Efficient Machine Learning Model Design Techniques for Fast Inference

Elham E Khoda San Diego Supercomputing Center, UCSD

ML4FP

Lawrence Berkeley National Lab

Machine Learning for Fundamental Physics School 2024

August 15, 2024

We will use a different Jupyterhub for this session!

JupyterHub access (for efficient_ml tutorial)

- Your should be able to see yourself here: https://github.com/orgs/hls4ml-tutorial/people

JupyterHub link

• Open <u>https://tutorials.fastmachinelearning.org</u> in your web browser • Authenticate with your GitHub account (login if necessary)

• Join hls4ml-tutorial GitHub Organization (check your email for invite)

Lecture Outline

Motivation behind efficient model design and some highlights

Introduction to Quantization

- Definition
- PTQ vs QAT

Introduction to Pruning

- What is pruning? How to formulate pruning?
- Determine pruning granularity and criteria
- Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Lecture Outline

Motivation behind efficient model design and some highlights

Introduction to Quantization

- Definition
- PTQ vs QAT

Introduction to Pruning

- What is pruning? How to formulate pruning?
- Determine pruning granularity and criteria
- Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Large Models are everywhere

T1037 / 6vr4 90.7 GDT (RNA polymerase domain) **T1049 / 6y4f** 93.3 GDT (adhesin tip)

Experimental result

Computational prediction

Article Highly accurate protein structure prediction with AlphaFold

Large Language Models: GPT

what do you know about the Machine Learning for Fundamental Physics School 2024 at LBNL?

Searched 4 sites

\$

The Machine Learning for Fundamental Physics (ML4FP) School 2024 is taking place from A 12 to 16, 2024, at Lawrence Berkeley National Laboratory (LBNL). The program is designed to offer in-depth training on applying machine learning techniques to problems in fundamental physics. This event follows successful similar programs in recent years and is open to participants from the particle physics community, both in-person and virtually.

The curriculum includes a mix of lectures, hands-on tutorials, and interactive sessions, focusing on areas such as anomaly detection, generative models, likelihood-free inference, and physicsaware learning. The school aims to enhance interdisciplinary collaboration by bringing together experts and students in both machine learning and physics.

Additionally, resources such as Jupyter notebooks and learning materials used during the school are publicly available via GitHub, allowing participants and others interested to explore the content in their own time (Berkeley Lab Physics Division (Indico)) (GitHub) (LBL Physics).

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Example of GPT-4 visual input:

User

What is funny about this image? Describe it panel by panel.

Source: https://www.reddit.com/r/hmmm/comments/ubab5v/hmmm/

GPT-4 The image shows a package for a "Lightning Cable" adapter with three panels.

> Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin connector typically used for computer monitors) plugged into its charging port.

> Panel 2: The package for the "Lightning Cable" adapter with a picture of a VGA connector on it.

> Panel 3: A close-up of the VGA connector with a small Lightning connector (used for charging iPhones and other Apple devices) at the end.

> The humor in this image comes from the absurdity of plugging a large, outdated VGA connector into a small, modern smartphone charging port.

Table 3. Example prompt demonstrating GPT-4's visual input capability. The prompt consists of a question about an image with multiple panels which GPT-4 is able to answer.

λugι	ıst
------	-----

Large Language Models

GPT-3

175,000,000,000

~0.16% of parameters of your brain

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

100,000,000,000,000

Almost all the neurons in your brain?

GPT-3 Training and Inference

GPT-3 Training

- 285,000 CPUs
- 10,000 GPUs
- 400 Gbits/sec network
- Several weeks

Nvidia Blog

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Inference: Asking Question to ChatGPT

How many GPUs are you using currently?

ChatGPT

You

As an AI language model, I don't have access to real-time information about my current computational resources or the infrastructure being used to host me. My availability and performance are managed by OpenAI's servers, which may utilize GPUs or other computational resources based on demand and system configuration. Therefore, I cannot provide information on the number of GPUs currently being used.

GPT-3: 10x larger than max memory in a single Nvidia A100 GPU

Millions of queries daily 1 GWh each day \approx 33,000 U.S. households

Al and Memory Wall

Medium blog: AI and Memory Wall

Al and Memory Wall

Medium blog: AI and Memory Wall

Machine Learning Inference

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

11

Computing Hardware

Second stage of LHC trigger

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

12

HL-LHC Data Processing

Challenges: Each collision produces O(10³) particles The detectors have O(10⁸) sensors Extreme data rates of O(100 TB/s)

Simplified HL-LHC Trigger

- Single/double/triple muons/electrons
- Photons
- Taus
- Hadronic

4-jet event

- Missing transverse energy
- "Cross" triggers (not shown)

<u>CMS-TDR-021</u>

	Trigger	Threshold [Ge\
	1μ	22
	2μ	15, 7
	3 μ	5, 3, 3
	1 e	36
ds set by	2 e	25, 12
	1γ	36
	2γ	22, 12
	1 т	150
	2 т	90, 90
	1 jet	180
	2 jet	112, 112
	H _T	450
@ L1, and	4 jet + H _T	75, 55, 40, 40, 4
udget	PT ^{miss}	200

What could be missing?

- How can we trigger on more complex low-energy hadronic signatures? Long-lived/displaced particles?
- What if we don't know exactly what to look for?
- What if our signatures require complex multivariate algorithms (e.g. b tagging)?
- How can we improve on our traditional (often slow) reconstruction algorithms?

ML in Trigger

- (Variational) autoencoders for anomaly detection
- 1D convolutional neural networks for b-tagging
- Graph neural networks for tracking

What makes this Hard?

- Reconstruct all events and reject 98% of them in ~10 μ s
 - Algorithms have to be <1 μ s and process new events every (25 ns) \times N_{tmux}
- Latency necessitates all FPGA design

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Credit: Javier Duarte

Codesign

- **Codesign**: intrinsic development loop between ML design, training, and implementation
- Pruning
 - Maintain high performance while removing redundant operations
- Quantization
 - Reduce precision from 32-bit floating point to 16-bit, 8-bit, ...
- Parallelization
 - Balance parallelization (how fast) with resources needed (how costly)

What features / properties do you expect in an "efficient" ML model?

Think about it for 30 seconds and share your answer

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

19

What features / properties do you expect in an "efficient" ML model?

Think about it for 30 seconds and share your answer

- Smaller in size
- Requires less computing resources for training and / or inference
- Runs faster during inference (prediction stage)
- Uses less power
- Should scale well with increasing data volume

Question #1

Lets discuss

some of the techniques to design Efficient Deep Learning models

Efficient Model Design

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Tensor Decomposition

Reduce the dimension of the weight matrix / tensor

Neural Architecture Search

Finding the optimal model architecture

Lecture Outline

Motivation behind efficient model design and some highlights

Introduction to Quantization

- Definition
- PTQ vs QAT

Introduction to Pruning

- What is pruning? How to formulate pruning?
- Determine pruning granularity and criteria
- Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Quantization is the process of constraining an input from a continuous or otherwise large set of values to a discrete set

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Quantization

Numerical Data Types

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

GPT-3 Memory

GPT-3 ~175,000,000,000

~700 GB of memory

(175 B par x 4 bytes/par) ~10x larger than max memory in a single Nvidia A100 GPU

~350 GB of memory

- (175 B par x 2 bytes/par)
- ~ 5 Nvidia A100 GPUs
- ~ 11 Nvidia V100 GPUs

Quantization: using reduced precision for parameters and operations

Fixed-point precision

Affine Integer Quantization

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Quantization Types

ap_fixed<width bits, integer bits> 0101.1011101010

Affine Integer Quantization

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Quantization Strategies

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Post Training Quantization

- PyTorch (limited options)
- TensorFlow (limited options)
- ONNX (in development)

Quantization-Aware Training

• QKeras • PyTorch (limited options) TensorFlow (limited options) QONNX (in development)

Post-training Quantization (PTQ) vs Quantization-Aware Training (QAT)

Advantages and disadvantages of PTQ?

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Question #2

Post-training Quantization (PTQ) vs Quantization-Aware Training (QAT)

	QAT
	Slow
l	Model needs to be trained/finetuned
n	Plug and play of quantization schemes (requires re-training)
y of	More control over final accuracy since <i>q-params</i> are learned during training.

Quantization Survey paper https://arxiv.org/pdf/2103.13630

MIT Efficient ML Course: https://hanlab.mit.edu/courses/2023-fall-65940

TensorFlow model_optimization: https://www.tensorflow.org/lite/performance/model optimization

PyTorch Quantization: https://pytorch.org/docs/stable/quantization.html

Quantization References

Lecture Outline

Motivation behind efficient model design and some highlights

Introduction to Quantization

- Definition
- PTQ vs QAT

Introduction to Pruning

- What is pruning? How to formulate pruning?
- Determine pruning granularity and criteria
- Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Neural Network Pruning

- > 90% reduction in parameter count
- Decreasing the storage requirements
- Improving computation efficiency

Model accuracy loss was negligible

	#Parameters		
Neural Network	Before Pruning	After Pruning	Reduction
AlexNet	61 M	6.7 M	9 ×
VGG-16	138 M	10.3 M	12 ×
GoogleNet	7 M	2.0 M	3.5 ×
ResNet50	26 M	7.47 M	3.4 ×

Results are from Efficient Methods and Hardware for Deep Learning [Han, S, Stanford University]

What is pruning?

Neural Network Pruning

Pruning is the technique to remove less important connections and neurons

Pruning happens in Human Brain

No. Of Synapses

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Pruning workflow

pruned weight

Weight Pruning: Formulation

 $\|W_p\|_0 < N$ Remove least important connections such that

 W_p is the pruned weight matrix

N = target #non-zero weights

Sparsity = $\frac{\# \text{ of non-zero weights}}{\text{Total } \# \text{ of weights}} = \frac{\|W_p\|_0}{\|W_p\|}$

Example 50% sparsity means half of the weight are pruned

Lecture Outline

Motivation behind efficient model design and some highlights

Introduction to Quantization

- Definition
- PTQ vs QAT

Introduction to Pruning

- What is pruning? How to formulate pruning?
- Determine pruning granularity and criteria
- Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Example: 2D weight matrix (8x8)

NN layer computation

Layer input = $x_1 \in \mathbb{R}^{m_1}$ Weight = $\mathbf{W}_1 \in \mathbb{R}^{m_2 \times m_1}$, Bias = $b_1 \in \mathbb{R}^{m_2}$ Layer output = $x_2 \in \mathbb{R}^{m_2}$

$$x_2 = \mathbf{W}_1 \cdot \mathbf{x}_1 + b_1$$

Example: 2D weight matrix (8x8)

Fine-grained / Unstructured Pruning

• Flexible pruning index

Example: 2D weight matrix (8x8)

Coarse-grained / Structured Pruning

• Less flexible pruning index

Unstructured Pruning

Which statement is more accurate?

Context: neural network (NN) inference / prediction stage

B. Accelerating NN models is easier after structured pruning (weight matrix) C. Both methods offer similar ease of acceleration D. The original network (before pruning) will be faster

Question #3

A. Accelerating NN models is easier after unstructured pruning (weight matrix)

Unstructured Pruning

Which statement is more accurate?

Context: neural network (NN) inference / prediction stage

A. Accelerating NN models is easier after unstructured pruning (weight matrix) **B.** Accelerating NN models is easier after structured pruning (weight matrix) C. Both methods offer similar ease of acceleration D. The original network (before pruning) will be faster

Question #3

Example: 2D weight matrix (8x8)

Coarse-grained / Structured Pruning

- Less flexible pruning index
- Small regular matrix \rightarrow easy to accelerate

Mention hardware

Pattern-based Pruning

Pruning with N:M sparsity = In each M contiguous elements, N of them are pruned **Example:** 2:4 sparsity (50% sparsity)

It is supported by Nvidia's Ampere GPU architecture (eg A100)

<u>Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT</u>

Lecture Outline

Motivation behind efficient model design and some highlights

Introduction to Quantization

- Definition
- PTQ vs QAT

Introduction to Pruning

- What is pruning? How to formulate pruning?
- Determine pruning granularity and criteria
- Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Pruning Criteria

Goal: **Remove less important parameters from a neural network**

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Example

ReLU Activation $f(\cdot) = \text{ReLU}(\cdot)$ Weights: W = [-5, 12, 0.2] $y = \text{ReLU}(-5x_1 + 12x_2 + 0.2x_3)$

If we want to remove one weight, then which one?

Element-wise pruning using absolute magnitude

Magnitude-based pruning considers weights with larger absolute values are more important than other weights.

Importance = $|W_i|$

Original Weight

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Magnitude-based Pruning

Importance

Pruned Weight

Magnitude-based Pruning

Row-wise pruning

Magnitude-based pruning considers weights with larger absolute values are more important than other weights.

Importance =

Original Weight

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Importance

Pruned Weight

Row-wise pruning Come up with a strategy to prune a whole row. 2 minutes

Original Weight

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Question #4

Importance

Pruned Weight

Magnitude-based Pruning

Row-wise pruning using L1-norm

Original Weight

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Importance

Pruned Weight

Magnitude-based Pruning

Row-wise pruning using L2-norm

Original Weight

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Importance

Pruned Weight

There are many other ways!

We highlighted magnitude-based weight pruning \rightarrow You can use any fancy or complicated function that meets your requirements

• Neuron Pruning

Some other methods:

• Second-order derivative-based pruning \rightarrow Minimizes the error on loss function introduced by pruned synapses $\delta L = L(x; W) - L(x; W_p = W - \delta W)$

Channel pruning for convolution neural networks

• Regression pruning

 \rightarrow Minimize error of a corresponding layer's output: before and after pruning

Lecture Outline

Motivation behind efficient model design and some highlights

Introduction to Quantization

- Definition
- PTQ vs QAT

Introduction to Pruning

- What is pruning? How to formulate pruning?
- Determine pruning granularity and criteria
- Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

What trend do you expect in the accuracy-loss vs pruning ratio plot beyond 50% pruning ratio?

Assume: the model performance did not degrade after 50% pruning

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

The model performance may decrease after pruning

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Accuracy loss in pruning

Learning both Weights and Connections for Efficient Neural Networks {Han et al., NeurIPS 2015

The model performance may decrease after pruning

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Accuracy loss in pruning

Learning both Weights and Connections for Efficient Neural Networks {Han et al., NeurIPS 2015

Neural Network pruning survey paper: https://arxiv.org/abs/2308.06767

MIT Efficient ML Course: https://hanlab.mit.edu/courses/2023-fall-65940

TensorFlow pruning guide: <u>https://www.tensorflow.org/model_optimization/guide/pruning/comprehensive_guide</u>

PyTorch pruning tutorial: https://pytorch.org/tutorials/intermediate/pruning_tutorial.html

Pruning References

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Key Points

Let's practice it

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Jupyter Link https://tutorials.fastmachinelearning.org

Instructions are also on GitHub <u>https://github.com/ml4fp/2024-lbnl/tree/main/efficient_ml</u>

Start your Jupyterhub Note it is a different jupyterhub compared to the other days

Checkout the tutorial repo: <u>https://github.com/ml4fp/2024-lbnl.git</u>

Example: Jet Classification

Jet Classification: 5-Class classifier

Five class classifier

0.08

0.06

0.04

0.02

0.00

A.U.

Sample: ~ 1M events with two boosted WW/ZZ/tt/qq/gg anti-kT jets

Observables

$$m_{mMDT}$$

$$N_{2}^{\beta=1,2}$$

$$M_{2}^{\beta=1,2}$$

$$C_{1}^{\beta=0,1,2}$$

$$C_{2}^{\beta=0,1,2}$$

$$D_{2}^{\beta=1,2}$$

$$D_{2}^{\beta=1,2}$$

$$D_{2}^{(\alpha,\beta)=(1,1),(1,2)}$$

$$\sum z \log z$$
Multiplicity

Lecture Outline

Motivation behind efficient model design and some highlights

Introduction to Quantization

- Definition
- PTQ vs QAT

Introduction to Pruning

- What is pruning? How to formulate pruning?
- Determine pruning granularity and criteria
- Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Modern FPGAs

Pros:

- Reprogrammable interconnects between embedded components that perform multiplication (DSPs), apply logical functions (LUTs), or store memory (BRAM)
- High throughput I/O: O(100) optical transceivers running at O(15) Gbps
- Massively parallel
- Low power

Cons:

Requires domain knowledge to program (using VHDL/Verilog)

Why FPGA at LHC?

High parallelism \triangle = Low latency や • Can work on different data simultaneously (pipelining)! High bandwidth

Power efficient

• FPGAS ~ x10 more power efficient than GPUs

Latency deterministic

• FPGAs repeatable and predictable latency

Latency is fixed by proton collisions occurring at 40 MHz, cannot tolerate slack

FPGA Programming

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

FPGA Programming

Efficient L1T firmware design requires expertise

- FPGA deployment in busy devices
- « 1µs latency target

Not well served by industry tools!

Inference on FPGA

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

up to ~6k parallel operation (VU9P)

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

JINST 13, P07027 (2018)

FPGA flow

ASIC flow

Many tools with different strengths

- FINN (NNs): <u>https://finn.readthedocs.io/en/latest/</u>
- Confier (BDTs): <u>https://github.com/thesps/conifer</u>
- fwXMachina (BDTs): <u>http://fwx.pitt.edu/</u>
- FlowGNN: <u>https://github.com/sharc-lab/flowgnn</u>

Lecture Outline

Motivation behind efficient model design and some highlights

Introduction to Quantization

- Definition
- PTQ vs QAT

Introduction to Pruning

- What is pruning? How to formulate pruning?
- Determine pruning granularity and criteria
- Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Let't Go through the hls4ml Demo

hls 4

JupyterHub access (for efficient_ml tutorial)

- Your should be able to see yourself here: https://github.com/orgs/hls4ml-tutorial/people

JupyterHub link

- Authenticate with your GitHub account (login if necessary)

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Official hls4ml tutorials: https://fastmachinelearning.org/hls4ml-tutorial/README.html

Join hls4ml-tutorial GitHub Organization (check your email for invite)

• Open https://tutorials.fastmachinelearning.org in your web browser

Quantization – Reducing the bit precision used for NN arithmetic

Why this is necessary?

- Floating-point operations (32 bit numbers) on an FPGA consumes large resources
- Not necessary to do it for desired performance
- hls4ml uses fixed-point representation for all computations
 - Operations are integer ops, but we can represent fractional values

Quantization

0101.1011101010

fractional

width

Parallelization

- Trade-off between latency and FPGA resource usage determined by the parallelization of the calculations in each layer
- Configure the "reuse factor" = number of times a multiplier is used to do a computation

use 2 multipliers 2 times eac

use 4 multipliers 1 time each

More resources Higher throughput, Lower latency

Fewer resources, Lower throughput, **Higher latency**

Application: Measure Muon p_T at 40 MHz

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Application: ATLAS LAr Calorimeter

Convolutional and **Recurrent Neural** Networks for real-time energy reconstruction of **ATLAS LAr Calorimeter for Phase 2**

- Up to around 600 calorimeter channels processed by on device
- 200 ns latency of predictions
- Implemented on Intel FPGAs (previous) examples are all AMD)

- Team contributed majorly to RNN and Intel implementations of hls4ml

Application: Anomaly Detection

- Challenge: if new physics has an unexpected signature that doesn't align with existing triggers, precious BSM events may be discarded at trigger level
- Can we use unsupervised algorithms to detect non-SM-like anomalies?
 - Autoencoders (AEs): compress input to a smaller dimensional latent space then decompress and calculate difference
 - Variational autoencoders (VAEs): model the latent space as a probability distribution; possible to detect anomalies purely with latent space variables

Data challenge: mpp-hep.github.io/ADC2021

adale R and D. A De for the VAR

Key observation: Can build an anomaly score from the latent space of VAE directly! No need to run decoder!

Application: CMS Anomaly Trigger

CMS has implemented a similar idea: AXOL1TL

- L1 Hardware implemented VAE-based AD trigger (based on https://arxiv.org/abs/2108.03986)
- Trained on 2018 zerobias data, ran in 2023 Global Trigger Test Crate
- CMS is also developing CICADA, a calorimeter only AD trigger

Similar effort is ongoing in ATLAS

CMS-DP-2023-079

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

AXOL TL

Event display of the highest anomaly score

Low-latency Transformers

Reuse and clk	Interval (cycle)	Latency (cycles)	Late
R1 (6.577 ns)	49	269	2.07
R2 (6.215 ns)	65	449	3.46
R4 (4.723 ns)	100	768	5.85

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

2024 Feb [cs.LG] arXiv:2402.01047v1

Ultra Fast Transformers on FPGAs for Particle Physics Experiments

Zhixing Jiang University of Washington Zhixij@uw.edu

Dennis Yin University of Washington lostecho@uw.edu

Elham E Khoda University of Washington ekhoda@uw.edu

Vladimir Loncar* Massachusetts Institute of Technology vloncar@mit.edu

Eric Moreno Massachusetts Institute of Technology

Emoreno@mit.edu

Ekaterina Govorkova Massachusetts Institute of Technology katyag@mit.edu

Philip Harris Massachusetts Institute of Technology University of Washington University of Washington pcharris@mit.edu

Scott Hauck hauck@uw.edu

Shih-Chieh Hsu schsu@uw.edu

Abstract

This work introduces a highly efficient implementation of the transformer architecture on a Field-Programmable Gate Array (FPGA) by using the hls4ml tool. Given the demonstrated effectiveness of transformer models in addressing a wide range of problems, their application in experimental triggers within particle physics becomes a subject of significant interest. In this work, we have implemented critical components of a transformer model, such as multi-head attention and softmax layers. To evaluate the effectiveness of our implementation, we have focused on a particle physics jet flavor tagging problem, employing a public dataset. We recorded latency under 2 μ s on the Xilinx UltraScale+ FPGA, which is compatible with hardware trigger requirements at the CERN Large Hadron Collider experiments.

1 Introduction

Accelerated Machine Learning (ML) inference is necessary to run the algorithms in the online event selection systems of the particle physics experiments. Due to the extremely high particle collision

Observed Inference Latency ~ 2-6 µs

- Efficient model design is becoming more important as the models are getting bigger
- Several tricks to design efficient ML inference
 - Some popular method: Pruning and Quantization
 - Need to optimize pruning and quantization strategy for satisfactory results
 - Another effective technique: Knowledge Distillation

- ML-based algorithms are getting popular for experimental trigger applications
- Efficient ML techniques are crucial for real-time inference

Summary

End of the Lesson Thank you for your attention and participation

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

One Example: particle physics application

Efficient and Robust Jet Tagging at the LHC with Knowledge Distillation

Ryan Liu University of California, Berkeley Berkeley, CA 94720

Abhijith Gandrakota Fermi National Accelerator Laboratory Batavia, IL 60510

Jennifer Ngadiuba Fermi National Accelerator Laboratory Batavia, IL 60510

Maria Spiropulu California Institute of Technology Pasadena, CA 91125

Jean-Roch Vlimant California Institute of Technology Pasadena, CA 91125

85

Extra Slides

Row-wise pruning using *L_n***-norm**

Original Weight

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Magnitude-based Pruning

Importance

Pruned Weight

Neural Network Pruning: Formulation

Neural network model f(x; W)**Pruning** arg min $L(x; W_p)$ $W_{\mathcal{D}}$

Calculate

subject to sparsity ratio —> least significant / important connections /

Sparsity = $\frac{\# \text{ of non-zero weights}}{\text{Total } \# \text{ of weights}}$

 (\cdot) Element-wise product operator **Pruned model**

 $f(x; M \odot W'_p)$

 $M \in \{0,1\}^{|W'|}$

M is binary mask tensor that fixes certain parameters to O

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Remove least important connections such that $\|W_p\|_0 < N$

