_{\mathbf{x}} \log(p_z(T^{*-1}(\mathbf{x}_n, \theta))) + \log(|\det J_{T^{-1}}(\mathbf{x}_n, \theta)|)$

Jacobean of transformation

Generative Models

S. Diefenbacher

Generative direction

- Well understood loss function:

• Train invertible model T^{*-1} to map data to Normal distribution

Generative Models

- Train invertible model T^{*-1} to map data to Normal distribution
- Well understood loss function:

Latent Normal distribution

How well does the transformed sample match the latent distribution

Jacobean of transformation

Generative Models

Invertible Neural Networks

- Dense layer: matrix multiplication
- Invertible if square matrix with det > 0
- Difficult in practice, use Coupling layers instead

S. Diefenbacher

Generative Models

Invertible Neural Networks

$\mathbf{u}_A = \mathbf{x}_A \otimes \mathbf{s}(\mathbf{x}_B) + \mathbf{t}(\mathbf{x}_B)$

 $\mathbf{u}_B = \mathbf{x}_B$

S. Diefenbacher

Invertible Neural Networks

$\mathbf{u}_A = \mathbf{x}_A \otimes \mathbf{s}(\mathbf{x}_B) + \mathbf{t}(\mathbf{x}_B)$

 $\mathbf{u}_B = \mathbf{x}_B$

S. Diefenbacher

$$\mathbf{x}_A = \frac{\mathbf{u}_A - \mathbf{t}(\mathbf{u}_B)}{\mathbf{s}(\mathbf{u}_B)}$$
$$\mathbf{x}_B = \mathbf{u}_B$$

Normalizing Flows Difficulties

Upsides

- Directly evaluates log likelihood
- Stable in training
- High generative quality
- Easy to train and use

- Fixed dimensionality through entire flow
- Slow generation times for large models/data

- Normalizing Flow: learn map of data to Normal distribution
- Do we need to explicitly learn this?
- Map data to Normal distribution by repeatedly adding noise
- Diffusion Models

- Repeatedly add noise to data point
- Learn to undo noise at every step
- Possible using Stochastic Differential Equation and score function

 $\mathbf{X}(\mathbf{0})$

S. Diefenbacher

- Approximating the score function of the data
- Equivalent to approximating the score function of a smearing func.

For gaussian smearing

 $\nabla_{\tilde{\mathbf{x}}} \log p_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x}) = -$

$$(\mathbf{x}, t) - \nabla_{\mathbf{x}} \log p(\mathbf{x}) \|_{2}^{2}$$
.
 $\| \mathbf{s}_{\theta}(\mathbf{x}_{\mathbf{t}}, t) - \nabla_{\mathbf{x}_{\mathbf{t}}} \log p_{t}(x_{t}|x_{0}) \|_{2}^{2}$

$$rac{\mathbf{x}- ilde{\mathbf{x}}}{\sigma^2}\sim rac{\mathcal{N}(0,1)}{\sigma}$$

Generative Models

48

Upsides

- Superior generation quality
- State of the Art for generative models

Difficulties

- Conceptually complex
- Difficult to train for nonstandard data-sets

Generative Models can

- Quickly sample from learned distribution

What HEP uses can such models have? Fast simulation

Physics Use Cases

Learn underlying distribution from a given dataset

Generative Models can

- Quickly sample from learned distribution

What HEP uses can such models have?

- Fast simulation
- Anomaly detection
- Many more!

Physics Use Cases

Learn underlying distribution from a given dataset

Generative Simulation

Catmore et. al. ATLAS HL-LHC **Computing Conceptual Design Report,** CERN-LHCC-2020-015; LHCC-G-178

S. Diefenbacher

- MC simulation large part of computing

 - Train ML model on small dataset
 - Draw majority of samples form ML model Amplify original data set
 - Significantly faster

Butter et al.: Amplifying Statistics using **Generative Models:** NeurIPS ML4PS 2020, <u>2008.06545</u>

Generative Simulation

Event Generation

S. Diefenbacher

Event Generation

Generation of event 4-momenta, ordered list, O(10) dimensions Using GAN model with additional MMD loss for mass peaks

Events: (2019), <u>1907.03764</u>

S. Diefenbacher

Generative Models

Event Generation

- Normalizing flow approach improves precision
- Bayesian network enables uncertainty estimation

S. Diefenbacher

proves precision certainty estimation

Butter et al.: Generative Networks for Precision Enthusiasts (2021), <u>2110.13632</u>

Generative Models

Generative Simulation

Event Generation

Detector Simulation

- Fixed output geometry O(100-10,000) dimensions
- Common in detector simulation, e.g. ATLAS FastCaloGAN
- Already in use for fast simulation of calorimeter showers

ATLAS Collaboration, AtlFast3: the next generation of fast simulation in ATLAS (2021), <u>2109.02551</u>

S. Diefenbacher

Detector Simulation

Generative Models

Detector Simulation

ATLAS FastCaloGAN

300 total networks for particle types and η slices

S. Diefenbacher

ATLAS Collaboration, AtlFast3: the next generation of fast simulation in ATLAS (2021), <u>2109.02551</u>

Generative Models

S. Diefenbacher

Detector Simulation

Calorimeters			Muon Spectrometer
FastCaloSimv2			
astCalo Sim V2 < (8–16) GeV	FastCalo GAN (8–16) GeV < <i>E</i> _{kin} < (256 – 512) GeV	FastCalo Sim V2 $E_{kin} > (256 - 512) \text{ GeV}$	Muon Punchthrough +Geant4
Geant4			Geant4

ATLAS Collaboration, AtlFast3: the next generation of fast simulation in ATLAS (2021), <u>2109.02551</u>

Generative Models

High Granularity Calorimeter **Charged pion shower Photon shower**

Buhmann et al.: Getting High: High Fidelity **Simulation of High Granularity Calorimeters** with High Speed (2020) 2005.05334

S. Diefenbacher

- Photons / charged Pions
- 1 million / 500k showers
- 10 to 100 GeV
- Fixed incident point & angle
- Project to grid
- 30×30×30 / 25×25×48

Buhmann et. al. Hadrons, Better, Faster, Stronger: (2021) <u>2112.09709</u>

Generative Models

[cells]

High Granularity Calorimeter Photons Pions

S. Diefenbacher

Generative Models

So far: no new discoveries of particles beyond the Standard Model

Maybe not enough data

→ Previous ML methods

Not looking for the right theory

→ Anomaly detection

https://www.tatvic.com/blog/detecting-real-time-anomalies-using-r-google-analytics-360-data/

Generative Models

Semi-Supervised AD:

- Find unexpected samples
- Cut out part of data
- Use generative model to learn data

Semi-Supervised AD:

- Find unexpected samples
- Cut out part of data
- Use generative model to learn data
- Predict cut out part

Generative Model

Semi-Supervised AD:

- Find unexpected samples
- Cut out part of data
- Use generative model to learn data
- Predict cut out part
- Compare prediction and cut out

Classifier Model

Generative Models

S. Diefenbacher

a.u.

Anomaly Detection

- Classifying Anomalies THrough Outer **Density Estimation (CATHODE)**
- Divide data into Signal Region (SR) and Side Bands (SB)
- SR contains suspected signal (is scanned over in real search
- Train Normalizing Flow on SB Extrapolate into SR

Hallin et. al. Classifying Anomalies **THrough Outer Density Estimation** (CATHODE), <u>2109.00546</u>

- Train Classifier on real SR vs. extrapolates SR
- Learns to find signal events

Hallin et. al. Classifying Anomalies **THrough Outer Density Estimation** (CATHODE), <u>2109.00546</u>

Generative Models

S. Diefenbacher

Generative Models

Hands-On Jutorial

https://github.com/ml4fp/2024-lbnl

git add -u git commit -m 'past tutorials' git pull

git clone <u>https://github.com/ml4fp/2024-lbnl.git</u>

Or (if already cloned)

Introduction

- Assume generative model trained on N events
- Used to generate M >> N new events
 - Info (N real points) = Info (M new points) Little advantage to be gained from generative model
 - Info (N real points) < Info (M new points) generative model can speed up simulations

Common point of criticism: Information in new samples

70

1-D Toy Model

 Camel back function: double peak Gaussian $p(X) = \frac{1}{2}(N_{-4,1}(x) + N_{4,1}(x))$ 0.09 0.08 0.07 0.06 0.05 (× 0.04 ₪ 0.03

0.02

0.01

0.00

-6

Backup: GANplifying Event Samples

S. Diefenbacher

Quantiles

- Measurement how well function is described
- Define N quantiles on true distribution
- Each quantile contains equal probability

Backup: GANplifying Event Samples

Training Sample

- Draw 100 points from true camel back distribution
- This is designated as the (training) sample
- Calculate fraction of points in each quantile
- Baseline comparison

Backup: GANplifying Event Samples

S. Diefenbacher

Backup: GANplifying Event Samples

S. Diefenbacher

Backup: GANplifying Event Samples

S. Diefenbacher

Backup: GANplifying Event Samples

S. Diefenbacher

Backup: GANplifying Event Samples

S. Diefenbacher

Backup: GANplifying Event Samples

S. Diefenbacher

Backup: GANplifying Event Samples

S. Diefenbacher

Backup: GANplifying Event Samples

S. Diefenbacher

Backup: GANplifying Event Samples

S. Diefenbacher

Backup: GANplifying Event Samples

S. Diefenbacher

Backup: GANplifying Event Samples

Parameter Fit

• Fit 5 parameter camel back function to training samples $p(X) = a N_{\mu_1,\sigma_1}(x)$

$$+(1-a)N_{\mu_2,\sigma_2}(x)$$

- Analytically calculate integral for each quantile
- Gives upper performance benchmark

Backup: GANplifying Event Samples

Generative Adversarial Network

- Train GAN on 100 data points from training sample
- Mode-collapse and overfitting problematic
 - Dropout
 - Added training noise
 - Batch-statistics

S. Diefenbacher

Backup: GANplifying Event Samples

Generative Network

- Generate $O(10^7)$ data points using GAN
- Calculate fraction of points in each quantile
- Compare to train and fit

Backup: GANplifying Event Samples

Generative Network

- For 100 training samples, 100 fits and 100 GANs compare MSE
- GAN describes distribution better than training data
- Needs 10,000 GANed points to match 150 true points
- Shifts statistical uncertainty to systematic uncertainty

Backup: GANplifying Event Samples

Generative Network

- How is this possible?
- In terms of information:
 - sample: only data points
 - fit: data + true function
 - GAN: data + smooth, continuous function
- This allows the GAN to interpolate

Backup: GANplifying Event Samples

Intermediate Conclusion

- Assume generative model trained on N events
- Used to generate M >> N new events

Info (N real points) < Info (M new points) generative model can speed up simulations

S. Diefenbacher

Common point of criticism: Information in new samples

Info (N real points) = Info (M new points) Little advantage to be gained from generative model

