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1 Introduction

We collect data from many billions of collisions at the LHC and are typically
interested in signal processes that occur only once in a billion or less. A simpli-
fied picture of how LHC analysis works is :

basic selection → signal enhancing selection → statistical analysis

The basic selection usually defines what type of objects you are going to be
looking at. Eg. you might pick out all events with two jets, or all events with
two electrons, or one muon and one jet, etc.

The signal enhancing selection is an additional selection applied to remove
background events while keeping as many signal events as possible. The se-
lection criteria can be based on the kinematics of the objects (ie angles and
momenta), global event variables (ie missing energy) or sub-features of the ob-
jects themselves (ie jet substructure). As there are often exist many variables
in which signal and background differ, nowadays many analyses use mutlivari-
ate methods like Boosted Decision Trees or Neural Networks to implement the
selection. The selection is typically chosen/optimized based on a targeted sig-
nal model and the known backgrounds ML-based classifiers are typically trained
using simulated signal and background events. While our simulations are imper-
fect, they typically of high enough quality to learn good classification variables.
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However, one trains a classifier to identify a particular signal, you have no guar-
antee that it will have any sensitivity to any other signal even if they seem to
be ’very similar’ from a physics perspective.

The final statistical analysis is done to determine whether a signal is present
in the selected data or not. Often a fit is performed in a 1D variable in which
signal and background are known to have different distributions (eg invariant
mass). Different techniques (some using simulation, some data driven) are used
to model the background contribution depending on the type of background is
present and what selections have been applied. One must always be sure that
whatever selection is applied previously will still allow a background estimate
to be performed after. In particular, certain selections can bias the background
distribution to look similar to the signal in the 1D variable you would like to
fit, which makes estimating the background very difficult. So often you want to
decorrelate the selection with the final observable you intedn to fit.

What I will refer to as anomaly detection, is attempting to perform the
middle step of signal enhancing selection without any reference to a particular
signal model. Ie, a model-agnostic reduction of background. The philosophy
behind these methods is that we know there is a large space of potential signals
that could exist in our data (and likely more that we haven’t thought of!)
and it is unfeasible to perform a dedicated search for each signal. The hope
is that anomaly detection can help us make sure we aren’t missing any signal
thats hiding in the data. For any particular signal model anomaly detection
methods are generally less sensitive than a dedicated search which targets that
signal. However because they are designed in a model-agnostic fashion they
hopefully are sensitive to a much larger variety of signals. We do not claim that
these methods are entirely ’model-independent’ such that they have the same
sensitivity to all possible signals, rather just that they have some sensitivity
to some large-ish class of signals such that we could hope they could discover
something previously missed.

In addition to rejecting the background, important consideration when ap-
plying such an anomaly cut is to not spoil the final statistical analysis by intro-
ducing some bias to the background estimate.

There are an additional set of proposed techniques which attempt to perform
the latter two steps at once in a model-agnostic fashion (ie ’New Physics Learn-
ing Machine’ [1, 2, 3]), essentially by performing a goodness of fit measurement
between the data and the SM background in a high dimensional space. These
techniques are interesting but so far rely on very high quality simulation of the
SM background and so would have a restricted use cases and I will not focus on
them here.

The HEP-ML living review [4] is a good resources containing ∼ all HEP
anomaly detection papers.

2 Classification

This problem of selecting anomalies is a classification problem, just with an a
priori unknown signal. From the Neyman-Pearson Lemma we know the optimal
quantity to distinguish signal versus background is the likelihood ratio:
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Figure 1: A schematic image of an autoencoder. Taken from [8]

LS/B(X) =
Ps(X)

Pb(X)
(1)

Where Ps (Pb) is the probability density of signal (background). The chal-
lenge for anomaly detection is that if we don’t specify a signal model, we don’t
know Ps. Generally the set of techniques for anomaly detection can be split
into two classes.

The first class of techniques is based on the idea of outlier detection. Usu-
ally we are dominated by background events in our data sample. So even if one
knows nothing about the signal, one can learn about the background distribu-
tion. Then we can call events which seem very unlikely under the background
distribution as anomalies. Essentially this defines 1

Pb(X) as an anomaly score.

The second set of techniques essentially leverage the fact that in HEP our
signals are often overdense in a particular localized region. This fact is then

used to learn Ps(X)
Pb(X) from the data itself. These techniques rely on domain

knowledge to determine regions where a signal may be localized and control
regions which would not have signal but do have very similar backgrounds.
These techniques have the nice property that their anomaly score converges to
sopt in the limit of large statistics/large signals.

These two paradigms have different pro’s and con’s and may be applied in
different scenarios.

There are hybrid approaches which attempt to live somewhere in between
pure model agnostic approaches and traditional analysis. These usually use
some representative signal models as a loose prior [5, 6]. These methods are
interesting but I will not discuss them here.

3 Outlier Detection Methods

We generally do not know the full likelihood function of the Standard Model,
especially for complicated objects like jets. So often we train a network on
background dominated data such that we can learn a proxy for Pb.

Most of the work along these lines have used autoencoders (first proposed in
[7, 8]) as a the proxy for learning Pb. Autoencoders are a type of neural network
that takes input data of some dimension X ∼ Rd and then ’encodes’ (E) it into
some latent space of smaller dimension Z ∼ Rk for k < d. A decoder network D
then takes Z and tries to recovery the original data. The network is therefore
defined by E(X) = Z and D(Z) = X ′. It is usually trained with an L2 loss
L = ||X −D(E(X))||2. This is shown graphically in Figure 1
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The idea is that if this autoencoder is trained on a sample of background
events, it will learn how to do perform this compression/decompression pretty
well for background events. An ’anomalous’ event coming from some signal, will
then essentially by ’out of distribution’ for the networks training sample, and
therefore it will perform poorly at this compression/decompression task. We can
therefore use the same L2 loss evaluated on new events as an anomaly score.
We hope that it encodes something ∼ 1

PB(X) (but we are not really guaranteed

this).
An alternate strategy to autoencoders is to learn Pb(X) directly either by

using a variational autoencoder and evaluating the density in the latent space,
or by using a something like a normalizing flow. This can similarly this can be
trained on a sample of background events and then applied to other events to
find outliers.

Directly learning the probability distribution of extremely high dimensional
data can be difficult. So most applications of this method have so far used
human-chosen high-level features of dimensionality O(10) that we know to be
good for detecting a variety of signals. This is in contrast the autoencoder
based methods which generally take as input low-level representations of the
object to both reduce human bias and have sufficiently large dimensionality for
compression to make sense. VAE’s have not seen to give a significant boost
in performance compared to autoencoders. With recent advances in generative
modeling like diffusion, there is perhaps more room to explore directly learning
Pb(X) based on lower level features.

3.1 Challenges and Future Directions

One inherent limitation of all outlier detection / Pb-based methods is that prob-
ability densities are not invariant under coordinate transformations (first high-
lighted in HEP anomaly detection context in [9]). If one transform the data as
y = f(x) , then the probability density changes to

py(y) = px(f
−1(y))| d

dy
|f−1(y)| (2)

where the last term is the Jacobian of the transformation. For non-trivial
transformations, this Jacobian can radically alter the location of high/low den-
sity regions of the probability density in x vs y. For example, if f(x) is the
cumulative distribution function of x, then in y all points will have uniform
density and no point will be rarer than any other.

In practice this means that the choice of data representation and pre-processing
define significant inductive biases that control what kind of anomalies the method
will be sensitive to. Eg evaluating the density on x or log(x) can have non-trivial
impacts on the resulting anomaly score.

Note that for ratios of probability densities, like LS/B(x), the Jacobian in
the numerator and denominator cancel and therefore the classification score is
invariant.

Another significant challenge of the autoencoder based methods is their so
called ’complexity bias’. Because the anomaly score is based on this com-
pression task, more complex X’s (of a higher intrinsic dimension) generally have
higher anomaly scores regardless of their presence in the training sample. One
manifestation of this bias is that an autoencoder trained on only QCD jets will
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successfully identify top jets as anomalous, but an autoencoder trained on top
jets struggles to identify QCD jets as anomalous [10]. Normalized autoencoders
[11] attempt to remedy this issue by turning autoencoders into an energy based
probabilistic model. The network then gets penalized for reconstructing well
out of distribution data, which makes the network a better representation of Pb

than an standard autoencoder. Training this kind of model is often challenging
in practice because of stability issues.

A third challenge is in decorrelating the anomaly score of these methods with
some chosen feature. Often we would like a selection of the anomaly score not
to bias a certain distribution so we can later use it in background estimation.
Often these distributions (such as the mass of jet) are falling, make events in
the tail generally more anomalous. In some cases, where the distribution we
care about is strongly correlated with the other features it has been difficult to
achieve this decorrelation.

4 Overdensity-locating methods

Given a set of unlabeled data events it seem impossible to train a classifier
to distinguish signal vs background. Suppose however, someone has magically
provided you two mixed samples M1 and M2 which are composed of a mixture
of signal and background events and has told you that M1 has a larger fraction
of signal events in it (f1) than M2 does (f2). Then training a classifier to
distinguish between from M1 and M2 will converge to the optimal signal versus
vs background classifier:

LM1/M2(X) =
PM1(X)

PM2(X)
=

f1Ps(X) + (1− f1)Pb(X)

f2Ps(X) + (1− f2)Pb(X)
=

f1LS/B + (1− f1)

f2LS/B + (1− f2)
(3)

One can check that for f1 > f2 this is just a monotonic rescaling of LS/B

and therefore defines an equivalent classifier. In practice we often have f1 << 1
and f2 ∼ 0, that is one sample has an O(1%) signal fraction and the other is
nearly background pure. For f2 = 0, LM1/M2 becomes:

LM1/M2(X) =
f1Ps(X) + (1− f1)Pb(X)

Pb(X)
= f1 + (1− f1)LS/B (4)

which makes the scaling with LS/B more obvious.
This training setup shown graphically in Figure 2.
The key assumption here is that the background events in the two samples

are sampled from the same underlying distribution. If this is true, the only
way to distinguish the two samples is the difference in relative signal fractions
between the two samples so the classifier will learn to distinguish signal versus
background. If there is any bias such that the background events from the
two samples do not come from the same distribution, then this will typically
dominate the loss (because f1 << 1) such that the network will learn this
background bias rather than signal vs background discrimination.

This type of training is called ’weak supervision’ or Classification Without
Labels (CWoLa) in the literature (first proposed in [12]).

The question then becomes how can we define mixed samples in our data
that have these properties. The first, and most-studied, case is when our signal
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Figure 2: An illustration of weakly supervised training. A classifier is trained to
distinguish between two mixed samples of signal and background events. Taken
from [12].

is a narrow resonance. In a resonance search, signals manifest as a relatively
narrow peak in some invariant mass distribution on top of a larger background
that typically has a falling distribution. One can therefore guess a window in
this distribution where one hopes that the signal is localized to.

If a signal is present, the mixed sample defined by the events in this window
will contain some non-zero signal fraction, while events outside of the window
will not. Events in this window can then serve as the potentially signal-rich
mixed sample. Events outside this region will have very similar background
events to those inside the window, but in general the do not exactly match.
This is illustrated in Figure 3

Different approaches have therefore been taken to construct the background
rich mixed sample. The original proposal [14, 15] was just to use a weighted
sample of the events from the sidebands adjacent to the signal-window. Others
have improved upon this approach by training some sort of generative-like model
from the sidebands and then interpolating it into the signal region. Samples are
then drawn from this generative model to construct the background-rich sample.
The first of these methods was CATHODE [13, 16] which used a normalizing
flow trained in the sidebands. Other methods include SALAD [17] which uses
simulation to help with the interpolation, CURTAINS [18, 19] which ’transports’
events from the sidebands, , and FETA [20] which uses transport and simulation.
These 4 methods seem to perform roughly similarly [21].

If there is no signal present in the region, the two mixed samples will both
contain only background events. As long as there is no bias in the background
samples, the classifier will likely pick out some random statistical fluctuation
in one sample versus the other, which will not cause an bias/false-signals in
the final statistical analysis. The procedure needs to be repeated for different
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Figure 3: An illustration of the resonance-based overdensity scenario. The
signal is localized in particular region of the resonant variable. Within that
region there is an overdensity in the feature space from the signal events that is
not present in the sidebands. Figure taken from [13].

choices of the signal mass window because we do not know where the signal
would manifest a priori.

4.1 Challenges and Future Directions

One challenge with these methods is that the weakly supervised training is very
’noisy’. Most of the network’s loss is dominated by trying to perform an impos-
sible task of separating identical background distributions. The performance
can therefore change dramatically as a function of the amount of signal present
in the data. We would like to be sensitive to small signal fractions and also
include as large a feature space as possible to be sensitive to many different
possible anomalies. But these two goals have been found to be somewhat in
tension, the larger the input feature space the easier it is for the network to
overfit the background differences and thus you lose sensitivity to small signal
fractions (though the general approach can still work [22]). This means that
in general we are restricted to using a set of hand-picked features rather than
low-level ones. Recent work [23, 24] has also showed that using large ensembles
of Boosted decision trees rather than neural networks allows you to use a larger
feature space without as much loss in performance.

Another direction is to find additional strategies to define these mixed sam-
ples such that they can be applied to more use cases rather than just resonances
(or additional ’tricks’ to learn the likelihood ratio [25] in data). One approach
is to factorize your signal into two parts which are uncorrelated for background
and use an outlier detector one side to construct mixed samples for the other
[26]. Other ideas are based on finding control regions which have identical back-
grounds to the signal region for specific analysis cases [27, 28]. One could hope
to look for anomalies in the tails of distributions, which requires extrapolation
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of your background model, which is difficult to control for ML models working
in high dimensions. One approach tried extrapolating from two directions to
better control this and found some success [29] I think there is more to explore
here.

It is also interesting to ask what domains outside of HEP have anomalies that
manifest as similar over-densities to which these techniques could be applied.

5 Results using these techniques

There have so far been a limited number of experimental results using these tech-
niques. The first LHC anomaly detection result as a search for dijet resonances
using weak supervision[30] from ATLAS. However as this was a first foray into
these techniques it used a very limited 2D feature space to look for anomalies
(just the invariant masses of the two jets). The first search using outlier detec-
tion methods was a search for resonance decaying to Higgs plus an anomalous
jet [31] This search utilized a form of an autoencoder to tag the anomalous jet.
Another ATLAS search [32] looked for resonances in various two-body invariant
mass distributions (lepton-jet, jet-jet, etc). Event-level characteristics like the
number, momentum and angles of all reconstructed particles are encoded into
a matrix that is used as input to an autoencoder to select anomalous events.

A very recent CMS search looked for dijet resonances with anomalous jet
substructure [33] and employed multiple different anomaly detection methods
as complementary methods. There was one outlier-detection detection based on
a variational autoencoder, three methods using weak supervision and a hybrid
method that used both outlier detection and some signal priors.

The first application of these techniques outside HEP has been to the auto-
mated detection of stellar streams [34, 35, 36, 37].

Hopefully the number of experimental results using these techniques will
grow in the coming years.
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