Speaker
Austin McDonald
(UTA)
Description
The existence of Majorana fermions is of great interest as it may be related to the asymmetry between matter and anti-matter particles in the universe. However, the search for them has proven to be a difficult one. Neutrino-less Double Beta decay (NLDB) offers a possible opportunity for direct observation of a Majorana Fermion. The rate for NLDB decay may be as low as $\approx 1 $ $count/ton/year$ if the mass ordering is inverted. Current detector technologies have background rates between $4$ to $ 300$ $count/ton/year/ROI$ at the 100kg scale which is much larger than the universal goal of $0.1$ $count/ton/year/ROI$ desired for ton-scale detectors. The premise of my research is to develop new detector technologies that will allow for a background-free experiment. My current work is to develop a sensor that will tag the daughter ion $ Ba^{++}$ from the $Xe^{136}$ decay. The development of a sensor that is sensitive to single barium ion detection based on the single molecule fluorescence imaging technique is the major focus of this work. If successful, this could provide a path to a background-free experiment.
Primary author
Austin McDonald
(UTA)