Intro to Anomaly Detection in Particle Physics

Oz Amram Aug 15^{th} , 2024 ML4FP School

Overview

- What is anomaly detection?
- Method 1 : Outlier Detection
- Method 2 : Overdensity methods
- Hands on tutorial

Warning : Decent amount of personal / LHC bias!

Intro

- What is anomaly detection?
	- "Finding something interesting without specifying exactly what you are looking for"
	- Classification without specifying your signal class
- Why would you want to do it?
	- Many possible signals in your data (or failure modes of your $detection$ \rightarrow cannot search for them all one by one
	- Don't want to miss a discovery because we didn't think to look for it!
	- Science is full of many unexpected discoveries! Non-trivial to make this possible for modern complex data analysis

HEP Data Analysis

HEP Data Analysis

HEP Data Analysis

Classification

The optimal classifier is the **Likelihood Ratio**

Read about the [Neyman-Pearson lemma](https://en.wikipedia.org/wiki/Neyman%E2%80%93Pearson_lemma) if you are unfamiliar

$$
L_{S/B}(X) = \frac{P_s(X)}{P_b(X)}
$$
Prob. distribution of
prob. distribution of
background

Classification

The optimal classifier is the **Likelihood Ratio**

- In anomaly detection we do not know P_s
- How can we approximate the likelihood ratio then?
- Outlier Detection : Learn P_b, take anomaly score as 1/P_b
- **Data-driven likelihood ratio** : Leverage localization of signal to L_{S/B} from data

Outlier Detection

Outlier Detection

- We don't know a signal \rightarrow focus only on bkg (denom. of $L_{S/B}$)
	- $-$ Low $P_b(X) \rightarrow a$ nomalous
	- Ie, things that are rare / impossible to be background are anomalous
- Often have many examples of background, but don't know explicit prob. dist.
	- First thing to try : simple tools to estimate bkg pdf (KDE, GP, …)
- For complex high dim. data can be hard to explicitly model P_b
	- Sometimes sophisticated generative models can be used to learn P_b (normalizing flows, diffusion) \rightarrow covered already in other tutorial
	- Or train a model on bkg data to learn a proxy for P_{b} , like an **autoencoder**

Looking for Outliers

Autoencoder learns to compress data into a smaller representation & then decompress

 \rightarrow Will learn this well for 'in distribution' training set, will do poorly on 'out of distribution' (anomalies)

Illustrations: J Gonski, A Kahn

Looking for Outliers

Illustrations: J Gonski, A Kahn

Autoencoder Practicalities

- Training loss is (typically) MSE between input & output
- Size of compressed (latent) dim is an important hyperparameter
	- No exactly method to pick it
	- Often look for 'elbow' in loss vs. dim distribution
- Can train directly from data!
	- Performance resilient to small amount of signal presence
- Can use **variational** autoencoder (VAE)
	- Same idea but force latent space to be Gaussian
	- Doesn't seem to be a huge performance gain

Challenge 1 : Autoencoder Biases

- Autoencoders do not directly model P_{b} , suffer from biases
	- **Complexity bias** → more 'complex' data (higher intrinsic dim) harder to compress, seen as more anomalous
	- **Over generalization**: AE can reconstruct things well even outside training phase space because no penalty to do this

• **Normalized autoencoders** attempt to solve these issues **[2206.14225](https://arxiv.org/abs/2206.14225)**

Methods that directly model bkg pdf (NF's, diffusion) don't have these same issues

Challenge 2: Coordinate Invariance Probability densities (eg $P_b(X)$) not invariant under coordinate transformations

$$
y = f(x)
$$
 $p_y(y) = p_x(f^{-1}(y))|\frac{d}{dy}|f^{-1}(y)|$

 \mathbf{r}

Data-Driven Likelihood Ratio

Advantages of the likelihood ratio?

- Often in HEP, signals are within the bkg distribution rather than full outliers
	- What makes them anomalous is **a cluster of similar events**
	- These **cannot** be found with outlier detection methods
- Likelihood ratio is **coordinate invariant**
- Outlier methods have upper bound on sensitivity because never learn about P.

The Challenge

- A fully supervised NN trained with typical binary cross entropy will learn an approximation to the **likelihood ratio***
- But this requires labels for each data event, which we don't have!
- How can learn the likelihood ratio from **unlabeled data**?

* really a monotonic rescaling as the ratio, but this is identical for classification

Learning the Likehood Ratio

- Suppose someone gives you two samples of mixed **signal** and **bkg**
- Assuming the bkg in the two samples has the same underlying distribution
- The optimal classifier for distinguishing these mixed samples is also $L_{s/b}$!
	- Ie training a classifier with these mixed samples will mimic a supervised classifier!

Short Proof

Two mixed samples (M $_{\rm 1}$, M $_{\rm 2}$) with signal fractions (f $_{\rm 1}$, f $_{\rm 2}$)

$$
L_{M1/M2}(X) = \frac{P_{M1}(X)}{P_{M2}(X)} = \frac{f_1 P_s(X) + (1 - f_1) P_b(X)}{f_2 P_s(X) + (1 - f_2) P_b(X)}
$$

Short Proof

Two mixed samples (M $_{\rm 1}$, M $_{\rm 2}$) with signal fractions (f $_{\rm 1}$, f $_{\rm 2}$)

$$
L_{M1/M2}(X) = \frac{P_{M1}(X)}{P_{M2}(X)} = \frac{f_1 P_s(X) + (1 - f_1) P_b(X)}{f_2 P_s(X) + (1 - f_2) P_b(X)} = \frac{f_1 L_{S/B} + (1 - f_1)}{f_2 L_{S/B} + (1 - f_2)}
$$
\nMonotonically related to L_{S/B}

Short Proof

Two mixed samples (M $_{\rm 1}$, M $_{\rm 2}$) with signal fractions (f $_{\rm 1}$, f $_{\rm 2}$)

$$
L_{M1/M2}(X) = \frac{P_{M1}(X)}{P_{M2}(X)} = \frac{f_1 P_s(X) + (1 - f_1) P_b(X)}{f_2 P_s(X) + (1 - f_2) P_b(X)} = \frac{f_1 L_{S/B} + (1 - f_1)}{f_2 L_{S/B} + (1 - f_2)}
$$

If $f_2 \rightarrow 0$ (ie one sample is 'background pure') then simplifies

$$
L_{M1/M2}(X) = \frac{f_1 P_s(X) + (1 - f_1) P_b(X)}{P_b(X)} = f_1 + (1 - f_1) L_{S/B}
$$

Weak Supervision

• This method of training between mixed samples is called **weak supervision** (or Classification Without Labels, CWoLa)

- In practice, convergence to full supervision depends
	- On how large the signal fraction is
	- On **how many** training samples you have
	- On how '**distinctive**' the signal is compared to the background
- Good performance can be achieved with realistic ~1% signal fractions!

Mixed Samples

- Where do I get these mixed samples from?
- This is where your physics knowledge comes in!
- Typically have a signal region where your signal might live
	- Can you find an orthogonal sample of very similar background events?
- Any difference between background events in signal region vs. background sample will be picked up by your classifier!

Weak Supervision + Bump hunt

"CWoLa Hunting"

[1902.02634](https://arxiv.org/abs/1902.02634)

- Assume signal is a **narrow** resonance
	- \rightarrow Will live in a localized region of mass
	- Sidebands will have very similar bkgs but minimal signal
- **Guess** a mass window where it lives
	- Train signal window vs. narrow sidebands using weak supervision
- **Repeat procedure**, scanning over different mass windows
- Need to be careful about correlations with Mjj

CATHODE

Interpolates bkg events into SR using **generative model** Use gen. model. To construct bkg sample

Other variants with different interpolation methods (~similar performance) [CURTAINS](https://arxiv.org/abs/2305.04646), [SALAD](https://arxiv.org/abs/2212.10579), [FETA,](https://arxiv.org/abs/2212.11285)

…

[2109.00546](https://arxiv.org/abs/2109.00546)

Tag N' Train purifies samples by first tagging with AE

Challenges for Weak Supervision

- Weak supervision training is **noisy**
	- At low signal fraction, works better with high level f features \rightarrow less model independent
	- Ensembles of BDT's seem better than NN's!
- Not easy to create mixed samples
	- Biases in background samples will destroy method
	- **How can we apply this beyond bump hunts?**
- Performance varying with signal strength makes limit setting painful

In Action

[CMS-PAS-EXO-22-026](https://cds.cern.ch/record/2892677?ln=en)

- CMS employed AD in recent search for dijet resonances
	- Anomaly tag substructure of the jets
- Compared multiple different **anomaly methods**
	- "What xsec do I need for 3/5σ of signal?"
	- Up to factor of 7 gain in discovery sensitivity!
- **Lesson : No one universal, 'best' method**

Trigger

Discarding 99.99% of events from trigger \rightarrow could be missing signals!

Anomaly Detection in Trigger

- CMS has developed **two** an anomaly detection triggers
- Based on autoencoder's trained on zero bias data
- Many 'tricks' used to fit onto FPGA and operate at 40 MHz!!

Global Trigger & AXOLITL

CalorimeterCICADA

CICADA [CMS-DP-2023-086](https://cds.cern.ch/record/2879816?ln=en)

AXOL1TL led by FNAL postdoc Abhijith Gandrakota

What should I use?

- Anomaly detection is underspecified problem \rightarrow no single 'optimal' solution
- Method chosen should be tailored to use case
	- If model will only see one event at a time (eg trigger), **must** use outlier detection approaches
	- If you care about 'ultimate' sensitivity, consider weak supervision
	- Can't find suitable mixed samples in data \rightarrow outlier detection is more universally applicable

Conclusions

- Anomaly detection tries to find signals without specifying them
- Two general philosophies
	- $-$ Outlier detection : Learns about background \rightarrow anomalous = rare under bkg pdf
	- Weak supervision : Use mixed samples to learn S vs B classifier from data
- Both methods have pro's and con's
	- Which to use use depends on situation
- No single 'optimal' method

Tutorial

- 'anomaly_tutorial' directory includes much more material than we have time to cover
	- Full CATHODE demos and additional variants
	- Credits to Manuel Sommerhalder for building the repo
- We will focus on Gaussian data for simplicity to illustrate the main ideas
- Start with 'autoencoder gauss' and then 'weak supervision gauss'
	- After completing the main notebook, play around with different hyperparameters and see how results change!
	- Continue to other demos if you have time!

L1 Trigger Strategies

L1 Trigger Strategies

Anomaly Detection at L1

Thresholds on anomaly score chosen to achieve desired rate

In Action!

Deployed for real data taking in 2024 !

A L1 Anomalous Event

2023 event triggered only by **AXOL1TL**

Very busy, 11 jets + 1 muon

History

VOLUME 86, NUMBER 17

PHYSICAL REVIEW LETTERS

Quasi-Model-Independent Search for New High p_T Physics at D0

We apply a quasi-model-independent strategy ("Sleuth") to search for new high p_T physics in \approx 100 pb⁻¹ of $p\bar{p}$ collisions at \sqrt{s} = 1.8 TeV collected by the D0 experiment during 1992–1996 at the Fermilab Tevatron. We systematically analyze many exclusive final states and demonstrate sensitivity to a variety of models predicting new phenomena at the electroweak scale. No evidence of new high p_T physics is observed.

PHYSICAL REVIEW D 78, 012002 (2008)

Model-independent and quasi-model-independent search for new physics at CDF

Classic Strategy

Using [CMS MUSiC Search](http://2010.02984/) as an example

Data-MC Comparison

~1.5k event classes

Classic Strategy

Using [CMS MUSiC Search](http://2010.02984/) as an example

44

Modern 'Anomaly Detection'

The LHC Olympics 2020

A Community Challenge for Anomaly **Detection in High Energy Physics**

- Focus on a single topology at a time
- Entirely **data-driven**
- Novel ML methods to reduce bkg

arXiv: [2101.08320](https://arxiv.org/abs/2101.08320)

Modern 'Anomaly Detection'

arXiv: [2101.08320](https://arxiv.org/abs/2101.08320)

The LHC Olympics 2020

Quasi Anomalous Knowledge (QUAK)

- **Hybrid approach** between fully model-indep. and standard search
- **Encode a prior** on what a potential signal may look like
	- Use an AE trained on a variety of different signal MC's
- Construct 'QUAK space':
	- Loss of signal AE vs bkg AE
- Select events with low sig loss and Select events with low sig loss and $\frac{1}{2}$ and $\frac{1}{2}$ (Bkg-like' Loss high bkg loss

Input Features

Graphics [source](https://arxiv.org/abs/1909.12285)

Jet Substructure

Typical jet

- One central axis (prong)
- From primary vertex

● ...

Anomalous jets

- Multiple prongs
- Displaced vertices
- ???