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JupyterHub Access

We will use a different Jupyterhub for this session!
JupyterHub access (for efficient_ml tutorial)
* Join hls4ml-tutorial GitHub Organization (check your email for invite)

* Your should be able to see yourself here:
https://github.com/orgs/hls4ml-tutorial/people

JupyterHub link

* Open https://tutorials.fastmachinelearning.org in your web browser
* Authenticate with your GitHub account (login if necessary)
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https://github.com/ml4fp/2024-lbnl/tree/main/efficient_ml#jupyterhub-access-for-hls4ml-tutorial
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Large Models are everywhere

Theinternational journal of science /26 August2021

nat’'ire

vork predicts highly
rate 3D structures
for the human proteome

T1037 / 6vr4 T1049 / 6y4f
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)
@ Experimental result e e
® Computational prediction Article S

Highly accurate protein structure prediction
with AlphaFold
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Large Language Models: GPT

what do you know about the Machine Learning for Fundamental Example of GPT-4 visual input:

Physics School 2024 at LBNL? User What is funny about this image? Describe it panel by panel.
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The Machine Learning for Fundamental Physics (ML4FP) School 2024 is taking place from August
12 to 16, 2024, at Lawrence Berkeley National Laboratory (LBNL). The program is designed to
offer in-depth training on applying machine learning techniques to problems in fundamental
physics. This event follows successful similar programs in recent years and is open to participants

from the particle physics community, both in-person and virtually.
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The curriculum includes a mix of lectures, hands-on tutorials, and interactive sessions, focusing
on areas such as anomaly detection, generative models, likelihood-free inference, and physics-
aware learning. The school aims to enhance interdisciplinary collaboration by bringing together

experts and students in both machine learning and physics.

Additionally, resources such as Jupyter notebooks and learning materials used during the school Source: hittps: //waw. reddit . con/r/hnmn/coments/ubabby/hamm/
are publicly available via GitHub, allowing participants and others interested to explore the content GPT-4

in their own time (Berkeley Lab Physics Division (Indico)) (GitHub) (LBL Physics).

The image shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin con-
nector typically used for computer monitors) plugged into its charging port.

& [Searched 4 sites Panel 2: The package for the "Lightning Cable" adapter with a picture of
a VGA connector on it.

Q. “Machine Learning for Fundamental Physics School 2024 LBNL"
bing.com

Panel 3: A close-up of the VGA connector with a small Lightning con-
Berkeley Lab Physics Division (Indico) — Machine Learning for Fundamental Physics School 2024... nector (used fOl' Charglng 1Phones and other Apple dCVlCCS) at "he end‘
indico.physics.Ibl.gov
The humor in this image comes from the absurdity of plugging a large
GitHub — GitHub - ml4fp/2024-lbnl: This repository contains all the notebooks used for the Machi... g y p . ggl g g ’
github.com outdated VGA connector into a small, modern smartphone charging port.

B LEL Physics — Machine Learning for Fundamental Physics Table 3. Example prompt_demon§UaUng GPT-4’s visual input capability. The prompt consists of a
physics.lbl.gov question about an image with multiple panels which GPT-4 is able to answer.
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Large Language Models

GPT-4
GPT-3
O
175,000,000,000 100,000,000,000,000

~0.16% of parameters of your brain Almost all the neurons in your brain?
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raining and Inference

Inference: Asking Question to ChatGPT

“‘% You

How many GPUs are you using currently?

ChatGPT

As an Al language model, | don't have access to real-time information about my current
computational resources or the infrastructure being used to host me. My availability and
performance are managed by OpenAl's servers, which may utilize GPUs or other computational

resources based on demand and system configuration. Therefore, | cannot provide information on

N
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GPT-3: 10x larger than max memory in a single Nvidia A100 GPU
GPT-3 Training
e 285,000 CPUs

e 10,000 GPUs Millions of queries daily

e 400 Gbits/sec network 1 GWh each day ~ 33,000 U.S. households
e Several weeks

Nvidia Blog
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https://developer.nvidia.com/blog/openai-presents-gpt-3-a-175-billion-parameters-language-model/

Al and Memory Wall

Al and Memory Wall

7 10TB Baidu RecSys
10000 @
- Transformer Size: 410x / 2 yrs Switch Transformer
_ Al HW Memory: 2X [/ 2 yrs O
1000— Y Y GShard Megatron-Turing
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@ 100- inference time!
4 n
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Medium blog: Al and Memory Wall
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https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Al and Memory Wall

Al and Memory Wall
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Medium blog: Al and Memory Wall
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https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Machine Learning Inference

Earthquake Warning
Large Hadron Collider

Netflix i N -*
ChatGPT Google Search 40 mllllozec:é)lllsmns /
Finance / Trading
Neuroscience
1000 Sec Milli Micro Nano
Seconds second second second
(103) (10-3) (10-6) (10-9)

«——————|nference Latency —m—m—m—mMmMmMmM@M@M@M8M8 ™™™
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Computing Hardware

Second stage
of LHC trigger

o] |I=°

FLEXIBILITY
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First stage of
LHC trigger

ASICs

EFFICIENCY

Image: Microsoft
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https://microsoft.github.io/ai-at-edge/docs/hw_acceleration/

HL-LHC Data Processing

Compute
Latency
1 ns 1 s T ms 1s
7.5 kHz
1 MB/evt
—
Offline
- Exabyte-scale
Challenges: datasets
Each collision produces O(103) particles FPGAS FPGAS
The detectors have O(108) sensors
Extreme data rates of O(100 TB/s) Other processors: Other processors:
. . IPU TPU .. IPU, TPU ..
Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference : 13




Simplified HL-LHC Trigger

. . Ty 22
* Single/double/triple muons/electrons ; e
¥ :
* Photons
3u 5, 3,3
® Taus
. 1e 36
* Hadronic
. 2 e 25,12
®* Missing transverse energy 1 >
({{ )) N Y
* “Cross” triggers (not shown)
2Y 22,12
. 1 150
4-jet event !
B IN 2T 90, 90
=7 7 1 jet 180
2 jet 112,112
Thresholds set by
backgrounds, limited Al 450
5 resolution @ L1, and 4 jet + Hy /5,55,40, 40, 400
CM>-TDR-0Z1 rate budget e 200
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https://cds.cern.ch/record/2714892

What could be missing?

® How can we trigger on more complex low-energy
hadronic signatures? Long-lived/displaced particles?

* What if we don’t know exactly what to look for?

* What if our signatures require complex multivariate
algorithms (e.g. b tagging)?

® How can we improve on our traditional (often slow)
reconstruction algorithms?
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https://profmattstrassler.com/2024/03/15/searching-for-suep-at-the-lhc/

ML in Trigger

Nat. Mach. Intell. 4, 154 (2022)

® (Variational) autoencoders for anomaly detection

®* 1D convolutional neural networks for b-tagging
® Graph neural networks for tracking
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Front. Big Data 5, 828666 (2022)

I

|

Interaction network

Node
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Pointwise convolution
(per particle dense layer)

CMS-DP-2022-021

Dense layer
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https://cds.cern.ch/record/2814728
https://doi.org/10.1038/s42256-022-00441-3
http://doi.org/10.3389/fdata.2022.828666

What makes this Hard?

® Reconstruct all events and reject 98% of them in ~10 ps
* Algorithms have to be <1 uys and process new events every (25 ns) X Ntmux

®* | atency necessitates all FPGA design N - o JS—

® Algorithms have to fit on <1 FPGA s o
* How can we satisfy these constraints? M H

Latency ~ 10 ps H M H H

Event 1 —> L1 TRIGGER ALGORITHMS w B s E
. O o

Event 2 —— L1 TRIGGER ALGORITHMS FAIL

Event 3 —» L1 TRIGGER ALGORITHMS FAIL

Initiation interval = 25 ns

Credit: Javier Duarte
Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference 17
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Question #1

What features / properties do you expect in an “efficient” ML model?

Think about it for 30 seconds and share your answer

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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Question #1

What features / properties do you expect in an “efficient” ML model?

Think about it for 30 seconds and share your answer

e Smaller in size

e Requires less computing resources for training and / or inference
e Runs faster during inference (prediction stage)

e Uses less power

e Should scale well with increasing data volume

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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Lets discuss

some of the techniques to design
Efficient Deep Learning models




Efficient Model Design

Quantization

Finding the optimal
model architecture

32-bit floating-point (FP32)

| l_l

INT / fixed-point

16-bit (FP16) / 8-bit (FP8)

Pruning

Remove synapses and
neurons

) & ,,
N

'»‘27"':‘1‘3‘%&.

<€D
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Knowledge
Distillation

Tensor
Decomposition

Reduce the dimension
of the weight matrix /
tensor

Train a smaller model
using a bigger model

Teacher Model
(large neural network)

I, X Ry
=3
Student Model -9 F, . — V' R
' L X1y %1 / [ xR,
- / (b)
=y

YR\
= @@
|

( |

Neural
Architecture
Search

Finding the optimal
model architecture

22
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Quantization

Quantization is the process of constraining an input from a continuous or otherwise
large set of values to a discrete set

— Continuous Signal Quantized Signal

Quantization Error

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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Numerical Data Types

32-bit floating-point (FP32) Range: 10-38 - 1038

Signbit 8 bit Exponent 23 bit Mantissa

16-bit floating-point (FP16) Range: 6x10-5 - 6x104

| NNRERNREEN Fixed-point Number

Sign bit 5 bit Exponent 10 bit Mantissa

Integer . Fraction
Unsigned Integer “Decimal” Point

0O(0 |01
X X X X X X X X

-23+ 22+ 21+ 2042-142-242-312-4 = 3.0625

Sighed Integer

0/|0|0]1
X X X X X X X X
(-27+26+25+24+23+224+ 21420 ) x 2-4=49 x 0.0625 = 3.0625

Sign bit

(using 2’s complement representation)

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference 25



GPT-3 Memory

GPT-3

~175,000,000,000 l
O

32-bit floating-point (FP32) Range: 10-38 - 1038 ~700 GB of memory

(175 B par x 4 bytes/par)
. _ ~10x larger than max memory in

Signbit 8 bit Exponent 23 bit Mantissa a single Nvidia A100 GPU

: : : _ ~350 GB of memory
16-bit floating- t(FP16 R : 6x10-> - 6x104
it floating-point ) ANGE. X X (175 B par x 2 bytes/par)

| NNNNRRRNRR ~ 5 Nvidia A100 GPUs

Sign bit 5 bit Exponent 10 bit Mantissa ~ 11 Nvidia V100 GPUs

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference 26



Qua nti zation Types arXiv:2004.09602

Quantization: using reduced precision for parameters and operations

Fixed-point precision

Affine Integer Quantization

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

ap fixed<width bits, integer bits>

0101.1011101010

M-

iInteger fractional
.—
width
f=-3 0o 1 a=4
l
-128 ; 1u7 127
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https://arxiv.org/pdf/2004.09602

Affine Integer Quantization

An affine mapping of integers to real numbers r =S(q - Z)

Fmin 0 Fmax
r Floating-point range |
Floating-point k
%S
: Floating-point Scale
Bit Width i

Integer Qmin Z Amax 5 q-n;n q::ax
Zero point 3 | -4 | 3
................ 4 .8 or

N ON-T | ON-1-1

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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Quantization Strategies

Usual ML
software workflow

@ [4- 7

(Q) € ONNX

PYTHORCH

Initial Model

Usual ML
software workflow

S K

(Q) € ONNX

PYTHORCH

+ B

Tensor

Post Training Quantization
e QKeras

e Bravitas

e PyTorch (limited options)

e TensorFlow (limited options)
e ONNX (in development)

Quantization-Aware Training

e QKeras

e PyTorch (limited options)

e TensorFlow (limited options)
e QONNX (in development)

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference



Question #2

Post-training Quantization (PTQ) vs Quantization-Aware Training (QAT)

Advantages and disadvantages of PTQ?

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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Post-training Quantization (PTQ) vs Quantization-Aware Training (QAT)

Usually fast Slow
No re-training of the model Model needs to be trained/finetuned
Plug and play of quantization Plug and play of quantization
schemes schemes (requires re-training)

More control over final accuracy
since g-params are learned during
training.

Less control over final accuracy of
the model

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference 31



Quantization References

Quantization Survey paper
https://arxiv.org/pdf/2103.13630

MIT Efficient ML Course:
https://hanlab.mit.edu/courses/2023-fall-65940

TensorFlow model optimization:
https://www.tensorflow.org/lite/performance/model_optimization

PyTorch Quantization:
https://pytorch.org/docs/stable/quantization.html

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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Neural Network Pruning

¢ > 90% reduction in parameter count
e Decreasing the storage requirements
e Improving computation efficiency

Model accuracy loss was negligible

#Parameters
Neural Network
Before Pruning After Pruning Reduction
AlexNet 61 M 6.7 M 9 X
VGG-16 138 M 10.3 M 12 X
GoogleNet 7 M 2.0 M 3.5 X
ResNet50 26 M 7.47 M 3.4 X

Results are from Efficient Methods and Hardware for Deep Learning [Han. S, Stanford University]

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference


https://stacks.stanford.edu/file/druid:qf934gh3708/EFFICIENT%20METHODS%20AND%20HARDWARE%20FOR%20DEEP%20LEARNING-augmented.pdf

What is pruning?

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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Neural Network Pruning

Pruning is the technique to remove less important connections and neurons

pruning
connections

pruning
neurons

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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Pruning happens in Human Brain

No. Of Synapses

(~15000 synapses / neuron)

No. of synapses in adult
(~7000 synapses / neuron)

Newborn 2-4 years Adolescence Adult

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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Pruning workflow

Initialize —_— Train —_— Prune —_— Train

S
original pruned
weight weight
- /

/

arg min L(x; W) argmin L(x; W)

194 W,

">
o
RS

\\?
I

&

X
v*\
X

&
e
‘0
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Weight Pruning: Formulation

Remove least important connections suchthat  [|W,|[, < N

W, is the pruned weight matrix

N = target #non-zero weights

_#of non-zeroweights ~ _ 1"l
Total # of weights | W, ||

Sparsity =

Example
50% sparsity means half of the weight are pruned

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference 39
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Different Pruning Granularity: Structured and Unstructured

Example: 2D weight matrix (8x8)

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

NN layer computation
Layer input = x;, € R™
Weight = W, € R™*™,  Bias = b; € R™
Layer output = x, € R™

Xz — W1° xl + bl

Layer Weight Layer
output matrix Input

41
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Different Pruning Granularity: Structured and Unstructured

Example: 2D weight matrix (8x8) | Pruned

. Preserved

Fine-grained / Unstructured
Pruning

¢ Flexible pruning index

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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Different Pruning Granularity: Structured and Unstructured

Example: 2D weight matrix (8x8) | Pruned

. Preserved

Coarse-grained / Structured
Pruning

e | ess flexible pruning index

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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Question #3

Unstructured Pruning Original Matrix Structured Pruning

NN layer computation

Which statement is more accurate? Layer input = x; € R™

: . Weight = W, € R™* Bias = b; € R™
Context: neural network (NN) inference / prediction stage Layer output = x, € R™

X2 — W1° Xl + bl

A. Accelerating NN models is easier after unstructured pruning (weight matrix)

B. Accelerating NN models is easier after structured pruning (weight matrix)
C. Both methods offer similar ease of acceleration

D. The original network (before pruning) will be faster

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference 44



Question #3

Unstructured Pruning Original Matrix Structured Pruning

NN layer computation

Which statement is more accurate? Layer input = x; € R™

: . Weight = W, € R™* Bias = b; € R™
Context: neural network (NN) inference / prediction stage Layer output = x, € R™

X2 — W1° xl + bl

A. Accelerating NN models is easier after unstructured pruning (weight matrix)

B. Accelerating NN models is easier after structured pruning (weight matrix)
C. Both methods offer similar ease of acceleration

D. The original network (before pruning) will be faster

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference 45



Different Pruning Granularity: Structured and Unstructured

Example: 2D weight matrix (8x8) | Pruned

. Preserved

Coarse-grained / Structured
Pruning

e | ess flexible pruning index

e Small regular matrix —
easy to accelerate

Mention hardware

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference 46



Pattern-based Pruning

Pruning with N:M sparsity = In each M contiguous elements, N of them are pruned
Example: 2:4 sparsity (50% sparsity)

It is supported by Nvidia’s Ampere GPU architecture (eg A100)

Sparsity = —1-ofnon-zero weights

Total # of weights

Non-zero  2-bit
Values Index

Dense Matrix 2:4 Sparse Matrix Compressed Matrix

Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
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e Determine pruning granularity and criteria

e Network performance after pruning

ML on FPGA

his4ml and Trigger applications
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Pruning Criteria

Goal:

Remove less important parameters from a neural network

D Wi,
; . ReLU

@ W3X3 B R(z) =maz(0, z)

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Example

ReLU Activation
f(+) =ReLU(-)

Weights: W =[-5, 12, 0.2]

y = ReLU(—=5x; + 12x, + 0.2x;)

If we want to remove one weight, then which
one?
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Magnitude-based Pruning

Element-wise pruning using absolute magnitude

Magnitude-based pruning considers weights with larger absolute values are more
Important than other weights.

Importance = | W |

|| Pruned
| Preserved

Element-wise

L1-norm

Original Weight Importance Pruned Weight
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Magnitude-based Pruning

Row-wise pruning

Magnitude-based pruning considers weights with larger absolute values are more
Important than other weights.

Importance =

|| Pruned
| Preserved

Original Weight Importance Pruned Weight
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Question #4

Row-wise pruning
Come up with a strategy to prune a whole row.

2 minutes

Importance = define it as a function of the weights D Pruned

. Preserved

Original Weight Importance Pruned Weight
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Magnitude-based Pruning

Row-wise pruning using L1-norm

Importance = Z | w.| sum of weighs within the structural set (S) I:| Pruned
" Preserved

€S

Original Weight Importance Pruned Weight
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Magnitude-based Pruning

Row-wise pruning using L2-norm

Importance = Z | W |2 sum of weighs square within the structural set (S) ] Pruned
ey
\ = " Preserved

Original Weight Importance Pruned Weight
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There are many other ways!

We highlighted magnitude-based weight pruning
— You can use any fancy or complicated function that meets your requirements

e Neuron Pruning

Some other methods:
e Second-order derivative-based pruning

— Minimizes the error on loss function introduced by pruned synapses

oL = L(x; W) — L(x; W, = W — oW)
¢ Channel pruning for convolution neural networks

e Regression pruning
—Minimize error of a corresponding layer’s output: before and after pruning

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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Lecture Outline

Introduction to Pruning

e What is pruning? How to formulate pruning?
e Determine pruning granularity and criteria

e Network performance after pruning
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Question #5

What trend do you expect in the accuracy-loss vs pruning ratio plot beyond 50%
pruning ratio?

Assume: the model performance did not degrade after 50% pruning

Accuracy Loss vs Pruning

2_
Initialize
0p-—————- @ —— o
2L -2
S
Train g
l -
_8-
Prune 10

40 50 60 70 80 90 100
Pruning Ratio (Parameters pruned away) [%]
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Accuracy loss in pruning

The model performance may decrease after pruning

Initialize

|

Train

Prune

Accuracy Loss

O Pruning

0.5%

=
...
S
b
=)
=
=
.~
ay

—‘o‘

50%

60%

70%

80%

90%

Pruning Ratio (Parameters Pruned Away)

100%

Learning both Weights and Connections for Efficient Neural Networks {Han et al. , NeurlPS 2015
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Accuracy loss in pruning

The model performance may decrease after pruning

Initialize

|

Train
l “finetuning”

Prune

Accuracy Loss

-0.5%
-1.0%
-1.5%
-2.0%
-2.5%
-3.0%
-3.5%
-4.0%
-4.5%

O Pruning

Pruning+Finetuing @ lterative Pruning and Finetuing

0.5%

0.0% = wmmmy - -

-~
...
S
=
=
=
=
.h
ey

O-
_—

40%

50%

60% 80% 90%
Pruning Ratio (Parameters Pruned Away)

70% 100%

Learning both Weights and Connections for Efficient Neural Networks {Han et al. , NeurlPS 2015
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Pruning References

Neural Network pruning survey paper:
https://arxiv.org/abs/2308.06/767

MIT Efficient ML Course:
https://hanlab.mit.edu/courses/2023-fall-65940

TensorFlow pruning guide:
https://www.tensorflow.org/model_optimization/guide/pruning/comprehensive_guide

PyTorch pruning tutorial:
https://pytorch.org/tutorials/intermediate/pruning_tutorial.html

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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Key Points

Expensive large models
| —

410x / 2 yrs

o
'
.

&
7 X
&y

pruning
connections
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Parameter Count (Billion)
=
2 \

[
\HH‘ I

pruning
neurons

e
=

Initialize

l

Train

)

l i netuning’

Unstructured Pruning Original Matrix Structured Pruning Prune
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Let’s practice it

Jupyter Link
https://tutorials.fastmachinelearning.org

Instructions are also on GitHub
https://qithub.com/ml4fp/2024-Ibnl/tree/main/efficient_ ml

Start your Jupyterhub
Note it is a different jupyterhub compared to the other days

Checkout the tutorial repo: https://github.com/ml4fp/2024-1bnl.git

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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Example: Jet Classification

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

Particle Jet Energy depositions
In calorimeters
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Jet Classification: 5-Class classifier

Five class classifier
Sample: ~ 1M events with two boosted WW/ZZ/tt/qq/gg anti-kT jets

Observables
MmMDT
£=1,2
A
M2
Cﬁ=0, 1,2
t—-bW-—bqq q/g background l B=1,2
= 2 =1,2
NI multiplicity f=f ( gﬁ’ | ’1) .
5N ] a, =\, 1)1,
. 0.06 - - | 0.025 A i i D2
i 0.04 - i el e Z Z log Z
0.02 w 21 0.010 - %%?Q&ﬁ;\ MultipliCity
0 25 50 75 ml,,?,f; 125 150 175 200 0.0 0.1 0-2Ng=1 0.3 0.4 ' 0 ' G'OMURipltiagty 100 120 140

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference



Lecture Outline

Motivation behind efficient model desigh and some highlights

Introduction to Quantization

e Definition
e PTQ vs QAT

Introduction to Pruning

e \What is pruning? How to formulate pruning?
e Determine pruning granularity and criteria

e Network performance after pruning

ML on FPGA

his4ml and Trigger applications
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Modern FPGAs

Pros:

®* Reprogrammable interconnects FPGA
between embedded components that “programmable hardware”
perform multiplication (DSPs), ullm
apply logical functions (LUTSs),
or store memory (BRAM)

* High throughput 1/0: O(100)
optical transceivers running at
O(15) Gbps

* Massively parallel

:
Il

* Low power
Cons:

* Requires domain knowledge to program (using VHDL/Verilog)
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Why FPGA at LHC?

('ntel)' =

Xeon® 7500

i
i
:
:
;
:
i

High parallelism ©& = Low latency
e Can work on different data simultaneously (pipelining)! High bandwidth

Power efficient
o FPGAS ~x10 more power efficient than GPUs

Latency deterministic
* FPGAs repeatable and predictable latency

Latency is fixed by proton collisions occurring at 40 MHz, cannot tolerate slack
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FPGA Programming

C/C++ Constraints/ 1. Write C-style code of function
algorithm Directives

Xilinx Intel Mentor
Vitis Vivado Vivado Quartus Catapult . :
[ HLS j [ HLS j [AcceleratoJ [ HLS j [ HLS ]2. Pass to a high-level synthesis (HLS) tool
VHDL/Verilog 3. HLS translates to hardware-description

language (HDL)

4. Build firmware
Firmware block
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FPGA Programming

C/C++ Constraints/ 1. Write C-style code of function
algorithm Directives

Xilinx Intel Mentor

vitis Vivado Vivado Quartus Catapult — .
[ HLS J [ HLS J LAcceleratoJ [ HLS ] [ HLS ]2. Pass to a high-level synthesis (HLS) tool

VHDL/Verilog 3. HLS translates to hardware-description

language (HDL)

Efficient L1T firmware design requires expertise

* FPGA deployment in busy devices
* « lus latency target

4. Build firmware

Not well served by industry tools!
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Inference on FPGA

output layer

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference

multiplication

/

activation function

l

JM— 1%m

» +\I3m)

addition
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m  Em g,
- ..

- 'l ~. . .
! LS
M | multiplication .
1 \‘
' $
‘\ l N \‘
- N .
— )
Xm T gm (Wm’m_ l.xm_l —I— bm) “
N . \
>0 /RN
tivation function  “« addition
M hidden layers >O activation tunctio .. '
......... .. ~ '
> O Multiplier
output layer U n it ( DS P)

up to ~6k parallel operation (VU9P)
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Design Exploration with his4dml

JINST 13, P07027 (2018)

* hilsdml for scientists or ML experts to translate ML algorithms into RTL firmware

~

Model

\_/

Keras
TensorFlow
PyTorch
\ Compressed
model

Machine learning model
optimization, compression
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AMD 1

& XILINX

hIS 4 ml FPGA flow

HLS
conversion

. ASIC flow

Tune conflguratlon
latency, throughput,
POWEr, resource usage

Menlor

A Siemens Business



https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913

Many tools with different strengths

® FINN (NNs): https:/finn.readthedocs.io/en/latest/
®* Confier (BDTs): https://github.com/thesps/conifer

®* fwXMachina (BDTs): http://fwx.pitt.edu/

®* FlowGNN: https://github.com/sharc-lab/flowgnn

—
(b) FlowGNN Architecture with Multiple Node Transformation, Multiple Message Passing, and parallelized Edge Embedding FW
TN Edge Embedding (EE) + Message Passing (MP) 4 Message ) M a Ch I n a

Message Nodes received Buffer 2

messages

' |
| I
' I
' |
! MPUnitl1 o iyl !
Buffer 1 , , — Gath i Scatter

: u < 3 Multicast to responsible (Szurgé node @Edﬁe.em.bﬁjd.m &1 (to dest. node) Bank 1 :
1 | Size: N MP units based on — Size: N/4 :
I destination nodes I
I MPUnitl = N I
: Gather Edge embedding Scatter Bank 2 |
; (" Node ) |Node Transform. (NT) mE-to-Mh — @ [ | {to dest. node) Size:N/4 | |
I | Embedding Node Adapter | | | FessTETmmmm———— !
: Buffer Load Shared Weights | Embedding Re-batch MP Unit 1 :
T N Queues 2 - q @;dge embedding . Scatfjer) S!3an|{<\|;>4 :
| : — — source node ..... to dest. node |1Ze: I
| ngﬁ‘kN}z NT Unit 1 Q —* multicast | | | e s e | oo !
: ________ ¢ to — MP Unit 1 Bank 4 I
_ — i . Q — her Edge embeddin Scatter ize: ;

I Bank 2 NT Unit 2 | responsible Q —» Gat Size: N/4 |
: Size: N/2 . — (source node) I @ HEEEE to dest. node) )
|

' |

MP units
\____/

___________________________________________________________________________________
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Lecture Outline

Motivation behind efficient model desigh and some highlights

Introduction to Quantization

e Definition
e PTQ vs QAT

Introduction to Pruning

e \What is pruning? How to formulate pruning?
e Determine pruning granularity and criteria

e Network performance after pruning

ML on FPGA

hlsdml and Trigger applications
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Let’'t Go through the hls4dml Demo

Official hls4ml tutorials:
hIS 4 ml https://fastmachinelearning.ora/hls4mi-tutorial/README .html

JupyterHub access (for efficient_ml tutorial)

* Join hlsdml-tutorial GitHub Organization (check your email for invite)
* Your should be able to see yourself here:

https://github.com/orgs/hls4ml-tutorial/people

JupyterHub link

* Open https://tutorials.fastmachinelearning.org in your web browser
» Authenticate with your GitHub account (login if necessary)

Elham E Khoda (SDSC / UCSD) — Fast Machine Learning Inference
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Quantization

Quantization - Reducing the bit precision used for NN arithmetic

Why this is necessary?
* Floating-point operations (32 bit numbers) on an FPGA consumes large resources
- Not necessary to do it for desired performance

* hlsdml uses fixed-point representation for all computations
Operations are integer ops, but we can represent fractional values

ap fixed<width bits, integer bits>

0101.1011101010

.ﬁ ﬁ.
integer fractional

e ————————
width
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Parallelization

* Trade-off between latency and FPGA resource usage determined by the parallelization of
the calculations in each layer

* Configure the “reuse factor” = number of times a multiplier is used to do a computation

Fully serial Fewer resources,

oo — 4 Lower throughput,
use 1 mu_ltiplier 4 times ngher Iatency

reuse =2
use 2 multipliers 2 times eac

reuse = 1
use 4 multipliers 1 time each

More resources,

Fully parallel Higher throughput,
Lower latency
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Application: Measure Muon prt at 40 MHz

CMS Phase-2 Simulation 14 TeV

i L1 Muon p, > 20 Gev; }

: f EMTF I
o - """""""""" EMTF++ """""" """"""""""" + """""""" -

Rate [kHZ]
S

AR S

+’I/I/’I/3/I/’I/I/I/}i/lIllillllillllillllillll
OO 50 100 150 200 250 300 350

PU

NN measures muon momentum

3x reduction in the trigger rate for NN!

Fits within L1 trigger latency (240 ns!) and FPGA
resource requirements (less then 30%)
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Al circuit for ultrafast inference on FPGA
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https://cds.cern.ch/record/2714892

Application: ATLAS LAr Calorimeter

10.100//s41781-021-00066-y

Convolutional and Recurrent Neural

Networks
for real-time energy reconstruction of

ATLAS LAr Calorimeter for Phase 2

Up to around 600 calorimeter channels

processed by on device
200 ns latency of predictions

Implemented on Intel FPGAs (previous

examples are all AMD)
- Team contributed majorly to RNN and

Intel implementations of hls4ml
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https://link.springer.com/article/10.1007/s41781-021-00066-y

Nat. Mach. Intell. 4, 154 (2022)

Application: Anoma Iy DEtECﬁon Data challenge: mpp-hep.github.io/ADC2021

* Challenge: if new physics has an unexpected signature that doesn’t align with existing triggers,
precious BSM events may be discarded at trigger level

®* Canwe use unsupervised algorithms to detect non-SM-like anomalies?

* Autoencoders (AEs): compress input to a smaller dimensional latent space then decompress and
calculate difference

* Variational autoencoders (VAEs): model the latent space as a probability distribution; possible to
detect anomalies purely with latent space variables

Key observation: Can build an anomaly score

from the latent space of VAE directly! No need
to run decoder!

2
R.=) %%
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https://doi.org/10.1038/s42256-022-00441-3
https://mpp-hep.github.io/ADC2021

Application: CMS Anomaly Trigger

CMS has implemented a similar idea: AXOL1TL AXOLITL

* L1 Hardware implemented VAE-based AD trigger

(based on https://arxiv.org/abs/2108.03986)
Event display of the

® Trained on 2018 zerobias data, ran in 2023 Global highest anomaly score
Trigger Test Crate G v el oo

' Data recorded: 2023-May-24 01:42:17.826112 GMT
;é Run / Event/ LS: 367883 / 374187302 / 159

* CMSis also developing CICADA, a calorimeter only
AD trigger

Similar effort is ongoing in ATLAS

CMS-DP-2023-079
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Low-latency Transformers 2 Xiv:2402.01047

Reuse and clk | Interval (cycle) | Latency (cycles) | Latency(time)

R1 (6577 ns) 49 269 2.077 us Ultra Fast Transformers on FPGAs for Particle
R2 (6.215 ns) | 65 449 3.467 us Physics Experiments
R4 (4.723 ns) 100 768 5.853 us

Zhixing Jiang
University of Washington
Zhixij@uw.edu

0 Utp ut Dennis Yin Elham E Khoda Vladimir Loncar*
University of Washington  University of Washington = Massachusetts Institute of Technology
class pro bab|||ty b/c/| |g ht lostecho@uw.edu ekhoda@uw.edu vloncar@mit.edu
Ekaterina Govorkova Eric Moreno
Massachusetts Institute of Technology Massachusetts Institute of Technology
katyag@mit.edu Emoreno@mit.edu
Output Layer o .
Philip Harris Scott Hauck Shih-Chieh Hsu
Softmax Massachusetts Institute of Technology ~ University of Washington ~ University of Washington
pcharris@mit.edu hauck@uw.edu schsu@uw. edu
Abstract

Feed Forward (3 Dense)
Units = [32, 16, 8]

This work introduces a highly efficient implementation of the transformer architec-
ture on a Field-Programmable Gate Array (FPGA) by using the h1s4m1 tool. Given
the demonstrated effectiveness of transformer models in addressing a wide range of
problems, their application in experimental triggers within particle physics becomes
a subject of significant interest. In this work, we have implemented critical com-
ponents of a transformer model, such as multi-head attention and softmax layers.
To evaluate the effectiveness of our implementation, we have focused on a particle
physics jet flavor tagging problem, employing a public dataset. We recorded latency
under 2 s on the Xilinx UltraScale+ FPGA, which is compatible with hardware
trigger requirements at the CERN Large Hadron Collider experiments.

arXi1v:2402.01047v1 [cs.LG] 1 Feb 2024

1 Introduction

Accelerated Machine Learning (ML) inference is necessary to run the algorithms in the online event
selection systems of the particle physics experiments. Due to the extremely high particle collision

Transformer Block X3

Observed Inference Latency ~ 2-6 us
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https://arxiv.org/abs/2402.01047

Summary

32-bit floating-point (FP32)

e Efficient model design is becoming more important as the
models are getting bigger

INT / fixed-point

e Several tricks to design efficient ML inference [T ERTTTT
e Some popular method: Pruning and Quantization 16-bit (FP16)/ 8-bit (FPE)
e Need to optimize pruning and quantization strategy for

satisfactory results
e Another effective technique: Knowledge Distillation

e ML-based algorithms are getting popular for experimental
trigger applications

e Efficient ML techniques are crucial for real-time inference
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End of the Lesson
Thank you for your attention and participation




Knowledge Distillation

Teacher Model
(large neural network)

Efficient and Robust Jet Tagging at the LHC with

Knowledge Distillation

Loss
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Ryan Liu Abhijith Gandrakota
University of California, Berkeley Fermi National Accelerator Laboratory
Berkeley, CA 94720 Batavia, IL 60510
Jennifer Ngadiuba Maria Spiropulu
Fermi National Accelerator Laboratory California Institute of Technology
Batavia, IL 60510 Pasadena, CA 91125

Jean-Roch Vlimant
California Institute of Technology
Pasadena, CA 91125

One Example: particle physics application
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Thank You!



Extra Slides




Magnitude-based Pruning

Row-wise pruning using L,-norm

We can define Lnnorm as: | | W(S)\ | = 2 ‘Wi \”
€S
WS = astructural set of parameters ] Pruned

. Preserved
(1217 +] = 4]l y
n
Row-wise 2017 20
_— —_—
1/n
Ln-norm U717+ 1= 117) 501/n
= 50'P

Original Weight Importance Pruned Weight
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Neural Network Pruning: Formulation

Neural network model f(x; W) Remove leastimportant connections such that

Pruning arg rr%}n L(x; W) [Wollp <N
’ X
Calculate l
subject to sparsity ratio —> least significant / important connections /
Sparsity = # of non-zero weights
P Y Total # of weights
© M € {0,1}!"1
Element-wise € {0,1] l
product operator M is binary mask
tensor that fixes argmin L(x; W)
Pruned model certain parameters Wy g
f; MO W];) to0
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