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Overview

What is anomaly detection?
Method 1 : Outlier Detection

Method 2 : Overdensity methods
Hands on tutorial

Warning : Decent amount of personal / LHC bias!



Intro

 What is anomaly detection?

- “Finding something interesting without specifying exactly what
you are looking for”

- Classification without specifying your signal class

« Why would you want to do it?

- Many possible signals in your data (or failure modes of your
detector) = cannot search for them all one by one

- Don’t want to miss a discovery because we didn’t think to look
for it!

— Science is full of many unexpected discoveries! Non-trivial to
make this possible for modern complex data analysis



HEP Data Analysis

=

Good quality data e Simple cuts -~ NN'’s * Predict remaining bkg
Contains objects of * Optimized with a chosen * Test B vs S+B model -
interest signal model significances, limits ...
Passes trigger* * Don't spoil background

prediction
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Good quality data
Contains objects of
interest

Passes trigger*

HEP Data Analysis

|

e Simple cuts -~ NN’s

* Optimized with a chosen
signal model

* Don'’t spoil background

prediction

|

* Predict remaining bkg
* Test B vs S+B model -
significances, limits ...

Can we do this part without
specifying a signal model?



HEP Data Analysis

e Simple cuts -~ NN’s

* Optimized with a chosen
signal model

* Don'’t spoil background

prediction

* Predict remaining bkg
* Test B vs S+B model
significances, limits ...

* Good quality data
* Contains objects of
interest

!

Can we do this part without NB : There are methods which combine the
i\ : statistical analysis w/ the classification part
SpECIfylng a Slgnal mOdEI? (eg ‘New Physics Learning Machine’)


https://arxiv.org/abs/1806.02350

Classification

The optimal classifier is the Likelihood Ratio

Read about the
Neyman-Pearson lemma
if you are unfamiliar
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Prob. distribution of
signal

Prob. distribution of
background


https://en.wikipedia.org/wiki/Neyman%E2%80%93Pearson_lemma

Classification

The optimal classifier is the Likelihood Ratio

Ls/p(X) =
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In anomaly detection we do not know P,

How can we approximate the likelihood ratio then?
Outlier Detection : Learn P,, take anomaly score as 1/P,

Prob. distribution of
signal

Prob. distribution of
background

Data-driven likelihood ratio : Leverage localization of signal to L,z from data



Outlier Detection
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Outlier Detection

« We don’t know a signal = focus only on bkg (denom. of L)
- Low P,(X) = anomalous
- le, things that are rare / impossible to be background are anomalous

« Often have many examples of background, but don’t know
explicit prob. dist.

- First thing to try : simple tools to estimate bkg pdf (KDE, GP, ... )

« For complex high dim. data can be hard to explicitly model P,

— Sometimes sophisticated generative models can be used to learn P,
(normalizing flows, diffusion) = covered already in other tutorial

— Or train a model on bkg data to learn a proxy for P, like an
autoencoder
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Looking for Outliers

Train ‘Autoencoder’ Training Sample

LS
< G5 el

Autoencoder learns to compress data into a smaller
representation & then decompress

— Will learn this well for ‘in distribution’ training set, will
do poorly on ‘out of distribution’ (anomalies)

[llustrations: ] Gonski, A Kahn 1



Looking for Outliers

Apply Autoencoder Data from signal region

- R

Take difference

0 reconstruction loss 1

. . ' 1808.08979
lllustrations: J Gonski, A Kahn 1808.08992
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https://arxiv.org/abs/1808.08979
https://arxiv.org/abs/1808.08992

Autoencoder Practicalities

 Training loss is (typically) MSE between input &
output

 Size of compressed (latent) dim is an important
hyperparameter

- No exactly method to pick it
— Often look for ‘elbow’ in loss vs. dim distribution

e Can train directly from data!
- Performance resilient to small amount of signal presence

e Can use variational autoencoder (VAE)
- Same idea but force latent space to be Gaussian
- Doesn’t seem to be a huge performance gain

x 108

25 l T
20

10
5
——
5 10

1808.08979
1808.08992

13


https://arxiv.org/abs/1808.08979
https://arxiv.org/abs/1808.08992

Challenge 1 : Autoencoder Biases
« Autoencoders do not directly model P,, suffer from biases

- Complexity bias = more ‘complex’ data (higher intrinsic dim)
harder to compress, seen as more anomalous

- Over generalization: AE can reconstruct things well even
outside training phase space because no penalty to do this

Full phase space

Training / background
phase space

00D

 Normalized autoencoders attempt to solve these issues 2206.14225

« Methods that directly model bkg pdf (NF’s, diffusion) don’t have these same issues

14


https://arxiv.org/abs/2206.14225

Challenge 2: Coordinate Invariance

Probability densities (eg P,(X)) not invariant under
coordinate transformations

- 1 |
y = (x) - py(y):p.,f,.(f—l(y>>|;fy|f-i(y)|

2209.06225 15


https://arxiv.org/abs/2209.06225

Challenge 2: Coordinate Invariance

Probability densities (eg P,(X)) not invariant under
coordinate transformations

y = f(X) > py(yj :E?;(f_l(ym—u_l(y”
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https://arxiv.org/abs/2209.06225

Challenge 2: Coordinate Invariance

Probability densities (eg P,(X)) not invariant under
coordinate transformations

y = f(X) > py(yj :pi(f_l(y))|_|f_l(y)|
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This is an unavoidable limitation of using only P_

— Data representation is an inductive bias for anomalies!
2209.06225 17
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https://arxiv.org/abs/2209.06225

Data-Driven Likelihood Ratio
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Advantages of the likelihood ratio?

o Often in HEP, signals are within the bkg
distribution rather than full outliers

- What makes them anomalous is a cluster of similar
events

— These cannot be found with outlier detection methods
e Likelihood ratio is coordinate invariant

e Qutlier methods have upper bound on sensitivity
because never learn about P.

19



The Challenge

o A fully supervised NN trained with typical binary
cross entropy will learn an approximation to the
likelihood ratio*

* But this requires labels for each data event,
which we don’t have!

e How can learn the likelihood ratio from
unlabeled data?

* really a monotonic rescaling as the ratio, but this is
identical for classification

20



Learning the Likehood Ratio

* Suppose someone gives you two
samples of mixed signal and bkg

Mixed Sample 2

s ™\

e Assuming the bkg in the two
samples has the same underlying
distribution

 The optimal classifier for
distinguishing these mixed
samplesis also L, !

- |le training a classifier with these 03
mixed samples will mimic a ()
supervised classifier!

0

J . J
assifier

1708.02949 21


https://arxiv.org/abs/1708.02949

Short Proof -

Ls/p(X) = pi

(
(

X
X

)
)

Two mixed samples (M,, M,) with signal fractions (f,, f,)

}}ﬂ-fl(X) _ fl-Pa(X) + (1 _fl) '
}}ﬂ-IE(X) fﬁf}a(){)_'_(l_fﬂ) y

Larija2(X) =
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Short Proof —

Ls/p(X) = P;(X)

Two mixed samples (M,, M,) with signal fractions (f,, f,)

Prri(X) _ J1iPs(X) + (1 — f1)Pp(X) _ fils)p + (1 — f1)
Pra(X)  foPo(X) + (1= f2)P(X)  foLg/p + (1 — f2)

N
onotonically

related to L.

Larija2(X) =
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Short Proof

Ls/p(X) = f,;é;;

Two mixed samples (M,, M,) with signal fractions (f,, f,)

P (X) _ [1Ps(X) + (1 — f1)Pp(X) _ filsp + (1 — fi)
Pya(X)  foP(X)+ (1= f2)P(X)  foLg/p+ (1 - f2)

i

Lﬂ-fl/ﬂ-fz(X) =

If f, =0 (ie one sample is ‘background pure’) then simplifies

Lyriym2(X) = h(X) -;:,f(IX_) f1)P(X)

= fi+ (1 - fl)LS/H
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Weak Supervision

* This method of training between mixed samples is @g’:
called weak supervision (or Classification Without Labels, CWoLa) (
 |n practice, convergence to full supervision depends
— On how large the signal fraction is
- On how many training samples you have

— On how ‘distinctive’ the signal is compared to the
background

 Good performance can be achieved with realistic
~1% signal fractions!

1708.02949 25


https://arxiv.org/abs/1708.02949

Mixed Samples

 Where do | get these mixed samples from?
* This is where your physics knowledge comes in!

 Typically have a signal region where your signal
might live

- Can you find an orthogonal sample of very similar
background events?

* Any difference between background events in
signal region vs. background sample will be
picked up by your classifier!

26



Weak Supervision + Bump hunt

SB § SR § SB m

Pdata(2|m € SB)
= ppg(z|m € SB)

pdata($|m € SB)

Pdata(z|m € SR) = ppg(z|m € SB)

“CWolLa Hunting”

1902.02634

Assume signal is a narrow resonance

- = Will live in a localized region of
mass

— Sidebands will have very similar
bkgs but minimal signal

Guess a mass window where it lives

— Train signal window vs.
using weak supervision

Repeat procedure, scanning over
different mass windows

Need to be careful about correlations
with Mjj

27


https://arxiv.org/abs/1902.02634

Data from Interpolated

CATHODE
Interpolates bkg events into
SR using generative model

Use gen. model. To
construct bkg sample

Other variants with different
interpolation methods
(~similar performance)

CURTAINS, SALAD, FETA,

2109.00546 |

m Sig-rich
Tag N’ Train '

purifies samples by
first tagging with AE

*\ o Bkg-rich
1 ' > | sample

[OA & Suarez 2002.12376]



https://arxiv.org/abs/2002.12376
https://arxiv.org/abs/2109.00546
https://arxiv.org/abs/2305.04646
https://arxiv.org/abs/2212.10579
https://arxiv.org/abs/2212.11285

Challenges for Weak Supervision

 Weak supervision training is noisy

- At low signal fraction, works better with high level
features = less model independent

— Ensembles of BDT'’s seem better than NN's!

* Not easy to create mixed samples
- Biases in background samples will destroy method
- How can we apply this beyond bump hunts?

* Performance varying with signal strength makes
limit setting painful

29



I n ACﬁ O n CMS-PAS-EXO-22-026

. _ CMS Preliminary 138fb~" (13 TeV)
« CMS employed AD in recent g1 L ewRme
Sea rCh for dIJet resonances %104_ —D—- ?niliis?\r/]:,iCQaSrlZeCL Exp. Upper Limit ;: '(I';I\VIYI?La g __
- Anomaly tag substructure of the g | % Zmims -+ omeoes |
jets S 10 prong e |
e Compared multiple different ol
anomaly ods f
- “What xsec do | need for 3/50 of |
M )] o -fF
signal? 30
« e 2 5¢
— Up to factor of 7 gain in =z
discovery sensitivity! 52
1 gog ; /:l/—> —>|—) i)J—)t:
e Lesson : No one universal, A B T N s

( ) ignal Mode
best’ method \Very*diff. sigr?als/vsgJ M0


https://cds.cern.ch/record/2892677?ln=en

Trigger

Discarding 99.99% of events from trigger
— could be missing signals!

detector

_ Add anomaly ih-level data
collisions L1 trig

detection to trigger! [ analysis

40,000,000 110,000 5000
events/sec events/sec events/sec

Oz Amram (Fermilab)
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Anomaly Detection in Trigger

e CMS has developed two an
anomaly detection triggers

Global Trigger

« Based on autoencoder’s trained
on zero bias data

» Many ‘tricks’ used to fit onto Calorimeter

FPGA and operate at 40 MHz!! CICADA

Q
Keras AXOL1TL led by
his 4 ml Q FNAL postdoc Abhijith fy s«
AXOL1TL CMS-DP-2023-079 Gandrakota .

CICADA CMS-DP-2023-086 Oz Amram (Fermilab)


https://cds.cern.ch/record/2876546
https://cds.cern.ch/record/2879816?ln=en

What should | use?

 Anomaly detection is underspecified problem —
no single ‘optimal’ solution
 Method chosen should be tailored to use case

- If model will only see one event at a time (eg trigger),
must use outlier detection approaches

- If you care about ‘ultimate’ sensitivity, consider
weak supervision

- Can'’t find suitable mixed samples in data — outlier
detection is more universally applicable

33



Conclusions

 Anomaly detection tries to find signals without
specifying them
 Two general philosophies

— Qutlier detection : Learns about background — anomalous =
rare under bkg pdf

- Weak supervision : Use mixed samples to learn S vs B
classifier from data

* Both methods have pro’s and con’s
— Which to use use depends on situation

* No single ‘optimal’ method

34



Tutorial

e ‘anomaly_tutorial’ directory includes much more material
than we have time to cover

- Full CATHODE demos and additional variants
— Credits to Manuel Sommerhalder for building the repo

 We will focus on Gaussian data for simplicity to illustrate the
main ideas

 Start with ‘autoencoder_gauss’ and then
‘weak_supervision_gauss’

- After completing the main notebook, play around with different
hyperparameters and see how results change!

— Continue to other demos if you have time!

35



Backup



L1 Trigger Strategies

Eg.
Lepton’s with a given Simple
o E i I
Y R e k5 Kinematic cuts
-
0]
Q.
0]
3
£
I
©
o)
Eq. = Model Dependent
LLP Triggers Triggers
VBF Triggers —
Etc. Rate reduction




L1 Trigger Strategies

Eg.
Lepton’s with a given ® Simple Anomaly Best of both ?
Pr c i ' Detection
HT. MET, etc. 8 Kinematic cuts
c
0]
Q
[0)
2
£
I
B
o
Eg. = Model Dependent
LLP Triggers Triggers
VBF Triggers
Etc.

Rate reduction
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Anomaly Detection at L1

CMS Preliminary
ST Pt o !

Q ' —— HLS Emulation
108}k . QKeras

2023 (13.6 TeV)
! T ]

Counts

3 score = 25
105 ! ' -~ score = 250

Thresholds on anomaly score | = ==
chosen to achieve desired rate IR

103
102} :

10 |

10°F | i =

w3 | I T el | —d ' .
0 250 500 750 1000 1250 1500
AXOL1TL Score

CMS-DP-2023-079
39


https://cds.cern.ch/record/2876546

In Action!

CMS Preliminary 0.467 fb-', 2023 (13.6 TeV)

Rate [Hz]

e
o
@

e —————
|
|
|

AXOLITL was deployed

In CMS trigger test crate
during 2023 -

rates found to be stable OSSP,

A o e,
i ¥ thr, ,"“_W'-.'i-r.“‘_».».‘,,,, Ln
10° M UL L S nl,r.;\,,‘,-“u,,,’.,_ i
ay

L1 Physics Rate AXOL1TL Score > 250
AXOL1TL Score » 5 AXOL1TL Score > 1250
AXOL1TL Score » 25 Single Muon Trigger

e ——
]
L

N\

23:.00 00:00 01:00 02:00 03:00 04:00 05:00 06:00
07-Jun
Time [UTC]

Deployed for real data taking in 2024 !



A L1 Anomalous Event

CMS Experiment at the LHC, CERN
' Data recorded: 2023-May-24 01:42:17.826112 GMT
é Run / Event/LS: 367883/ 374187302 / 159

2023 event triggered
only by AXOL1TL

Very busy, 11 jets + 1
muon
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History

VOLUME 86, NUMBER 17 PHYSICAL REVIEW LETTERS 23 ApriL 2001

Quasi-Model-Independent Search for New High py Physics at DO

We apply a quasi-model-independent stratf:gyo search for new high p; physics in
=100 pb~! of pp collisions at /s = 1.8 TeV collectet-by the D0 experiment during 1992-1996 at the

Fermilab Tevatron. We systematically analyze many exclusive final states and demonstrate sensitivity to
a variety of models predicting new phenomena at the electroweak scale. No evidence of new high pr

physics is observed.

PHYSICAL REVIEW D 78, 012002 (2008)

Model-independent and quasi-model-independent search for new physics at CDF

“Vista”
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Classic Strategy

Using CMS MUSIC Search as an example

Categorize
) ] Exclusive
Jet-inclusive _ event class
event class le+2u+1jet
1e+2p+Njets 1 1e+2p+1jet+Njets

‘ 1e+X

//‘,{ 1p+X ]
K -

\{ 2u+X ’
2u+1jet+X ’

Inclusive
1e+2u+1let+x ’event class

1e

[ 1e+1jet+X 1p+jet+X ’

‘ 1e+1p+X

L 1e+1p+jet+X

‘ 1e+2u+X

~1.5k event classes

Data
Simulati

Data-MC Comparison

'35 9 fb (13 TeV)

(@)
=
_U)
St
gish
10
3
i)
=
18

‘<

Event class 2 u -+ Data

_35. 9 fb (13 TeV)

I Drell-Yan I

I Multiboson
B+ jets
tt
Ml Single t
I Multijet
B W +jets
Higgs boson
Bkg. uncert.

p=02
ip = 0.007

A

SLRLLL L L L L R L IR R

400

500 600

T B T T B
600 800 1000 1200 1400 1600 1800

S, [GeV]

N /

Find Largest Local Deviations

Event class 2e + 1u + 1b + 3 Jets + Njets

700

—+ Data
tt
I Single t
Higgs boson
I Multiboson
0 Drell-Yan
Bkg. uncert. <‘>

800 900

S, [GeV]
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http://2010.02984/

Classic Strategy

Using CMS MUSIC Search as an example
Data-MC Comparison

Categonze P 35916 (13 TeV)
& ,ECMS "Eventclass:2n 4 Data 10° _CMSSW . 3m
p=g 10 p=0.2 I Drell-Yan % . E F
T 10% I Multiboson G 10°
. . Exclusive £ 10°) Mo =P
Jet-inclusive - event class & 10°} W Singe t 2,50 B Singie
event class le+2p+1jet 10 et g or 8 Higgs boson
i 102 E I Higgs boson g I Multiboson
1e+2u+Njets 1e+2u+1jet+Njets 10 i [ Bkg. uncert. 10g [ Drell-Yan
i L 16 ] Bkg. uncert.
1 F . E
L le+X 1p+X ’ 10} 107 % .
102! 102
1e g1g_"|“'|"|'\"\"| I_LII T 3 5
‘ 1e+1jet+X }7 2y —»{ 1u+jet+X J g5, 0 e 107200 500 600 | 700 800 900

[ 1e+1p+jet+X 2p+1jet+X ’

B 1
1jet Eo'g..l...l..|...\...J...|...|...|..‘[. S; [GeV]
173} 200 400 600 800 1000 1200 1400 1600 1880\/
( le+1p+X / \ 2u+X J S, [GeV]

Inclusive
[ 1e+2u+X ’[ 1e+2p+1jet+X }event class

~1.5k event classes
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http://2010.02984/

Modern ‘Anomaly Detection’

The LHC Olympics 2020 » Focus on asingle

A Community Challenge for Anomaly to po I Ogy at a ti m e

Detection in High Energy Physics

* Entirely data-driven

 Novel ML methods to
reduce bkg

arXiv: 2101.08320 (j’ec:f?ﬁt

SAUCE

Oy s



https://arxiv.org/abs/2101.08320

Modern ‘Anomaly Detection’

The LHC Olympics 2020 e Focus on a Single

A Community Challenge for Anomaly

The Philosophy

“No free lunch” — Drop full model independence

But “discounts for buying in bulk”!
— Cover a large model space in an efficient way

(Al

arXiv: 2101.08320 Ojechet

SAUCE

U ”



https://arxiv.org/abs/2101.08320

Quasi Anomalous Knowledge (QUAK)

Hypothetical QUAK
Space

Hybrid approach between fully
model-indep. and standard search

Encode a prior on what a potential
signal may look like

- Use an AE trained on a variety of
different signal MC’s

|2p Quak
Construct ‘QUAK space’:
- Loss of signal AE vs bkg AE

N .
Select events with low sig loss and 0.0

high bkg loss ‘Bkg-like’ Loss

) Park et al 2011.03550
Oz Amram (Fermilab) [ ] 47

‘Sig-like’ Loss

Ion

Select


https://arxiv.org/abs/2011.03550

Input Features

Low-level features Hand-picked high-level features
VAE TNT CATHODE QUAK
Jet masses p=jetmass/p,
Jet Constituents Same as T s T s
P P, P, CWolLa Hunting 4l 21
T32’s
___________________ T43’s
CATHODE-b N 'S

const

+ Subjet b-tag
scores \/T21/ 'l'1

Sub-jets b-tag
scores

Oz Amram (Fermilab) 48



Graphics source

-

Jet Substructure

Typical jet Anomalous jets
* One central axis (prong) e Multiple prongs
* From primary vertex * Displaced vertices
. ... ° 777

Oz Amram (Fermilab) 49


https://arxiv.org/abs/1909.12285

