
Efficient Machine Learning Model Design
Techniques for Fast Inference

Machine Learning for Fundamental Physics School 2024

Elham E Khoda
San Diego Supercomputing Center, UCSD

August 15, 2024

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

JupyterHub Access

2

We will use a different Jupyterhub for this session!

JupyterHub access (for efficient_ml tutorial)

• Join hls4ml-tutorial GitHub Organization (check your email for invite)
•Your should be able to see yourself here:
 https://github.com/orgs/hls4ml-tutorial/people

JupyterHub link

•Open https://tutorials.fastmachinelearning.org in your web browser
•Authenticate with your GitHub account (login if necessary)

https://github.com/ml4fp/2024-lbnl/tree/main/efficient_ml#jupyterhub-access-for-hls4ml-tutorial
https://github.com/orgs/hls4ml-tutorial/people
https://github.com/ml4fp/2024-lbnl/tree/main/efficient_ml#jupyterhub-link
https://tutorials.fastmachinelearning.org/

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Lecture Outline

3

Motivation behind efficient model design and some highlights

Introduction to Quantization
• Definition
• PTQ vs QAT

Introduction to Pruning
• What is pruning? How to formulate pruning?
• Determine pruning granularity and criteria
• Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Lecture Outline

4

Motivation behind efficient model design and some highlights

Introduction to Quantization
• Definition
• PTQ vs QAT

Introduction to Pruning
• What is pruning? How to formulate pruning?
• Determine pruning granularity and criteria
• Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Large Models are everywhere

5

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Large Language Models: GPT

6

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Large Language Models

7

?

GPT-4

GPT-3

~0.16% of parameters of your brain

175,000,000,000 100,000,000,000,000

Almost all the neurons in your brain?

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

GPT-3 Training and Inference

8

Inference: Asking Question to ChatGPT

GPT-3 Training
• 285, 000 CPUs
• 10,000 GPUs
• 400 Gbits/sec network
• Several weeks

Nvidia Blog

GPT-3: 10x larger than max memory in a single Nvidia A100 GPU

Millions of queries daily

1 GWh each day 33,000 U.S. households≈

https://developer.nvidia.com/blog/openai-presents-gpt-3-a-175-billion-parameters-language-model/

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

AI and Memory Wall

9

11 of these to fit one GPT-3 at the
inference time!

Each cost $10,000

Medium blog: AI and Memory Wall

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

AI and Memory Wall

10

11 of these to fit one GPT-3 at the
inference time!

Each cost $10,000

Medium blog: AI and Memory Wall

Efficient Deep Learning
is no longer a choice!

It is becoming a necessity

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Machine Learning Inference

11

Sec Milli
second
(10-3)

Micro
second
(10-6)

Nano
second
(10-9)

Google Search

Large Hadron Collider
40 million collisions /

sec
ChatGPT

Netflix

Finance / Trading
Neuroscience

1000
Seconds

(103)

Earthquake Warning

Inference Latency

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Computing Hardware

12

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Image: Microsoft

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Second stage
of LHC trigger

First stage of
LHC trigger

https://microsoft.github.io/ai-at-edge/docs/hw_acceleration/

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

HL-LHC Data Processing

13

1 ns 1 μs 1 s1 ms

Compute
Latency

FPGAs CPUs CPUs

High-Level
Trigger

7.5 kHz
1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline

Challenges:
Each collision produces O(103) particles
The detectors have O(108) sensors
Extreme data rates of O(100 TB/s)

ASICs
Exabyte-scale

datasets
GPUsGPUs

FPGAs

Other processors:
IPU, TPU ..

FPGAs
Other processors:

IPU, TPU ..

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Simplified HL-LHC Trigger

14

• Single/double/triple muons/electrons
• Photons
• Taus
• Hadronic
• Missing transverse energy
• “Cross” triggers (not shown)

Trigger Threshold [GeV]
1 μ 22
2 μ 15, 7
3 μ 5, 3, 3
1 e 36
2 e 25, 12
1 ɣ 36
2 ɣ 22, 12
1 τ 150
2 τ 90, 90

1 jet 180
2 jet 112, 112
HT 450

4 jet + HT 75, 55, 40, 40, 400
pTmiss 200

4-jet event

CMS-TDR-021

Thresholds set by
backgrounds, limited
resolution @ L1, and

rate budget

https://cds.cern.ch/record/2714892

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

What could be missing?

15

• How can we trigger on more complex low-energy
hadronic signatures? Long-lived/displaced particles?

• What if we don’t know exactly what to look for?
• What if our signatures require complex multivariate

algorithms (e.g. b tagging)?
• How can we improve on our traditional (often slow)

reconstruction algorithms?

HH → 4b

Soft Bombs

We’ll focus on a particularly egregious scenario: Quasi-conformal,
strongly-coupled HV from Q to ⇤
[Strassler: 0801.0629; Hatta, Matsuo: 0804.4733; Hofman, Maldacena: 0803.1467]

• Large ‘t-Hooft coupling ⁄ ≥ g
2
N ∫ 1: large angle emission

• Quasi-conformal dynamics: maximally e�cient showering down to ⇤

• Leads to ≥ spherically symmetric event, with multiplicity scaling linearly

Èn(Q)Í ≥

3
Q

⇤

41+1/
Ô

⁄

High multiplicity of soft particles
Event resembles pile-up
Passes minimum bias triggers with
very low e�ciency

Dean Robinson dean.robinson@uc.edu Soft Bombs 6/20
6/20

SUEP

?

?

g

g

7

A Kalman Filter for BMTF

Initialize

Propagate
Update

Propagate

Update

Propagate

Update

Propagate

Update

Vertex Unconstrained
Measurement

Vertex Constrained
Measurement

● Sequential algorithm: (mathematically equivalent to a χ2 fit)
● Propagate track inwards from station to station and match with a stub
● Update track parameters and continue

● After reaching station 1 save measurement without vertex constraint�

● Propagate to vertex and update vertex constrained measurement�

● Challenge for an FPGA implementation �Matrix algebra

https://profmattstrassler.com/2024/03/15/searching-for-suep-at-the-lhc/

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

ML in Trigger

16

• (Variational) autoencoders for anomaly detection
• 1D convolutional neural networks for b-tagging
• Graph neural networks for tracking

3

The inputs to the network are the top ten
PUPPI candidates ranked by pT within each jet.
The information for each particle candidate is:
particle type (one-hot encoded; 8 indices),
kinematic information (pT, η, φ scaled relative
to jet; 3 indices), and vertex information (z-
position and transverse impact parameter with
respect to the primary vertex; 2 indices).

The neural network architecture is based
around two 1D convolutional layers which act
as featurizers for inputs from each jet. The
resulting features are flattened and passed
through 3 dense layers to produce a single
value between 0 and 1. Scores close to 1
indicate jets that are likely to have originated
from bottom quarks, while scores close to 0
indicate jets that are likely to have originated
from light quarks or gluons.

pa
rti

cle
 0

pa
rti

cle
 1

pa
rti

cle
 2

pa
rti

cle
 9

. . .

(6 features/particle)

(20 features/particle)

(5 features/particle)
(50 features)

(20 features)

(10 features)

(1 feature)

b-tag score

Pointwise convolution

(per particle dense layer)

Dense layer

4

In
pu

t ∈
 ℝ

57

BN Dense ∈ ℝ32 Dense ∈ ℝ16 Latent space ∈ ℝ3 Dense ∈ ℝ16 Dense ∈ ℝ32 Dense ∈ ℝ57

ENCODER DECODER

Output:
Conv2d 4 (1,(3,3))

Block 3:
Dense (8)
Dense 1 (64)
ReLU
Reshape (2,1,32)

Block 1:
Conv2d (16,(3,3))  
ReLU
AvPooling (3,1)  

ReLU

Block 2:
Conv2d 1 (32,(3,1))  
ReLU
AvPooling (3,1)
Flatten (64)

Block 4:
Conv2d 2 (32,(3,1))  
ReLU
UpSampling (3,1)
ZeroPad (0,0),(1,1)

Block 5:
Conv2d 3 (16,(3,1))  
ReLU
UpSampling (3,1)
ZeroPad (1,0),(0,0)

Block 0:
Input 19x3x1
ZeroPadding (1,0)
BatchNorm

ReLU ReLU ReLU ReLU

FIG. I. Network architecture for the DNN AE (top) and CNN AE (bottom) models. The corresponding VAE models are derived
introducing the Gaussian sampling in the latent space, for the same encoder and decoder architectures (see text).

of the number of parallel processors. Since 19 is a prime
number, we choose to extend the input size to 20 before
passing it through the Conv2D layer. After padding, the
input is scaled by a batch normalization layer and then
processed by a stack of two CNN blocks, each including a
2D convolutional layer followed by a ReLU [55] activation
function. The first layer has 16 3 ⇥ 3 kernels, without
padding to ensure that pT, ⌘ and � inputs do not share
weights. The second layer has 32 3 ⇥ 1 kernels. Both
layers have no bias parameters and a stride set to one.
The output of the second CNN block is flattened and
passed to a DNN layer, with 8 neurons and no activation,
which represents the latent space. The decoder takes
this as input to a dense layer with 64 nodes and ReLU
activation, and reshapes it into a 2⇥ 1⇥ 32 table. The
following architecture mirrors the encoder architecture
with 2 CNN blocks with the same number of filters as in
the encoder and with ReLU activation. Both are followed
by an upsampling layer, in order to mimic the result of a
transposed convolutional layer.

Finally, one convolutional layer with a single filter and

no activation function is added. Its output is interpreted
as the AE reconstructed input. The CNN VAE is derived
from the AE, including the ~µ and ~� Gaussian sampling
in the latent space.
All models are implemented in TensorFlow, and

trained on the background dataset by minimizing a
customized mean squared error (MSE) loss with the
Adam [56] optimizer. In order to aid the network learn-
ing process, we use a dataset with standardized pT as a
target, so that all the quantities are O(1). To account
for physical boundaries of ⌘ and �, for those features a
re-scaled tanh activation is used in the loss computation.
In addition, the sum in the MSE loss is modified in order
to ignore the zero-padding entries of the input dataset
and the corresponding outputs. When training the VAE,
the loss is changed to:

L = (1� �)MSE(Output, Input) + �DKL(~µ,~�) , (1)

where MSE labels the reconstruction loss (also used in the
AE training), DKL is the Kullback-Leibler regularization

CMS-DP-2022-021

Nat. Mach. Intell. 4, 154 (2022)

Front. Big Data 5, 828666 (2022)

16

Credit: Javier Duarte

https://cds.cern.ch/record/2814728
https://doi.org/10.1038/s42256-022-00441-3
http://doi.org/10.3389/fdata.2022.828666

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

What makes this Hard?

17

• Reconstruct all events and reject 98% of them in ~10 μs

• Algorithms have to be <1 μs and process new events every (25 ns) ⨉ Ntmux

• Latency necessitates all FPGA design

• Algorithms have to fit on <1 FPGA

• How can we satisfy these constraints?

Event 1 L1 TRIGGER ALGORITHMS

Latency ~ 10 μs

Programmable
interconnects

PASS

L1 TRIGGER ALGORITHMS

L1 TRIGGER ALGORITHMS

Event 2

Event 3

…

FAIL

FAIL

Initiation interval = 25 ns
Credit: Javier Duarte

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Codesign

18

• Codesign: intrinsic development loop
between ML design, training, and
implementation

• Pruning

• Maintain high performance while
removing redundant operations

• Quantization

• Reduce precision from 32-bit
floating point to 16-bit, 8-bit, …

• Parallelization

• Balance parallelization (how fast)
with resources needed (how costly)

Credit: Javier Duarte

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Question #1

19

What features / properties do you expect in an “efficient” ML model?

Think about it for 30 seconds and share your answer

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Question #1

20

What features / properties do you expect in an “efficient” ML model?

Think about it for 30 seconds and share your answer

• Smaller in size
• Requires less computing resources for training and / or inference
• Runs faster during inference (prediction stage)
• Uses less power
• Should scale well with increasing data volume

Lets discuss

 some of the techniques to design
Efficient Deep Learning models

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Efficient Model Design

22

Quantization

Finding the optimal
model architecture

32-bit floating-point (FP32)

16-bit (FP16) / 8-bit (FP8)

INT / fixed-point

Knowledge
Distillation

Train a smaller model
using a bigger model

Pruning

Remove synapses and
neurons

Finding the

Neural
Architecture

Search

Finding the optimal
model architecture

Tensor
Decomposition

Reduce the dimension
of the weight matrix /

tensor

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Lecture Outline

23

Motivation behind efficient model design and some highlights

Introduction to Quantization
• Definition
• PTQ vs QAT

Introduction to Pruning
• What is pruning? How to formulate pruning?
• Determine pruning granularity and criteria
• Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Quantization

24

Quantization is the process of constraining an input from a continuous or otherwise
large set of values to a discrete set

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Numerical Data Types

25

Sign bit 8 bit Exponent 23 bit Mantissa

32-bit floating-point (FP32) Range: 10-38 - 1038

5 bit Exponent 10 bit MantissaSign bit

16-bit floating-point (FP16) Range: 6x10-5 - 6x104

Fixed-point Number

Sign bit

Unsigned Integer

Signed Integer

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

GPT-3 Memory

26

~175,000,000,000

~700 GB of memory
(175 B par x 4 bytes/par)
~10x larger than max memory in
a single Nvidia A100 GPU

~350 GB of memory
(175 B par x 2 bytes/par)
~ 5 Nvidia A100 GPUs
~ 11 Nvidia V100 GPUs

GPT-3

5 bit Exponent 10 bit MantissaSign bit

16-bit floating-point (FP16)

Sign bit 8 bit Exponent 23 bit Mantissa

32-bit floating-point (FP32) Range: 10-38 - 1038

Range: 6x10-5 - 6x104

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Quantization Types

27

Quantization: using reduced precision for parameters and operations

arXiv:2004.09602

Fixed-point precision

Affine Integer Quantization

https://arxiv.org/pdf/2004.09602

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Affine Integer Quantization

28

An affine mapping of integers to real numbers r = S(q − Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Quantization Strategies

29

Post Training Quantization
• QKeras
• Bravitas
• PyTorch (limited options)
• TensorFlow (limited options)
• ONNX (in development)

Quantization-Aware Training
• QKeras
• PyTorch (limited options)
• TensorFlow (limited options)
• QONNX (in development)

Initial Model

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Question #2

30

Post-training Quantization (PTQ) vs Quantization-Aware Training (QAT)

Advantages and disadvantages of PTQ?

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Post-training Quantization (PTQ) vs Quantization-Aware Training (QAT)

31

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Quantization References

32

Quantization Survey paper
https://arxiv.org/pdf/2103.13630

MIT Efficient ML Course:
https://hanlab.mit.edu/courses/2023-fall-65940

TensorFlow model_optimization:
https://www.tensorflow.org/lite/performance/model_optimization

PyTorch Quantization:
https://pytorch.org/docs/stable/quantization.html

https://arxiv.org/pdf/2103.13630
https://hanlab.mit.edu/courses/2023-fall-65940
https://www.tensorflow.org/lite/performance/model_optimization
https://pytorch.org/docs/stable/quantization.html

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Lecture Outline

33

Motivation behind efficient model design and some highlights

Introduction to Quantization
• Definition
• PTQ vs QAT

Introduction to Pruning
• What is pruning? How to formulate pruning?
• Determine pruning granularity and criteria
• Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Neural Network Pruning

34

•> 90% reduction in parameter count
• Decreasing the storage requirements
• Improving computation efficiency

Model accuracy loss was negligible

Results are from Efficient Methods and Hardware for Deep Learning [Han, S, Stanford University]

https://stacks.stanford.edu/file/druid:qf934gh3708/EFFICIENT%20METHODS%20AND%20HARDWARE%20FOR%20DEEP%20LEARNING-augmented.pdf

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

What is pruning?

35

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Neural Network Pruning

36

Pruning is the technique to remove less important connections and neurons

pruning
connections

pruning
neurons

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Pruning happens in Human Brain

37

No. Of Synapses

Time
AdultNewborn 2-4 years Adolescence

No. of synapses in adult
(~7000 synapses / neuron)

(~15000 synapses / neuron)

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Pruning workflow

38

Initialize Train Prune Train

arg min
W

L(x; W) arg min
Wp

L(x; Wp)

original
weight

pruned
weight

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Weight Pruning: Formulation

39

∥Wp∥0 <Remove least important connections such that

of non-zero weights
Total # of weights

Sparsity = =
∥Wp∥0

∥Wp∥

Wp is the pruned weight matrix

Example
50% sparsity means half of the weight are pruned

N = target #non-zero weights

N

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Lecture Outline

40

Motivation behind efficient model design and some highlights

Introduction to Quantization
• Definition
• PTQ vs QAT

Introduction to Pruning
• What is pruning? How to formulate pruning?
• Determine pruning granularity and criteria
• Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Different Pruning Granularity: Structured and Unstructured

41

Example: 2D weight matrix (8x8)

NN layer computation
Layer input = x1 ∈ ℝm1

Weight = W1 ∈ ℝm2×m1,
Layer output = x2 ∈ ℝm2

Bias = b1 ∈ ℝm2

⋅x2 = W1 x1 b1+

= x +

Layer
output

Weight
matrix

Layer
Input

Bias

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Different Pruning Granularity: Structured and Unstructured

42

Example: 2D weight matrix (8x8)
Pruned

Preserved

Fine-grained / Unstructured
Pruning

• Flexible pruning index

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Different Pruning Granularity: Structured and Unstructured

43

Example: 2D weight matrix (8x8)
Pruned

Preserved

Coarse-grained / Structured
Pruning

• Less flexible pruning index

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Question #3

44

Original Matrix Structured PruningUnstructured Pruning

Which statement is more accurate?
Context: neural network (NN) inference / prediction stage

A. Accelerating NN models is easier after unstructured pruning (weight matrix)
B. Accelerating NN models is easier after structured pruning (weight matrix)
C. Both methods offer similar ease of acceleration
D. The original network (before pruning) will be faster

NN layer computation
Layer input = x1 ∈ ℝm1

Weight = W1 ∈ ℝm2×m1,
Layer output = x2 ∈ ℝm2

Bias = b1 ∈ ℝm2

⋅x2 = W1 x1 b1+

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Question #3

45

Original Matrix Structured PruningUnstructured Pruning

Which statement is more accurate?
Context: neural network (NN) inference / prediction stage

A. Accelerating NN models is easier after unstructured pruning (weight matrix)
B. Accelerating NN models is easier after structured pruning (weight matrix)
C. Both methods offer similar ease of acceleration
D. The original network (before pruning) will be faster

NN layer computation
Layer input = x1 ∈ ℝm1

Weight = W1 ∈ ℝm2×m1,
Layer output = x2 ∈ ℝm2

Bias = b1 ∈ ℝm2

⋅x2 = W1 x1 b1+

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Different Pruning Granularity: Structured and Unstructured

46

Example: 2D weight matrix (8x8)
Pruned

Preserved

Coarse-grained / Structured
Pruning

• Less flexible pruning index

• Small regular matrix
easy to accelerate

→

Mention hardware

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Pattern-based Pruning

47

Pruning with N:M sparsity = In each M contiguous elements, N of them are pruned
Example: 2:4 sparsity (50% sparsity)

of non-zero weights
Total # of weights

Sparsity =

Dense Matrix 2:4 Sparse Matrix

Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT

Compressed Matrix

Non-zero
Values

2-bit
Index

It is supported by Nvidia’s Ampere GPU architecture (eg A100)

https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Lecture Outline

48

Motivation behind efficient model design and some highlights

Introduction to Quantization
• Definition
• PTQ vs QAT

Introduction to Pruning
• What is pruning? How to formulate pruning?
• Determine pruning granularity and criteria
• Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Pruning Criteria

49

Goal:
Remove less important parameters from a neural network

Example

f(⋅) = ReLU(⋅)

Weights: W = [−5, 12, 0.2]

ReLU Activation

y = ReLU(−5x1 + 12x2 + 0.2x3)

If we want to remove one weight, then which
one?

W1x1

W2x2

W3x3

x1

x2

x3

∑
i

Wixi

f

y = f (∑
i

Wixi)
y

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Magnitude-based Pruning

50

Magnitude-based pruning considers weights with larger absolute values are more
important than other weights.

Importance =

2

7

-4

-1

|2|

|7|

|-4|

|-1|

2

7

4

1

0

7

-4

0

Importance Pruned WeightOriginal Weight

Element-wise

L1-norm

Pruned

Preserved

Element-wise pruning using absolute magnitude

|Wi |

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Magnitude-based Pruning

51

Pruned

Preserved

2

7

-4

-1

Importance Pruned WeightOriginal Weight

Row-wise

Row-wise pruning

Magnitude-based pruning considers weights with larger absolute values are more
important than other weights.

Importance =

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Question #4

52

Pruned

Preserved

2

7

-4

-1

Importance Pruned WeightOriginal Weight

Row-wise

Come up with a strategy to prune a whole row.

2 minutes

Importance = define it as a function of the weights

Row-wise pruning

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Magnitude-based Pruning

53

2

7

-4

-1

|2| + |-4|

|7| + |-1|

6

8

0

7

0

-1

Importance

Pruned

Preserved

Pruned WeightOriginal Weight

Row-wise

L1-norm

∑
i∈S

|wi |Importance = sum of weighs within the structural set (S)

Row-wise pruning using L1-norm

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Magnitude-based Pruning

54

Row-wise pruning using L2-norm

2

7

-4

-1

Importance

Pruned

Preserved

Pruned WeightOriginal Weight

Row-wise

∑
i∈S

|wi |
2

L2-norm

|2 |2 + | − 4 |2

= 20

|7 |2 + | − 1 |2

= 50
50

0

7

0

-1

20

Importance = sum of weighs square within the structural set (S)

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

There are many other ways!

55

We highlighted magnitude-based weight pruning

 You can use any fancy or complicated function that meets your requirements

• Neuron Pruning

Some other methods:
• Second-order derivative-based pruning

 Minimizes the error on loss function introduced by pruned synapses

• Channel pruning for convolution neural networks

• Regression pruning
Minimize error of a corresponding layer’s output: before and after pruning

→

→
δL = L(x; W) − L(x; Wp = W − δW)

→

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Lecture Outline

56

Motivation behind efficient model design and some highlights

Introduction to Quantization
• Definition
• PTQ vs QAT

Introduction to Pruning
• What is pruning? How to formulate pruning?
• Determine pruning granularity and criteria
• Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Question #5

57

What trend do you expect in the accuracy-loss vs pruning ratio plot beyond 50%
pruning ratio?

Assume: the model performance did not degrade after 50% pruning

Initialize

Train

Prune

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Accuracy loss in pruning

58

The model performance may decrease after pruning

Learning both Weights and Connections for Efficient Neural Networks {Han et al. , NeurIPS 2015

Initialize

Train

Prune

https://arxiv.org/pdf/1506.02626.pdf

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Accuracy loss in pruning

59

The model performance may decrease after pruning

Learning both Weights and Connections for Efficient Neural Networks {Han et al. , NeurIPS 2015

Initialize

Train

Prune

“finetuning”

https://arxiv.org/pdf/1506.02626.pdf

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Pruning References

60

Neural Network pruning survey paper:
https://arxiv.org/abs/2308.06767

MIT Efficient ML Course:
https://hanlab.mit.edu/courses/2023-fall-65940

TensorFlow pruning guide:
https://www.tensorflow.org/model_optimization/guide/pruning/comprehensive_guide

PyTorch pruning tutorial:
https://pytorch.org/tutorials/intermediate/pruning_tutorial.html

https://arxiv.org/abs/2308.06767
https://hanlab.mit.edu/courses/2023-fall-65940
https://www.tensorflow.org/model_optimization/guide/pruning/comprehensive_guide
https://pytorch.org/tutorials/intermediate/pruning_tutorial.html

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Key Points

61

pruning
connections

pruning
neurons

Original Matrix Structured PruningUnstructured Pruning

Initialize

Train

Prune

“finetuning”

Expensive large models

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Let’s practice it

62

Jupyter Link
https://tutorials.fastmachinelearning.org

Instructions are also on GitHub
https://github.com/ml4fp/2024-lbnl/tree/main/efficient_ml

Start your Jupyterhub
Note it is a different jupyterhub compared to the other days

Checkout the tutorial repo: https://github.com/ml4fp/2024-lbnl.git

https://tutorials.fastmachinelearning.org/
https://github.com/ml4fp/2024-lbnl/tree/main/efficient_ml
https://github.com/ml4fp/2024-lbnl.git

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Example: Jet Classification

63

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Jet Classification: 5-Class classifier

64

Five class classifier
Sample: ~ 1M events with two boosted WW/ZZ/tt/qq/gg anti-kT jets

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Lecture Outline

65

Motivation behind efficient model design and some highlights

Introduction to Quantization
• Definition
• PTQ vs QAT

Introduction to Pruning
• What is pruning? How to formulate pruning?
• Determine pruning granularity and criteria
• Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Modern FPGAs

66

Pros:

• Reprogrammable interconnects
between embedded components that
perform multiplication (DSPs),
apply logical functions (LUTs),
or store memory (BRAM)

• High throughput I/O: O(100)
optical transceivers running at
O(15) Gbps

• Massively parallel

• Low power

Cons:

• Requires domain knowledge to program (using VHDL/Verilog)

ALL FPGA ARCHITECTURE 16

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

Typical modern FPGA:

(Kintex ultrascale+)

1.3M FFs

700k LUTs

5500 DSPs

2200 BRAMs

O(50-100) optical
transceivers

running at  

~O(15) Gbs

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Why FPGA at LHC?

67

High parallelism ⇧ = Low latency
 • Can work on different data simultaneously (pipelining)! High bandwidth

⇧

Power efficient
•FPGAS ~x10 more power efficient than GPUs

Latency deterministic
• FPGAs repeatable and predictable latency

Latency is fixed by proton collisions occurring at 40 MHz, cannot tolerate slack

67

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

FPGA Programming

68

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

FPGA Programming

69

Efficient L1T firmware design requires expertise
• FPGA deployment in busy devices
• ≪ 1µs latency target

Not well served by industry tools!

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Inference on FPGA

70

⃗x1 ⃗xm ⃗xM

⃗xm = gm (Wm,m−1 ⃗xm−1 + b⃗m)
activation function

multiplication

addition

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference 71

⃗x1 ⃗xm ⃗xM

⃗xm = gm (Wm,m−1 ⃗xm−1 + b⃗m)
activation function

multiplication

addition

Multiplier
Unit (DSP)

up to ~6k parallel operation (VU9P)

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Design Exploration with hls4ml

72

• hls4ml for scientists or ML experts to translate ML algorithms into RTL firmware

Compressed
model

Keras
TensorFlow

PyTorch
…

Tune configuration
latency, throughput,

power, resource usage

HLS
project

HLS
conversion

FPGA flow

ASIC flow

Model

Machine learning model
optimization, compression

hls 4 ml

hls4ml

HLS 4 ML
Compressed

model

Keras
TensorFlow

PyTorch
…

Tune configuration
latency, throughput,

power, resource usage

HLS
project

HLS
conversion

FPGA flow

ASIC flow

Model

Machine learning model
optimization, compression

hls 4 ml

hls4ml

HLS 4 ML

JINST 13, P07027 (2018)

Compressed
model

Keras
TensorFlow

PyTorch
…

Tune configuration
latency, throughput,

power, resource usage

HLS
project

HLS
conversion

FPGA flow

ASIC flow

Model

Machine learning model
optimization, compression

hls 4 ml

hls4ml

HLS 4 ML

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Many tools with different strengths

73

• FINN (NNs): https://finn.readthedocs.io/en/latest/

• Confier (BDTs): https://github.com/thesps/conifer

• fwXMachina (BDTs): http://fwx.pitt.edu/

• FlowGNN: https://github.com/sharc-lab/flowgnnNode
Embedding

Buffer

Size: N

Node Transformation (NT)
• Multi‐layer Perceptron
• Activation
• Self‐attention

Node 𝒏𝟓’s
received
message

Message
Buffer 2
Size: N

Node Queue

CSR
Table

𝒏𝟒

𝒏𝟏’s out‐neighbor
list 𝓟 ൌ ሺ𝒏𝟐,𝒏𝟑,𝒏𝟒ሻ

𝒏𝟏

(a) Baseline Dataflow Architecture with One Node Transformation, One Message Passing, and Sequential Edge Embedding

GCN, GIN, PNA, DGN, GAT, …

𝒏𝟐𝒏𝟑

𝒏𝟓

Node Transform. (NT)

NT Unit 2

Load Shared Weights Re‐batch
&

multicast
to

responsible
MP units

NE‐to‐MP
Adapter

Edge Embedding (EE) + Message Passing (MP)

Edge Attribute Table

+
Node 𝒏𝟏’s
embedding +

+

Edge ሺ𝒏𝟏,𝒏𝟐ሻ’s embedding

Edge ሺ𝒏𝟏,𝒏𝟑ሻ’s embedding

Edge ሺ𝒏𝟏,𝒏𝟒ሻ’s embedding

𝒏𝟐’s partial
message

𝒏𝟑’s partial
message

𝒏𝟒’s partial
message

Message
Buffer 1
Size: N

Node 𝒏𝟓’s
embedding

*Fixed *Keep aggregatingMessage buffer 1 and 2 switch between layers

Message
Buffer 2

Bank 1
Size: N/4

Node
Embedding

Buffer

Bank 1
Size: N/2

Bank 2
Size: N/2

Node
Embedding
Queues

Q

Q

Q

Q

Q

Q

Edge embedding
+

Scatter

Edge Embedding (EE) + Message Passing (MP)

Multicast to responsible
MP units based on
destination nodes

Nodes received
messagesMessage

Buffer 1
Size: N

MP Unit 1

(b) FlowGNN Architecture with Multiple Node Transformation, Multiple Message Passing, and parallelized Edge Embedding

In Sequential

NT Unit 1

Bank 2
Size: N/4

Bank 3
Size: N/4

Bank 4
Size: N/4

Gather
(source node) (to dest. node)

Edge embedding
+

Scatter
MP Unit 1

Gather
(source node) (to dest. node)

Edge embedding
+

Scatter
MP Unit 1

Gather
(source node) (to dest. node)

Edge embedding
+

Scatter
MP Unit 1

Gather
(source node) (to dest. node)

Fig. 3. Our proposed baseline dataflow architecture and the improved FlowGNN architecture. (a) The baseline dataflow architecture can effectively pipeline
the Node Transformation (NT) and Message Passing (MP), but processes only one node and one edge at a time. (b) The improved FlowGNN architecture
can process multiple nodes and multiple edges simultaneously, enabled by an NT-to-MP adapter via on-the-fly multicasting.

More specifically, the GNN computation flow has the fol-
lowing stages, as demonstrated in Fig. 2:
Message Passing (Gather). In the gather phase, a.k.a. aggre-
gation, of a certain node n1, the messages from its neighbors
obtained in the previous layer are retrieved from a message
buffer. The messages are then aggregated in a permutation-
invariant manner, denoted by A(·) (e.g., sum, max, mean, std.
dev.). In advanced GNNs such as PNA, multiple aggregators
are used with learnable weights and scaled based on the degree
of the target node. The aggregated message is denoted by m

l
1.

Node Transformation. After aggregation, m
l
1 is processed

together with node n1’s current node embedding, denoted by
x
l
1, via a node transformation function �(·). This function,

with inputs m
l
1 and x

l
1, might be an identity, fully-connected

layer, weighted sum, or an MLP. �(·) produces a new node
embedding of n1, denoted by x

l+1
1 , and applies the update.

Message Passing (Scatter). After node transformation is the
scatter phase of message passing. The new node embedding
x
l+1
1 will be transformed by a message transformation function

�(·), usually together with an edge embedding e
l+1
src,dest, to

generate the node’s outgoing messages. Messages will be
dispatched to all neighbors, which will eventually be collected
by the gather stage of the next layer.

Idle time:
Imbalanced
NT and MP

Node queue

NT
MP

NT

MP

NT

MP

Idle time: NT and MP are not
pipelined within one node

NT

MP

1

1

2

2

3

3

4

4

1 2 3 4

1 2 3 4

1
2

3
4

Unit 1
Unit 2

NT and MP
pipelined
within one
node

U2’s dest. nodes

Unit 1
Unit 2

U1’s dest. nodes

(a) Non‐pipeline (b) Fixed pipeline

(c) Baseline dataflow pipeline (d) FlowGNN pipeline with multiple NT/MP

Fig. 4. Different strategies of pipelining of node transformation (NT) and
message passing (MP). The proposed FlowGNN pipeline in (d) explores
node/edge level parallelism and can pipeline NT and MP within one node.

A complete GNN model may consist of multiple layers,
each with message passing and node transformation steps. For
graph-level tasks, a global pooling layer is needed, possibly
followed by MLP layers for final prediction.

C. Baseline Dataflow Architecture

To explicitly support the message passing mechanism, we
first propose the baseline dataflow architecture, shown in
Fig. 3(a). It has two major processing components: one Node
Transformation (NT) unit (yellow block), and one Message

5

https://finn.readthedocs.io/en/latest/
https://github.com/thesps/conifer
http://fwx.pitt.edu/
https://github.com/sharc-lab/flowgnn

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Lecture Outline

74

Motivation behind efficient model design and some highlights

Introduction to Quantization
• Definition
• PTQ vs QAT

Introduction to Pruning
• What is pruning? How to formulate pruning?
• Determine pruning granularity and criteria
• Network performance after pruning

ML on FPGA

hls4ml and Trigger applications

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Let’t Go through the hls4ml Demo

75

JupyterHub access (for efficient_ml tutorial)

• Join hls4ml-tutorial GitHub Organization (check your email for invite)
•Your should be able to see yourself here:
 https://github.com/orgs/hls4ml-tutorial/people

JupyterHub link

•Open https://tutorials.fastmachinelearning.org in your web browser
•Authenticate with your GitHub account (login if necessary)

Official hls4ml tutorials:
https://fastmachinelearning.org/hls4ml-tutorial/README.html

https://github.com/ml4fp/2024-lbnl/tree/main/efficient_ml#jupyterhub-access-for-hls4ml-tutorial
https://github.com/orgs/hls4ml-tutorial/people
https://github.com/ml4fp/2024-lbnl/tree/main/efficient_ml#jupyterhub-link
https://tutorials.fastmachinelearning.org/
https://fastmachinelearning.org/hls4ml-tutorial/README.html

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Quantization

76

Quantization – Reducing the bit precision used for NN arithmetic

Why this is necessary?
• Floating-point operations (32 bit numbers) on an FPGA consumes large resources
• Not necessary to do it for desired performance

• hls4ml uses fixed-point representation for all computations
▪ Operations are integer ops, but we can represent fractional values

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Parallelization

77

• Trade-off between latency and FPGA resource usage determined by the parallelization of
the calculations in each layer

• Configure the “reuse factor” = number of times a multiplier is used to do a computation

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Application: Measure Muon pT at 40 MHz

78

• NN measures muon momentum

• 3× reduction in the trigger rate for NN!

• Fits within L1 trigger latency (240 ns!) and FPGA
resource requirements (less then 30%)

98 Chapter 3. Trigger algorithms

0 10 20 30 40 50 60
 threshold [GeV]

T
p

1

10

210

310

410

R
at

e
[k

H
z]

EMTF
EMTF++

CMS Phase-2 Simulation 14 TeV, 200 PU

0 50 100 150 200 250 300 350
PU

0

50

100

R
at

e
[k

H
z]

EMTF
EMTF++

 > 20 GeV
T

L1 Muon p

CMS Phase-2 Simulation 14 TeV

Figure 3.33: Left: endcap trigger rate comparison of the Phase-1 EMTF and the Phase-2
EMTF++ algorithms as a function of pT threshold for events with 200 average pileup. Right:
Trigger rate comparison as a function of PU for a pT > 20 GeV threshold.

The same 6 h zones are retained for a total of 54 patterns per 0.5-degree in f, as for the prompt
muon patterns. Figure 3.31 (right) shows these patterns.

The TP information in the stations from stubs that satisfy a displaced pattern are input to a NN
that in this case has been trained to perform a regression that returns simultaneously values for
1/pT and d0 of displaced muons. The NN configuration used is the same as that for prompt
muons, using 3 hidden layers with 30/25/20 nodes each. Batch normalization is inserted after
each layer, including the input layer. A total of 23 inputs are used in the NN, these are:

• 6 Df quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 6 Dq quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 4 bend angles: set to zero if no CSC stub is found and only RPC stub is used
• For ME1 only: 1 bit for front or back chambers and 1 bit for inner or outer h ring
• 1 track q taken from stub coordinate in ME2, ME3, ME4 (in this priority)
• 4 RPC bits indicating if ME or RE stub was used in each station (S1, S2, S3, S4)

At the time of this writing, information from the new Phase-2 detectors (GE1/1, GE2/1, ME0,
iRPC) has not been incorporated into the study, and neither has the more precise CSC bend
information described above. As such, this study is geared towards possible implementation of
this algorithm during Run-3. An update to incorporate new Phase-2 detector information is in
progress. The already positive conclusions on triggering on standalone displaced muons in the
endcap with only the Phase-1 detectors, as shown below, is expected to improve significantly
when all Phase-2 information is included.

Figure 3.34 shows, for events with single muons and no pileup, the q/pT and the d0 resolutions
as determined by the NN estimate of these quantities. The pT resolution is about 60%, which
is large compared to the 20% resolution obtained from EMTF++ for prompt muons. A bias
towards underestimating the pT can be observed. However, the d0 resolution is very good,
⇠ 5 cm. Figure 3.35 shows the trigger rates of the displaced muon algorithm for PU 200 events.
In order to keep the rates at approximately the same 10 kHz level as those from prompt muons,
reasonable L1 thresholds of, for example, pT > 20 GeV and |d0| > 20 cm can be applied.

CMS-TDR-021

Dec 8, 2019 10

Can be done on the FPGA!

At each node, compute

ML framework:

Loss function: Huber loss [Wikipedia]

Activation function: ReLU

Batch normalization: applied right after the

 input layer and in each hidden layer

Training dataset: 2M muons

Testing dataset: 1M muons

pT assignment with NN

�1

Dense Network
23 ➜ 30 ➜ 25 ➜ 20

➜ momentum & classifier

Inference time: 280 ns
Throughput: 104 Gb/s

AI circuit for ultrafast inference on FPGA

240

https://cds.cern.ch/record/2714892

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Application: ATLAS LAr Calorimeter

79

Convolutional and Recurrent Neural
Networks
for real-time energy reconstruction of
ATLAS LAr Calorimeter for Phase 2

• Up to around 600 calorimeter channels
processed by on device

• 200 ns latency of predictions

• Implemented on Intel FPGAs (previous
examples are all AMD)

- Team contributed majorly to RNN and
Intel implementations of hls4ml

10.1007/s41781-021-00066-y

https://link.springer.com/article/10.1007/s41781-021-00066-y

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Application: Anomaly Detection

80

• Challenge: if new physics has an unexpected signature that doesn’t align with existing triggers,
precious BSM events may be discarded at trigger level

• Can we use unsupervised algorithms to detect non-SM-like anomalies?

• Autoencoders (AEs): compress input to a smaller dimensional latent space then decompress and
calculate difference

• Variational autoencoders (VAEs): model the latent space as a probability distribution; possible to
detect anomalies purely with latent space variables

6

AUTOENCODERS FOR ANOMALY DETECT ION

Using Autoencoders for anomaly detection
Encode input in smaller dimensional space
Train on typical LHC background
Anomalous data will have higher loss
Calculating the loss requires to store the input until the
output is computed

3.2 Baseline performance

The models described in the previous section are trained with floating point precision on an NVIDIA RTX2080 GPU.
We refer to these models as baseline (B). Figures 4 and 5 shows the distribution of the anomaly-detection scores
considered in this paper (IO AD for the AE models, Rz and DKL(ADs for the VAE models). For completeness, results
obtained from the IO AD score of the VAE models are also shown.

Figure 4: Distribution of four anomaly detection scores (IO AD for AE and VAE models, Rzand DKLADs for the VAE
models) for the DNN model, for the SM cocktail and the four new physics benchmark models.

The model performance is assessed using the four new physics benchmark models. The receiver operating characteristic
(ROC) curves in Fig. 6 show the dependence of the true positive rate (TPR) as a function of the false positive rate (FPR),
computing by changing the lower threshold applied on the different anomaly scores. We further quantify the anomaly
detection performance quoting the area under the ROC curve (AUC) and the TPR corresponding to to a working point
of SM false positive rate "SM = 10

�5 (see Table 1), which corresponds to the average of ⇡ 1000 SM events accepted
every month [1].

7

Encoder De
co

de
r

Latent
space

7

VARIAT IONAL AUTOENCODERS FOR ANOMALY DETECT ION

Sample

Encoder De
co

de
rμ

σ

z

Using Variational Autoencoders for anomaly detection
The latent space is sampled from Encoder output
Can be used to generate new samples
Inference can be done only on the latent space
No need to store input and deployment of Encoder is enough
(e.g. saves resources and latency in comparison to AE)

Nat. Mach. Intell. 4, 154 (2022)
Data challenge: mpp-hep.github.io/ADC2021

5

term [57] usually adopted for VAEs

DKL(~µ,~�) = �
1

2

X

i

�
log(�2

i)� �2
i � µ2

i + 1
�
, (2)

and � is a hyperparameter defined in the range [0, 1] [58].

Both models are trained for 100 epochs with a batch size
of 1024, using early stopping if there is no improvement in
the loss observed after ten epochs. All models are trained
with floating point precision on an NVIDIA RTX2080
GPU. We refer to these as the baseline floating-point
(BF) models.

IV. ANOMALY DETECTION SCORES

An autoencoder is optimized to retain the minimal set
of information needed to reconstruct a accurate estimate
of the input. During inference, an autoencoder might have
problems generalizing to features it was not exposed to
during training. Selecting events where the autoencoder
output is far from the given input is often seen as an
e↵ective AD algorithm. For this purpose, one could use
a metric that measures the distance between the input
and the output. The simplest solution is to use the same
metric that defines the training loss function. In our case,
we use the MSE between the input and the output. We
refer to this strategy as input-output (IO) AD.

In the case of a VAE deployed in the L1T, one cannot
simply exploit an IO AD strategy since this would require
sampling random numbers on the FPGA. The trigger
decision would not be deterministic, something usually
tolerated only for service triggers, and not for triggers
serving physics studies. Moreover, one would have to store
random numbers on the FPGA, which would consume
resources and increase the latency. To deal with this
problem, we consider an alternative strategy by defining
an AD score based on the ~µ and ~� values returned by
the encoder (see Eq. (1)). In particular, we consider two
options: the KL divergence term entering the VAE loss
(see Eq. (2)) and the z-score of the origin ~0 in the latent
space with respect to a Gaussian distribution centered at
~µ with standard deviation ~� [10]:

Rz =
X

i

µ2
i

�2
i

. (3)

These two AD scores have several benefits we take advan-
tage of: Gaussian sampling is avoided; we save significant
resources and latency by not evaluating the decoder; and
we do not need to bu↵er the input data for computation
of the MSE. During the model optimization, we tune
� so that we obtain (on the benchmark signal models)
comparable performance for the DKL AD score and the
IO AD score of the VAE.

V. PERFORMANCE AT FLOATING-POINT
PRECISION

The model performance is assessed using the four new
physics benchmark models. The anomaly-detection scores
considered in this paper are IO AD for the AE models,
Rz and DKL ADs for the VAE models. For completeness,
results obtained from the IO AD score of the VAE models
are also shown. The receiver operating characteristic
(ROC) curves in Figures II and III show the true positive
rate (TPR) as a function of the false positive rate (FPR),
computed by changing the lower threshold applied on the
di↵erent anomaly scores. We further quantify the AD
performance quoting the area under the ROC curve (AUC)
and the TPR corresponding to a FPR working point of
10�5 (see Table I), which on this dataset corresponds to
the reduction of the background rate to approximately
1000 events per month.

From the ROC curves, we conclude that DKL can be
used as an anomaly metric for both the DNN and CNN
VAE. This has the potential to significantly reduce the
inference latency and on-chip resource consumption as
only half of the network (the encoder) needs to be evalu-
ated and that there no longer is a need to bu↵er the input
in order to compute an MSE loss. The Rz metric per-
forms worse and is therefore not included in the following
studies.

VI. MODEL COMPRESSION

We adopt di↵erent strategies for model compression.
First of all, we compress the BF model by pruning the
dense and convolutional layers by 50% of their connec-
tions, following the same procedure as Ref. [19]. Pruning
is enforced using the polynomial decay implemented in
TensorFlow pruning API, a Keras-based [59] inter-
face consisting of a simple drop-in replacement of Keras
layers. A sparsity of 50% is targeted, meaning only 50%
of the weights are retained in the pruned layers and the
remaining ones are set to zero. The pruning is set to start
from the fifth epoch of the training to ensure the model
is closer to a stable minimum before removing weights
deemed unimportant. By pruning the BF model layers
to a target sparsity of 50%, the number of floating-point
operations required when evaluating the model, can be
significantly reduced. We refer to the resulting model
as the baseline pruned (BP) model. For the VAE, only
the encoder is pruned, since only that will be deployed
on FPGA. The BP models are taken as a reference to
evaluate the resource saving of the following compression
strategies, including QAT and PTQ.
Furthermore, we perform a QAT of each model de-

scribed in Section III, implementing them in the QKeras
library [23]. The bit precision is scanned between 2 and
16 with a 2-bit step. When quantizing a model, we also
impose a pruning of the dense (convolutional) layers by
50%, as done for the DNN (CNN) BP models. The results

Key observation: Can build an anomaly score
from the latent space of VAE directly! No need
to run decoder!

https://doi.org/10.1038/s42256-022-00441-3
https://mpp-hep.github.io/ADC2021

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Application: CMS Anomaly Trigger

81

CMS has implemented a similar idea: AXOL1TL

• L1 Hardware implemented VAE-based AD trigger
(based on https://arxiv.org/abs/2108.03986)

• Trained on 2018 zerobias data, ran in 2023 Global
Trigger Test Crate

• CMS is also developing CICADA, a calorimeter only
AD trigger

Event display of the
highest anomaly score

CMS-DP-2023-079

Similar effort is ongoing in ATLAS

https://cds.cern.ch/record/2876546

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Low-latency Transformers

82

Transformer Block

Inputs

Flatten

Feed Forward (3 Dense)
Units = [32, 16, 8]

Output Layer
Softmax

Output
class probability: b / c / light

x 3

 Observed Inference Latency ~ 2-6 s μ

arXiv:2402.01047

https://arxiv.org/abs/2402.01047

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Summary

83

• Efficient model design is becoming more important as the
models are getting bigger

• Several tricks to design efficient ML inference
• Some popular method: Pruning and Quantization
• Need to optimize pruning and quantization strategy for

satisfactory results
• Another effective technique: Knowledge Distillation

• ML-based algorithms are getting popular for experimental
trigger applications

• Efficient ML techniques are crucial for real-time inference

32-bit floating-point (FP32)

16-bit (FP16) / 8-bit (FP8)

INT / fixed-point

End of the Lesson
Thank you for your attention and participation

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Knowledge Distillation

85

One Example: particle physics application

Thank You!

Extra Slides

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Magnitude-based Pruning

88

2

7

-4

-1

Importance

Pruned

Preserved

Pruned WeightOriginal Weight

Row-wise

| |W(S) | | = (∑
i∈S

|wi |
n)

1
n

Ln-norm

(|2 |2 + | − 4 |)1/n

(|7 |p + | − 1 |p)1/n)

= 501/p 501/n

-

-

-

-

201/n

Row-wise pruning using Ln-norm

We can define Ln norm as:

= a structural set of parameters WS

201/p

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Neural Network Pruning: Formulation

89

Neural network model f(x; W)

f(x; M ⊙ W′￼p)

M ∈ {0,1}|W′￼|

M is binary mask
tensor that fixes
certain parameters
to 0

arg min
Wp

L(x; Wp) ∥Wp∥0 < N

subject to sparsity ratio —> least significant / important connections / neurons

Pruning

Pruned model

Element-wise
product operator

⊙

arg min
Wp

L(x; Wp)

x

of non-zero weights
Total # of weights

Sparsity =

Calculate

Remove least important connections such that

