
Efficient Machine Learning Model Design 
Techniques for Fast Inference

Machine Learning for Fundamental Physics School 2024

Elham E Khoda 
San Diego Supercomputing Center, UCSD

August 15, 2024



Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference 

JupyterHub Access
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We will use a different Jupyterhub for this session! 

JupyterHub access (for efficient_ml tutorial) 

• Join hls4ml-tutorial GitHub Organization (check your email for invite) 
•Your should be able to see yourself here: 
 https://github.com/orgs/hls4ml-tutorial/people 

JupyterHub link 

•Open https://tutorials.fastmachinelearning.org in your web browser 
•Authenticate with your GitHub account (login if necessary)

https://github.com/ml4fp/2024-lbnl/tree/main/efficient_ml#jupyterhub-access-for-hls4ml-tutorial
https://github.com/orgs/hls4ml-tutorial/people
https://github.com/ml4fp/2024-lbnl/tree/main/efficient_ml#jupyterhub-link
https://tutorials.fastmachinelearning.org/
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Lecture Outline
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Motivation behind efficient model design and some highlights 

Introduction to Quantization 
• Definition 
• PTQ vs QAT 

Introduction to Pruning 
• What is pruning? How to formulate pruning? 
• Determine pruning granularity and criteria 
• Network performance after pruning 

ML on FPGA 

hls4ml and Trigger applications
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Large Models are everywhere
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Large Language Models: GPT
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Large Language Models
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?

GPT-4

GPT-3

~0.16% of parameters of your brain

175,000,000,000 100,000,000,000,000

Almost all the neurons in your brain?
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GPT-3 Training and Inference
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Inference: Asking Question to ChatGPT

GPT-3 Training 
• 285, 000 CPUs 
• 10,000 GPUs 
• 400 Gbits/sec network 
• Several weeks

Nvidia Blog

GPT-3: 10x larger than max memory in a single  Nvidia A100 GPU

Millions of queries daily  

1 GWh each day  33,000 U.S. households≈

https://developer.nvidia.com/blog/openai-presents-gpt-3-a-175-billion-parameters-language-model/


Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference 

AI and Memory Wall
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11 of these to fit one GPT-3 at the 
inference time! 

Each cost $10,000

Medium blog: AI and Memory Wall

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
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AI and Memory Wall
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11 of these to fit one GPT-3 at the 
inference time! 

Each cost $10,000

Medium blog: AI and Memory Wall

Efficient Deep Learning  
is no longer a choice! 

It is becoming a necessity 

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
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Machine Learning Inference
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Sec Milli 
second 
(10-3)

Micro 
second 
(10-6)

Nano 
second 
(10-9)

Google Search

Large Hadron Collider  
40 million collisions / 

sec
ChatGPT

Netflix

Finance / Trading
Neuroscience

1000 
Seconds 

(103)

Earthquake Warning 

Inference Latency
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Computing Hardware
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FPGAs

EFFICIENCY

Control 
Unit 
(CU)

Registers

Arithmetic 
Logic Unit 

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Image: Microsoft

FPGAs

EFFICIENCY

Control 
Unit 
(CU)

Registers

Arithmetic 
Logic Unit 

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Second stage 
of LHC trigger

First stage of 
LHC trigger

https://microsoft.github.io/ai-at-edge/docs/hw_acceleration/
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HL-LHC Data Processing

13

1 ns 1 μs 1 s1 ms

Compute 
Latency

FPGAs CPUs CPUs

High-Level 
Trigger

7.5 kHz 
1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline

Challenges:  
Each collision produces O(103) particles 
The detectors have O(108) sensors  
Extreme data rates of O(100 TB/s)

ASICs
Exabyte-scale 

datasets
GPUsGPUs

FPGAs

Other processors: 
IPU, TPU ..

FPGAs
Other processors: 

IPU, TPU ..
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Simplified HL-LHC Trigger 
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• Single/double/triple muons/electrons 
• Photons 
• Taus 
• Hadronic 
• Missing transverse energy 
• “Cross” triggers (not shown)

Trigger Threshold [GeV]
1 μ 22
2 μ 15, 7
3 μ 5, 3, 3
1 e 36
2 e 25, 12
1 ɣ 36
2 ɣ 22, 12
1 τ 150
2 τ 90, 90

1 jet 180
2 jet 112, 112
HT 450

4 jet + HT 75, 55, 40, 40, 400
pTmiss 200

4-jet event

CMS-TDR-021

Thresholds set by 
backgrounds, limited 
resolution @ L1, and 

rate budget

https://cds.cern.ch/record/2714892
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What could be missing?
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• How can we trigger on more complex low-energy 
hadronic signatures? Long-lived/displaced particles? 

• What if we don’t know exactly what to look for? 
• What if our signatures require complex multivariate 

algorithms (e.g. b tagging)? 
• How can we improve on our traditional (often slow) 

reconstruction algorithms?

HH → 4b

Soft Bombs

We’ll focus on a particularly egregious scenario: Quasi-conformal,
strongly-coupled HV from Q to ⇤
[Strassler: 0801.0629; Hatta, Matsuo: 0804.4733; Hofman, Maldacena: 0803.1467]

• Large ‘t-Hooft coupling ⁄ ≥ g
2
N ∫ 1: large angle emission

• Quasi-conformal dynamics: maximally e�cient showering down to ⇤

• Leads to ≥ spherically symmetric event, with multiplicity scaling linearly

Èn(Q)Í ≥

3
Q

⇤

41+1/
Ô

⁄

High multiplicity of soft particles
Event resembles pile-up
Passes minimum bias triggers with
very low e�ciency

Dean Robinson dean.robinson@uc.edu Soft Bombs 6/20
6/20

SUEP

?

?

g

g

7

A Kalman Filter for BMTF

Initialize

Propagate
Update

Propagate

Update

Propagate

Update

Propagate

Update

Vertex Unconstrained
Measurement

Vertex Constrained
Measurement

● Sequential algorithm: (mathematically equivalent to a χ2 fit)
● Propagate track inwards from station to station and match with a stub
● Update track parameters and continue

● After reaching station 1  save measurement without vertex constraint�

● Propagate to vertex and update  vertex constrained measurement�

● Challenge for an FPGA implementation  �Matrix algebra
 

https://profmattstrassler.com/2024/03/15/searching-for-suep-at-the-lhc/
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ML in Trigger
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• (Variational) autoencoders for anomaly detection 
• 1D convolutional neural networks for b-tagging 
• Graph neural networks for tracking

3

The inputs to the network are the top ten 
PUPPI candidates ranked by pT within each jet. 
The information for each particle candidate is: 
particle type (one-hot encoded; 8 indices), 
kinematic information (pT, η, φ scaled relative 
to jet; 3 indices), and vertex information (z-
position and transverse impact parameter with 
respect to the primary vertex; 2 indices).


The neural network architecture is based 
around two 1D convolutional layers which act 
as featurizers for inputs from each jet. The 
resulting features are flattened and passed 
through 3 dense layers to produce a single 
value between 0 and 1. Scores close to 1 
indicate jets that are likely to have originated 
from bottom quarks, while scores close to 0 
indicate jets that are likely to have originated 
from light quarks or gluons.

pa
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.  .  .

(6 features/particle)

(20 features/particle)

(5 features/particle)
(50 features)

(20 features)

(10 features)

(1 feature)

b-tag score

Pointwise convolution

(per particle dense layer)

Dense layer

4

In
pu

t ∈
 ℝ

57

BN Dense ∈ ℝ32 Dense ∈ ℝ16 Latent space ∈ ℝ3 Dense ∈ ℝ16 Dense ∈ ℝ32 Dense ∈ ℝ57 

ENCODER DECODER

Output:
Conv2d 4 (1,(3,3))

Block 3:
Dense (8)
Dense 1 (64)
ReLU
Reshape (2,1,32)

Block 1:
Conv2d (16,(3,3))  
ReLU 
AvPooling (3,1)  

ReLU

Block 2:
Conv2d 1 (32,(3,1))  
ReLU 
AvPooling (3,1)
Flatten (64)

Block 4:
Conv2d 2 (32,(3,1))  
ReLU 
UpSampling (3,1)
ZeroPad (0,0),(1,1)

Block 5:
Conv2d 3 (16,(3,1))  
ReLU 
UpSampling (3,1)
ZeroPad (1,0),(0,0)

Block 0:
Input 19x3x1
ZeroPadding (1,0)
BatchNorm

ReLU ReLU ReLU ReLU

FIG. I. Network architecture for the DNN AE (top) and CNN AE (bottom) models. The corresponding VAE models are derived
introducing the Gaussian sampling in the latent space, for the same encoder and decoder architectures (see text).

of the number of parallel processors. Since 19 is a prime
number, we choose to extend the input size to 20 before
passing it through the Conv2D layer. After padding, the
input is scaled by a batch normalization layer and then
processed by a stack of two CNN blocks, each including a
2D convolutional layer followed by a ReLU [55] activation
function. The first layer has 16 3 ⇥ 3 kernels, without
padding to ensure that pT, ⌘ and � inputs do not share
weights. The second layer has 32 3 ⇥ 1 kernels. Both
layers have no bias parameters and a stride set to one.
The output of the second CNN block is flattened and
passed to a DNN layer, with 8 neurons and no activation,
which represents the latent space. The decoder takes
this as input to a dense layer with 64 nodes and ReLU
activation, and reshapes it into a 2⇥ 1⇥ 32 table. The
following architecture mirrors the encoder architecture
with 2 CNN blocks with the same number of filters as in
the encoder and with ReLU activation. Both are followed
by an upsampling layer, in order to mimic the result of a
transposed convolutional layer.

Finally, one convolutional layer with a single filter and

no activation function is added. Its output is interpreted
as the AE reconstructed input. The CNN VAE is derived
from the AE, including the ~µ and ~� Gaussian sampling
in the latent space.
All models are implemented in TensorFlow, and

trained on the background dataset by minimizing a
customized mean squared error (MSE) loss with the
Adam [56] optimizer. In order to aid the network learn-
ing process, we use a dataset with standardized pT as a
target, so that all the quantities are O(1). To account
for physical boundaries of ⌘ and �, for those features a
re-scaled tanh activation is used in the loss computation.
In addition, the sum in the MSE loss is modified in order
to ignore the zero-padding entries of the input dataset
and the corresponding outputs. When training the VAE,
the loss is changed to:

L = (1� �)MSE(Output, Input) + �DKL(~µ,~�) , (1)

where MSE labels the reconstruction loss (also used in the
AE training), DKL is the Kullback-Leibler regularization

CMS-DP-2022-021

Nat. Mach. Intell. 4, 154 (2022)

Front. Big Data 5, 828666 (2022)

16

Credit: Javier Duarte

https://cds.cern.ch/record/2814728
https://doi.org/10.1038/s42256-022-00441-3
http://doi.org/10.3389/fdata.2022.828666
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What makes this Hard?
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• Reconstruct all events and reject 98% of them in ~10 μs 

• Algorithms have to be <1 μs and process new events every (25 ns) ⨉ Ntmux 

• Latency necessitates all FPGA design 

• Algorithms have to fit on <1 FPGA 

• How can we satisfy these constraints?

Event 1 L1 TRIGGER ALGORITHMS

Latency ~ 10 μs

Programmable 
interconnects

PASS

L1 TRIGGER ALGORITHMS

L1 TRIGGER ALGORITHMS

Event 2

Event 3

…

FAIL

FAIL

Initiation interval = 25 ns
Credit: Javier Duarte
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Codesign
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• Codesign: intrinsic development loop 
between ML design, training, and 
implementation  

• Pruning 

• Maintain high performance while 
removing redundant operations 

• Quantization 

• Reduce precision from 32-bit 
floating point to 16-bit, 8-bit, … 

• Parallelization 

• Balance parallelization (how fast) 
with resources needed (how costly)

Credit: Javier Duarte
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Question #1
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What features / properties do you expect in an “efficient” ML model? 

Think about it for 30 seconds and share your answer
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Question #1
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What features / properties do you expect in an “efficient” ML model? 

Think about it for 30 seconds and share your answer

• Smaller in size  
• Requires less computing resources for training and / or inference   
• Runs faster during inference (prediction stage) 
• Uses less power 
• Should scale well with increasing data volume



Lets discuss 

 some of the techniques to design 
Efficient Deep Learning models 
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Efficient Model Design
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Quantization

Finding the optimal 
model architecture

32-bit floating-point (FP32)

16-bit (FP16) / 8-bit (FP8)

INT / fixed-point

Knowledge  
Distillation

Train a smaller model 
using a bigger model

Pruning

Remove synapses and 
neurons

Finding the 

Neural  
Architecture 

Search 

Finding the optimal 
model architecture

Tensor 
Decomposition

Reduce the dimension 
of the weight matrix / 

tensor
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Motivation behind efficient model design and some highlights 

Introduction to Quantization 
• Definition 
• PTQ vs QAT 

Introduction to Pruning 
• What is pruning? How to formulate pruning? 
• Determine pruning granularity and criteria 
• Network performance after pruning 

ML on FPGA 

hls4ml and Trigger applications
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Quantization
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Quantization is the process of constraining an input from a continuous or otherwise 
large set of values to a discrete set
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Numerical Data Types
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Sign bit 8 bit Exponent 23 bit Mantissa

32-bit floating-point (FP32) Range: 10-38 - 1038

5 bit Exponent 10 bit MantissaSign bit

16-bit floating-point (FP16) Range: 6x10-5 - 6x104

Fixed-point Number

Sign bit

Unsigned Integer

Signed Integer
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GPT-3 Memory
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~175,000,000,000

~700 GB of memory 
(175 B par x 4 bytes/par) 
~10x larger than max memory in 
a single  Nvidia A100 GPU

~350 GB of memory 
(175 B par x 2 bytes/par) 
~ 5 Nvidia A100 GPUs 
~ 11 Nvidia V100 GPUs

GPT-3

5 bit Exponent 10 bit MantissaSign bit

16-bit floating-point (FP16)

Sign bit 8 bit Exponent 23 bit Mantissa

32-bit floating-point (FP32) Range: 10-38 - 1038

Range: 6x10-5 - 6x104
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Quantization Types
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Quantization: using reduced precision for parameters and operations

arXiv:2004.09602

Fixed-point precision

Affine Integer Quantization

https://arxiv.org/pdf/2004.09602
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Affine Integer Quantization
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An affine mapping of integers to real numbers r = S(q − Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]
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Quantization Strategies
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Post Training Quantization
• QKeras 
• Bravitas 
• PyTorch (limited options) 
• TensorFlow (limited options) 
• ONNX (in development)

Quantization-Aware Training
• QKeras 
• PyTorch (limited options) 
• TensorFlow (limited options) 
• QONNX (in development)

Initial Model
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Question #2
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Post-training Quantization (PTQ) vs Quantization-Aware Training (QAT) 

Advantages and disadvantages of PTQ?
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Post-training Quantization (PTQ) vs Quantization-Aware Training (QAT)

31
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Quantization References
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Quantization Survey paper 
https://arxiv.org/pdf/2103.13630 

MIT Efficient ML Course: 
https://hanlab.mit.edu/courses/2023-fall-65940 

TensorFlow model_optimization: 
https://www.tensorflow.org/lite/performance/model_optimization 

PyTorch Quantization: 
https://pytorch.org/docs/stable/quantization.html 

https://arxiv.org/pdf/2103.13630
https://hanlab.mit.edu/courses/2023-fall-65940
https://www.tensorflow.org/lite/performance/model_optimization
https://pytorch.org/docs/stable/quantization.html
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Motivation behind efficient model design and some highlights 

Introduction to Quantization 
• Definition 
• PTQ vs QAT 

Introduction to Pruning 
• What is pruning? How to formulate pruning? 
• Determine pruning granularity and criteria 
• Network performance after pruning 

ML on FPGA 

hls4ml and Trigger applications
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Neural Network Pruning
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•> 90% reduction in parameter count 
• Decreasing the storage requirements  
• Improving computation efficiency  

Model accuracy loss was negligible

Results are from Efficient Methods and Hardware for Deep Learning [Han, S, Stanford University]

https://stacks.stanford.edu/file/druid:qf934gh3708/EFFICIENT%20METHODS%20AND%20HARDWARE%20FOR%20DEEP%20LEARNING-augmented.pdf
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What is pruning?
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Neural Network Pruning
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Pruning is the technique to remove less important connections and neurons

pruning  
connections

pruning  
neurons
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Pruning happens in Human Brain
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No. Of Synapses

Time
AdultNewborn 2-4 years Adolescence

No. of synapses in adult  
(~7000 synapses / neuron)

(~15000 synapses / neuron)
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Pruning workflow
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Initialize Train Prune Train

arg min
W

L(x; W) arg min
Wp

L(x; Wp)

original 
weight

pruned 
weight
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Weight Pruning: Formulation
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∥Wp∥0 <Remove least important connections such that

# of non-zero weights 
Total # of weights

Sparsity = =
∥Wp∥0

∥Wp∥

Wp is the pruned weight matrix

Example 
50% sparsity  means half of the weight are pruned

N = target #non-zero weights

N
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Lecture Outline
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Motivation behind efficient model design and some highlights 

Introduction to Quantization 
• Definition 
• PTQ vs QAT 

Introduction to Pruning 
• What is pruning? How to formulate pruning? 
• Determine pruning granularity and criteria 
• Network performance after pruning 

ML on FPGA 

hls4ml and Trigger applications
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Different Pruning Granularity: Structured and Unstructured
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Example: 2D weight matrix (8x8)

NN layer computation
Layer input = x1 ∈ ℝm1

Weight = W1 ∈ ℝm2×m1,
Layer output = x2 ∈ ℝm2

Bias = b1 ∈ ℝm2

⋅x2 = W1 x1 b1+

= x +

Layer  
output

Weight 
matrix

Layer  
Input

Bias



Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference 

Different Pruning Granularity: Structured and Unstructured
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Example: 2D weight matrix (8x8)
Pruned

Preserved

Fine-grained / Unstructured  
Pruning 

• Flexible pruning index
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Different Pruning Granularity: Structured and Unstructured
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Example: 2D weight matrix (8x8)
Pruned

Preserved

Coarse-grained / Structured  
Pruning 

• Less flexible pruning index
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Question #3
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Original Matrix Structured PruningUnstructured Pruning

Which statement is more accurate? 
Context: neural network (NN) inference / prediction stage  

A. Accelerating NN models is easier after unstructured pruning (weight matrix) 
B. Accelerating NN models is easier after structured pruning (weight matrix) 
C. Both methods offer similar ease of acceleration  
D. The original network (before pruning) will be faster 

NN layer computation
Layer input = x1 ∈ ℝm1

Weight = W1 ∈ ℝm2×m1,
Layer output = x2 ∈ ℝm2

Bias = b1 ∈ ℝm2

⋅x2 = W1 x1 b1+
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Question #3
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Original Matrix Structured PruningUnstructured Pruning

Which statement is more accurate? 
Context: neural network (NN) inference / prediction stage  

A. Accelerating NN models is easier after unstructured pruning (weight matrix) 
B. Accelerating NN models is easier after structured pruning (weight matrix) 
C. Both methods offer similar ease of acceleration  
D. The original network (before pruning) will be faster 

NN layer computation
Layer input = x1 ∈ ℝm1

Weight = W1 ∈ ℝm2×m1,
Layer output = x2 ∈ ℝm2

Bias = b1 ∈ ℝm2

⋅x2 = W1 x1 b1+
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Different Pruning Granularity: Structured and Unstructured
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Example: 2D weight matrix (8x8)
Pruned

Preserved

Coarse-grained / Structured  
Pruning 

• Less flexible pruning index 

• Small regular matrix 
easy to accelerate

→

Mention hardware
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Pattern-based Pruning
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Pruning with N:M sparsity = In each M contiguous elements, N of them are pruned  
Example: 2:4 sparsity (50%  sparsity)

# of non-zero weights 
Total # of weights

Sparsity = 

Dense Matrix 2:4 Sparse Matrix

Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT

Compressed Matrix

Non-zero  
Values

2-bit 
Index

It is supported by Nvidia’s Ampere GPU architecture (eg A100)

https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
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Motivation behind efficient model design and some highlights 

Introduction to Quantization 
• Definition 
• PTQ vs QAT 

Introduction to Pruning 
• What is pruning? How to formulate pruning? 
• Determine pruning granularity and criteria 
• Network performance after pruning 

ML on FPGA 

hls4ml and Trigger applications
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Pruning Criteria
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Goal:  
Remove less important parameters from a neural network

Example

f( ⋅ ) = ReLU( ⋅ )

Weights: W = [−5, 12, 0.2]

ReLU Activation

y = ReLU(−5x1 + 12x2 + 0.2x3)

If we want to remove one weight, then which 
one?

W1x1

W2x2

W3x3

x1

x2

x3

∑
i

Wixi

f

y = f (∑
i

Wixi)
y
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Magnitude-based Pruning
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Magnitude-based pruning considers weights with larger absolute values are more 
important than other weights. 

Importance =

2

7

-4

-1

|2|

|7|

|-4|

|-1|

2

7

4

1

0

7

-4

0

Importance Pruned WeightOriginal Weight

Element-wise

L1-norm

Pruned

Preserved

Element-wise pruning using absolute magnitude

|Wi |



Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference 

Magnitude-based Pruning
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Pruned

Preserved

2

7

-4

-1

Importance Pruned WeightOriginal Weight

Row-wise

Row-wise pruning

Magnitude-based pruning considers weights with larger absolute values are more 
important than other weights. 

Importance =
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Question #4
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Pruned

Preserved

2

7

-4

-1

Importance Pruned WeightOriginal Weight

Row-wise

Come up with a strategy to prune a whole row.

2 minutes

Importance = define it as a function of the weights               

Row-wise pruning
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Magnitude-based Pruning
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2

7

-4

-1

|2| + |-4|

|7| + |-1|

6

8

0

7

0

-1

Importance

Pruned

Preserved

Pruned WeightOriginal Weight

Row-wise

L1-norm

∑
i∈S

|wi |Importance =                         sum of weighs within the structural set (S)

Row-wise pruning using L1-norm
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Magnitude-based Pruning
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Row-wise pruning using L2-norm

2

7

-4

-1

Importance

Pruned

Preserved

Pruned WeightOriginal Weight

Row-wise

∑
i∈S

|wi |
2

L2-norm

|2 |2 + | − 4 |2

= 20

|7 |2 + | − 1 |2

= 50
50

0

7

0

-1

20

Importance =                                       sum of weighs square within the structural set (S)
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There are many other ways!
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We highlighted magnitude-based weight pruning 

 You can use any fancy or complicated function that meets your requirements 

• Neuron Pruning 

Some other methods: 
• Second-order derivative-based pruning 

 Minimizes the error on loss function introduced by pruned synapses 

 

• Channel pruning for convolution neural networks 

• Regression pruning 
Minimize error of a corresponding layer’s output: before and after pruning

→

→
δL = L(x; W) − L(x; Wp = W − δW)

→
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Lecture Outline
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Motivation behind efficient model design and some highlights 

Introduction to Quantization 
• Definition 
• PTQ vs QAT 

Introduction to Pruning 
• What is pruning? How to formulate pruning? 
• Determine pruning granularity and criteria 
• Network performance after pruning 

ML on FPGA 

hls4ml and Trigger applications
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Question #5
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What trend do you expect in the accuracy-loss vs pruning ratio plot beyond 50% 
pruning ratio?

Assume: the model performance did not degrade after 50% pruning

Initialize

Train

Prune
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Accuracy loss in pruning
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The model performance may decrease after pruning

Learning both Weights and Connections for Efficient Neural Networks {Han et al. , NeurIPS 2015

Initialize

Train

Prune

https://arxiv.org/pdf/1506.02626.pdf
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Accuracy loss in pruning
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The model performance may decrease after pruning

Learning both Weights and Connections for Efficient Neural Networks {Han et al. , NeurIPS 2015

Initialize

Train

Prune

“finetuning”

https://arxiv.org/pdf/1506.02626.pdf
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Pruning References
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Neural Network pruning survey paper: 
https://arxiv.org/abs/2308.06767 

MIT Efficient ML Course: 
https://hanlab.mit.edu/courses/2023-fall-65940 

TensorFlow pruning guide: 
https://www.tensorflow.org/model_optimization/guide/pruning/comprehensive_guide 

PyTorch pruning tutorial: 
https://pytorch.org/tutorials/intermediate/pruning_tutorial.html 

https://arxiv.org/abs/2308.06767
https://hanlab.mit.edu/courses/2023-fall-65940
https://www.tensorflow.org/model_optimization/guide/pruning/comprehensive_guide
https://pytorch.org/tutorials/intermediate/pruning_tutorial.html
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Key Points
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pruning  
connections

pruning  
neurons

Original Matrix Structured PruningUnstructured Pruning

Initialize

Train

Prune

“finetuning”

Expensive large models
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Let’s practice it
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Jupyter Link 
https://tutorials.fastmachinelearning.org 

Instructions are also on GitHub 
https://github.com/ml4fp/2024-lbnl/tree/main/efficient_ml 

Start your Jupyterhub 
Note it is a different jupyterhub compared to the other days 

Checkout the tutorial repo: https://github.com/ml4fp/2024-lbnl.git 

https://tutorials.fastmachinelearning.org/
https://github.com/ml4fp/2024-lbnl/tree/main/efficient_ml
https://github.com/ml4fp/2024-lbnl.git
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Example: Jet Classification
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Jet Classification: 5-Class classifier
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Five class classifier  
Sample: ~ 1M events with two boosted WW/ZZ/tt/qq/gg anti-kT jets
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Motivation behind efficient model design and some highlights 

Introduction to Quantization 
• Definition 
• PTQ vs QAT 

Introduction to Pruning 
• What is pruning? How to formulate pruning? 
• Determine pruning granularity and criteria 
• Network performance after pruning 

ML on FPGA 

hls4ml and Trigger applications
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Modern FPGAs
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Pros:  

• Reprogrammable interconnects  
between embedded components that  
perform multiplication (DSPs),  
apply logical functions (LUTs),  
or store memory (BRAM) 

• High throughput I/O: O(100)  
optical transceivers running at  
O(15) Gbps 

• Massively parallel 

• Low power 

Cons: 

• Requires domain knowledge to program (using VHDL/Verilog)

ALL FPGA ARCHITECTURE 16

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

Typical modern FPGA: 

(Kintex ultrascale+)

1.3M FFs 

700k LUTs

5500 DSPs 

2200 BRAMs

O(50-100) optical 
transceivers 

running at  

~O(15) Gbs
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Why FPGA at LHC?
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High parallelism ⇧ = Low latency  
 • Can work on different data simultaneously (pipelining)! High bandwidth  

⇧

Power efficient  
•FPGAS ~x10 more power efficient than GPUs  

Latency deterministic  
• FPGAs repeatable and predictable latency  

Latency is fixed by proton collisions occurring at 40 MHz, cannot tolerate slack

67
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FPGA Programming

68
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FPGA Programming
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Efficient L1T firmware design requires expertise  
• FPGA deployment in busy devices  
• ≪ 1µs latency target 

Not well served by industry tools!
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Inference on FPGA

70

⃗x1 ⃗xm ⃗xM

⃗xm = gm (Wm,m−1 ⃗xm−1 + b⃗m)
activation function

multiplication

addition
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⃗x1 ⃗xm ⃗xM

⃗xm = gm (Wm,m−1 ⃗xm−1 + b⃗m)
activation function

multiplication

addition

Multiplier  
Unit (DSP)

up to ~6k parallel operation (VU9P)  
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Design Exploration with hls4ml

72

• hls4ml for scientists or ML experts to translate ML algorithms into RTL firmware

Compressed 
model

Keras 
TensorFlow 

PyTorch 
…

Tune configuration
latency, throughput, 

power, resource usage

HLS  
project

HLS  
conversion

FPGA flow

ASIC flow

Model

Machine learning model 
optimization, compression

hls  4  ml

hls4ml

HLS  4  ML
Compressed 

model

Keras 
TensorFlow 

PyTorch 
…

Tune configuration
latency, throughput, 

power, resource usage

HLS  
project

HLS  
conversion

FPGA flow

ASIC flow

Model

Machine learning model 
optimization, compression

hls  4  ml

hls4ml

HLS  4  ML

JINST 13, P07027 (2018)

Compressed 
model

Keras 
TensorFlow 

PyTorch 
…

Tune configuration
latency, throughput, 

power, resource usage

HLS  
project

HLS  
conversion

FPGA flow

ASIC flow

Model

Machine learning model 
optimization, compression

hls  4  ml

hls4ml

HLS  4  ML

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913
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Many tools with different strengths
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• FINN (NNs): https://finn.readthedocs.io/en/latest/ 

• Confier (BDTs): https://github.com/thesps/conifer 

• fwXMachina (BDTs): http://fwx.pitt.edu/ 

• FlowGNN: https://github.com/sharc-lab/flowgnnNode 
Embedding 
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(b) FlowGNN Architecture with Multiple Node Transformation, Multiple Message Passing, and parallelized Edge Embedding
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Fig. 3. Our proposed baseline dataflow architecture and the improved FlowGNN architecture. (a) The baseline dataflow architecture can effectively pipeline
the Node Transformation (NT) and Message Passing (MP), but processes only one node and one edge at a time. (b) The improved FlowGNN architecture
can process multiple nodes and multiple edges simultaneously, enabled by an NT-to-MP adapter via on-the-fly multicasting.

More specifically, the GNN computation flow has the fol-
lowing stages, as demonstrated in Fig. 2:
Message Passing (Gather). In the gather phase, a.k.a. aggre-
gation, of a certain node n1, the messages from its neighbors
obtained in the previous layer are retrieved from a message
buffer. The messages are then aggregated in a permutation-
invariant manner, denoted by A(·) (e.g., sum, max, mean, std.
dev.). In advanced GNNs such as PNA, multiple aggregators
are used with learnable weights and scaled based on the degree
of the target node. The aggregated message is denoted by m

l
1.

Node Transformation. After aggregation, m
l
1 is processed

together with node n1’s current node embedding, denoted by
x
l
1, via a node transformation function �(·). This function,

with inputs m
l
1 and x

l
1, might be an identity, fully-connected

layer, weighted sum, or an MLP. �(·) produces a new node
embedding of n1, denoted by x

l+1
1 , and applies the update.

Message Passing (Scatter). After node transformation is the
scatter phase of message passing. The new node embedding
x
l+1
1 will be transformed by a message transformation function

�(·), usually together with an edge embedding e
l+1
src,dest, to

generate the node’s outgoing messages. Messages will be
dispatched to all neighbors, which will eventually be collected
by the gather stage of the next layer.

Idle time: 
Imbalanced 
NT and MP

Node queue

NT
MP

NT

MP

NT

MP

Idle time: NT and MP are not 
pipelined within one node

NT

MP

1

1

2

2

3

3

4

4

1 2 3 4

1 2 3 4

1
2

3
4

Unit 1
Unit 2

NT and MP 
pipelined 
within one 
node

U2’s dest. nodes 

Unit 1
Unit 2

U1’s dest. nodes 

(a) Non‐pipeline (b) Fixed pipeline

(c) Baseline dataflow pipeline (d) FlowGNN pipeline with multiple NT/MP

Fig. 4. Different strategies of pipelining of node transformation (NT) and
message passing (MP). The proposed FlowGNN pipeline in (d) explores
node/edge level parallelism and can pipeline NT and MP within one node.

A complete GNN model may consist of multiple layers,
each with message passing and node transformation steps. For
graph-level tasks, a global pooling layer is needed, possibly
followed by MLP layers for final prediction.

C. Baseline Dataflow Architecture

To explicitly support the message passing mechanism, we
first propose the baseline dataflow architecture, shown in
Fig. 3(a). It has two major processing components: one Node
Transformation (NT) unit (yellow block), and one Message

5

https://finn.readthedocs.io/en/latest/
https://github.com/thesps/conifer
http://fwx.pitt.edu/
https://github.com/sharc-lab/flowgnn
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Motivation behind efficient model design and some highlights 

Introduction to Quantization 
• Definition 
• PTQ vs QAT 

Introduction to Pruning 
• What is pruning? How to formulate pruning? 
• Determine pruning granularity and criteria 
• Network performance after pruning 

ML on FPGA 

hls4ml and Trigger applications
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Let’t Go through the hls4ml Demo
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JupyterHub access (for efficient_ml tutorial) 

• Join hls4ml-tutorial GitHub Organization (check your email for invite) 
•Your should be able to see yourself here: 
 https://github.com/orgs/hls4ml-tutorial/people 

JupyterHub link 

•Open https://tutorials.fastmachinelearning.org in your web browser 
•Authenticate with your GitHub account (login if necessary)

Official hls4ml tutorials: 
https://fastmachinelearning.org/hls4ml-tutorial/README.html

https://github.com/ml4fp/2024-lbnl/tree/main/efficient_ml#jupyterhub-access-for-hls4ml-tutorial
https://github.com/orgs/hls4ml-tutorial/people
https://github.com/ml4fp/2024-lbnl/tree/main/efficient_ml#jupyterhub-link
https://tutorials.fastmachinelearning.org/
https://fastmachinelearning.org/hls4ml-tutorial/README.html
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Quantization
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Quantization – Reducing the bit precision used for NN arithmetic 

Why this is necessary?  
• Floating-point operations (32 bit numbers) on an FPGA consumes large resources 
• Not necessary to do it for desired performance 

• hls4ml uses fixed-point representation for all computations  
▪ Operations are integer ops, but we can represent fractional values
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Parallelization

77

• Trade-off between latency and FPGA resource usage determined by the parallelization of 
the calculations in each layer  

• Configure the “reuse factor” = number of times a multiplier is used to do a computation
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Application: Measure Muon pT at  40 MHz

78

• NN measures muon momentum 

• 3× reduction in the trigger rate for NN! 

• Fits within L1 trigger latency (240 ns!) and FPGA 
resource requirements (less then 30%)

98 Chapter 3. Trigger algorithms
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Figure 3.33: Left: endcap trigger rate comparison of the Phase-1 EMTF and the Phase-2
EMTF++ algorithms as a function of pT threshold for events with 200 average pileup. Right:
Trigger rate comparison as a function of PU for a pT > 20 GeV threshold.

The same 6 h zones are retained for a total of 54 patterns per 0.5-degree in f, as for the prompt
muon patterns. Figure 3.31 (right) shows these patterns.

The TP information in the stations from stubs that satisfy a displaced pattern are input to a NN
that in this case has been trained to perform a regression that returns simultaneously values for
1/pT and d0 of displaced muons. The NN configuration used is the same as that for prompt
muons, using 3 hidden layers with 30/25/20 nodes each. Batch normalization is inserted after
each layer, including the input layer. A total of 23 inputs are used in the NN, these are:

• 6 Df quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 6 Dq quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 4 bend angles: set to zero if no CSC stub is found and only RPC stub is used
• For ME1 only: 1 bit for front or back chambers and 1 bit for inner or outer h ring
• 1 track q taken from stub coordinate in ME2, ME3, ME4 (in this priority)
• 4 RPC bits indicating if ME or RE stub was used in each station (S1, S2, S3, S4)

At the time of this writing, information from the new Phase-2 detectors (GE1/1, GE2/1, ME0,
iRPC) has not been incorporated into the study, and neither has the more precise CSC bend
information described above. As such, this study is geared towards possible implementation of
this algorithm during Run-3. An update to incorporate new Phase-2 detector information is in
progress. The already positive conclusions on triggering on standalone displaced muons in the
endcap with only the Phase-1 detectors, as shown below, is expected to improve significantly
when all Phase-2 information is included.

Figure 3.34 shows, for events with single muons and no pileup, the q/pT and the d0 resolutions
as determined by the NN estimate of these quantities. The pT resolution is about 60%, which
is large compared to the 20% resolution obtained from EMTF++ for prompt muons. A bias
towards underestimating the pT can be observed. However, the d0 resolution is very good,
⇠ 5 cm. Figure 3.35 shows the trigger rates of the displaced muon algorithm for PU 200 events.
In order to keep the rates at approximately the same 10 kHz level as those from prompt muons,
reasonable L1 thresholds of, for example, pT > 20 GeV and |d0| > 20 cm can be applied.

CMS-TDR-021

Dec 8, 2019 10

Can be done on the FPGA!

At each node, compute

ML framework: 
 

Loss function: Huber loss [Wikipedia]
 

Activation function: ReLU
 

Batch normalization: applied right after the 

        input layer and in each hidden layer

Training dataset: 2M muons
 

Testing dataset: 1M muons

pT assignment with NN

�1

Dense Network 
23 ➜ 30 ➜ 25 ➜ 20  

➜ momentum & classifier

Inference time: 280 ns 
Throughput: 104 Gb/s

AI circuit for ultrafast inference on FPGA

240 

https://cds.cern.ch/record/2714892
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Application: ATLAS LAr Calorimeter
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Convolutional and Recurrent Neural 
Networks  
for real-time energy reconstruction of 
ATLAS LAr Calorimeter for Phase 2 

• Up to around 600 calorimeter channels 
processed by on device 

• 200 ns latency of predictions 

• Implemented on Intel FPGAs (previous 
examples are all AMD) 

- Team contributed majorly to RNN and 
Intel implementations of hls4ml

10.1007/s41781-021-00066-y

https://link.springer.com/article/10.1007/s41781-021-00066-y
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Application: Anomaly Detection
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• Challenge: if new physics has an unexpected signature that doesn’t align with existing triggers, 
precious BSM events may be discarded at trigger level 

• Can we use unsupervised algorithms to detect non-SM-like anomalies? 

• Autoencoders (AEs): compress input to a smaller dimensional latent space then decompress and 
calculate difference 

• Variational autoencoders (VAEs): model the latent space as a probability distribution; possible to 
detect anomalies purely with latent space variables

6

AUTOENCODERS FOR ANOMALY DETECT ION

Using Autoencoders for anomaly detection 
Encode input in smaller dimensional space 
Train on typical LHC background 
Anomalous data will have higher loss  
Calculating the loss requires to store the input until the 
output is computed

3.2 Baseline performance

The models described in the previous section are trained with floating point precision on an NVIDIA RTX2080 GPU.
We refer to these models as baseline (B). Figures 4 and 5 shows the distribution of the anomaly-detection scores
considered in this paper (IO AD for the AE models, Rz and DKL(ADs for the VAE models). For completeness, results
obtained from the IO AD score of the VAE models are also shown.

Figure 4: Distribution of four anomaly detection scores (IO AD for AE and VAE models, Rzand DKLADs for the VAE
models) for the DNN model, for the SM cocktail and the four new physics benchmark models.

The model performance is assessed using the four new physics benchmark models. The receiver operating characteristic
(ROC) curves in Fig. 6 show the dependence of the true positive rate (TPR) as a function of the false positive rate (FPR),
computing by changing the lower threshold applied on the different anomaly scores. We further quantify the anomaly
detection performance quoting the area under the ROC curve (AUC) and the TPR corresponding to to a working point
of SM false positive rate "SM = 10

�5 (see Table 1), which corresponds to the average of ⇡ 1000 SM events accepted
every month [1].
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VARIAT IONAL AUTOENCODERS FOR ANOMALY DETECT ION
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Using Variational Autoencoders for anomaly detection 
The latent space is sampled from Encoder output 
Can be used to generate new samples 
Inference can be done only on the latent space 
No need to store input and deployment of Encoder is enough 
(e.g. saves resources and latency in comparison to AE)

Nat. Mach. Intell. 4, 154 (2022)
Data challenge: mpp-hep.github.io/ADC2021

5

term [57] usually adopted for VAEs

DKL(~µ,~�) = �
1

2

X

i

�
log(�2

i )� �2
i � µ2

i + 1
�
, (2)

and � is a hyperparameter defined in the range [0, 1] [58].

Both models are trained for 100 epochs with a batch size
of 1024, using early stopping if there is no improvement in
the loss observed after ten epochs. All models are trained
with floating point precision on an NVIDIA RTX2080
GPU. We refer to these as the baseline floating-point
(BF) models.

IV. ANOMALY DETECTION SCORES

An autoencoder is optimized to retain the minimal set
of information needed to reconstruct a accurate estimate
of the input. During inference, an autoencoder might have
problems generalizing to features it was not exposed to
during training. Selecting events where the autoencoder
output is far from the given input is often seen as an
e↵ective AD algorithm. For this purpose, one could use
a metric that measures the distance between the input
and the output. The simplest solution is to use the same
metric that defines the training loss function. In our case,
we use the MSE between the input and the output. We
refer to this strategy as input-output (IO) AD.

In the case of a VAE deployed in the L1T, one cannot
simply exploit an IO AD strategy since this would require
sampling random numbers on the FPGA. The trigger
decision would not be deterministic, something usually
tolerated only for service triggers, and not for triggers
serving physics studies. Moreover, one would have to store
random numbers on the FPGA, which would consume
resources and increase the latency. To deal with this
problem, we consider an alternative strategy by defining
an AD score based on the ~µ and ~� values returned by
the encoder (see Eq. (1)). In particular, we consider two
options: the KL divergence term entering the VAE loss
(see Eq. (2)) and the z-score of the origin ~0 in the latent
space with respect to a Gaussian distribution centered at
~µ with standard deviation ~� [10]:

Rz =
X

i

µ2
i

�2
i

. (3)

These two AD scores have several benefits we take advan-
tage of: Gaussian sampling is avoided; we save significant
resources and latency by not evaluating the decoder; and
we do not need to bu↵er the input data for computation
of the MSE. During the model optimization, we tune
� so that we obtain (on the benchmark signal models)
comparable performance for the DKL AD score and the
IO AD score of the VAE.

V. PERFORMANCE AT FLOATING-POINT
PRECISION

The model performance is assessed using the four new
physics benchmark models. The anomaly-detection scores
considered in this paper are IO AD for the AE models,
Rz and DKL ADs for the VAE models. For completeness,
results obtained from the IO AD score of the VAE models
are also shown. The receiver operating characteristic
(ROC) curves in Figures II and III show the true positive
rate (TPR) as a function of the false positive rate (FPR),
computed by changing the lower threshold applied on the
di↵erent anomaly scores. We further quantify the AD
performance quoting the area under the ROC curve (AUC)
and the TPR corresponding to a FPR working point of
10�5 (see Table I), which on this dataset corresponds to
the reduction of the background rate to approximately
1000 events per month.

From the ROC curves, we conclude that DKL can be
used as an anomaly metric for both the DNN and CNN
VAE. This has the potential to significantly reduce the
inference latency and on-chip resource consumption as
only half of the network (the encoder) needs to be evalu-
ated and that there no longer is a need to bu↵er the input
in order to compute an MSE loss. The Rz metric per-
forms worse and is therefore not included in the following
studies.

VI. MODEL COMPRESSION

We adopt di↵erent strategies for model compression.
First of all, we compress the BF model by pruning the
dense and convolutional layers by 50% of their connec-
tions, following the same procedure as Ref. [19]. Pruning
is enforced using the polynomial decay implemented in
TensorFlow pruning API, a Keras-based [59] inter-
face consisting of a simple drop-in replacement of Keras
layers. A sparsity of 50% is targeted, meaning only 50%
of the weights are retained in the pruned layers and the
remaining ones are set to zero. The pruning is set to start
from the fifth epoch of the training to ensure the model
is closer to a stable minimum before removing weights
deemed unimportant. By pruning the BF model layers
to a target sparsity of 50%, the number of floating-point
operations required when evaluating the model, can be
significantly reduced. We refer to the resulting model
as the baseline pruned (BP) model. For the VAE, only
the encoder is pruned, since only that will be deployed
on FPGA. The BP models are taken as a reference to
evaluate the resource saving of the following compression
strategies, including QAT and PTQ.
Furthermore, we perform a QAT of each model de-

scribed in Section III, implementing them in the QKeras
library [23]. The bit precision is scanned between 2 and
16 with a 2-bit step. When quantizing a model, we also
impose a pruning of the dense (convolutional) layers by
50%, as done for the DNN (CNN) BP models. The results

Key observation: Can build an anomaly score 
from the latent space of VAE directly! No need 
to run decoder!

https://doi.org/10.1038/s42256-022-00441-3
https://mpp-hep.github.io/ADC2021
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Application: CMS Anomaly Trigger
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CMS has implemented a similar idea: AXOL1TL 

• L1 Hardware implemented VAE-based AD trigger 
(based on https://arxiv.org/abs/2108.03986)  

• Trained on 2018 zerobias data, ran in 2023 Global 
Trigger Test Crate 

• CMS is also developing CICADA, a calorimeter only 
AD trigger

Event display of the 
highest anomaly score

CMS-DP-2023-079

Similar effort is ongoing  in ATLAS 

https://cds.cern.ch/record/2876546


Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference 

Low-latency Transformers

82

Transformer Block

Inputs

Flatten

Feed Forward (3 Dense)
Units = [32, 16, 8]

Output Layer
Softmax

Output 
class probability: b / c / light

x 3

 Observed Inference Latency ~ 2-6 s μ

arXiv:2402.01047

https://arxiv.org/abs/2402.01047
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Summary
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• Efficient model design is becoming more important as the 
models are getting bigger 

• Several tricks to design efficient ML inference 
• Some popular method: Pruning and Quantization 
• Need to optimize pruning and quantization strategy for 

satisfactory results 
• Another effective technique: Knowledge Distillation  

• ML-based algorithms are getting popular for experimental 
trigger applications 

• Efficient ML techniques  are  crucial for real-time inference 

32-bit floating-point (FP32)

16-bit (FP16) / 8-bit (FP8)

INT / fixed-point



End of the Lesson 
Thank you for your attention and participation
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Knowledge Distillation
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One Example: particle physics application



Thank You!



Extra Slides
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Magnitude-based Pruning
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2

7

-4

-1

Importance

Pruned

Preserved

Pruned WeightOriginal Weight

Row-wise

| |W(S) | | = (∑
i∈S

|wi |
n )

1
n

Ln-norm

( |2 |2 + | − 4 | )1/n

( |7 |p + | − 1 |p )1/n)

= 501/p 501/n

-

-

-

-

201/n

Row-wise pruning using Ln-norm

We can define Ln norm as: 

= a structural set of parameters WS

201/p
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Neural Network Pruning: Formulation
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Neural network model f(x; W)

f(x; M ⊙ W′￼p)

M ∈ {0,1}|W′￼|

M is binary mask 
tensor that fixes 
certain parameters 
to 0

arg min
Wp

L(x; Wp) ∥Wp∥0 < N

subject to sparsity ratio —> least significant / important connections / neurons

Pruning

Pruned model

Element-wise 
product operator

⊙

arg min
Wp

L(x; Wp)

x

# of non-zero weights 
Total # of weights

Sparsity = 

Calculate  

Remove least important connections such that


