6–8 May 2024
Building 50
US/Pacific timezone

Non-perturbative method for modeling the wide-angle effects in the power spectrum

8 May 2024, 09:30
10m
Auditorium (Building 50)

Auditorium

Building 50

Speaker

Chen Heinrich (Caltech)

Description

The three-dimensional galaxy power spectrum is a powerful probe of primordial non-Gaussianity and additional general relativistic effects, which become important on large scales. At the same time, wide-angle (WA) effects due to differing lines-of-sight (LOS) on the curved sky also become important with large angular separation. In this work, we accurately model WA and Doppler effects using the spherical Fourier-Bessel (SFB) formalism, before transforming the result into the commonly used power spectrum multipoles (PSM). This mapping from the SFB power spectrum to PSM represents a new way to non-perturbatively model WA and GR effects present in the PSM, which we validate with log-normal mocks. Moreover, for the first time, we can compute the analytical PSM Gaussian covariance on large scales, exactly including WA-induced mode-couplings, without resorting to any plane-parallel approximations.

Primary authors

Presentation materials