We intend to establish a global Collaboration for developing germanium (Ge) detectors and technologies to be used for direct detection of dark matter and neutrino properties. Led by the University of South Dakota, the Collaboration involves five universities, one private sector company, and three government supported labs. Our goals are to: (1) develop novel Ge detectors for next generation experiments at the ton-scale with low-energy threshold and neutron/gamma (n/γ) discrimination and (2) increase knowledge and ultimately advance frontier physics education and training for undergraduate STEM majors, graduate students, post-docs, and early career faculty. The Collaboration will leverage best-in-class facilities, resources and expertise in the United States, China, Germany, France, Italy, and Taiwan to accomplish the following objectives: (1) develop research techniques in zone refinement and crystal growth to guarantee the purity and uniformity of large-size (up to 15 cm in diameter) detector-grade crystals; (2) create innovative planar Ge detectors with low-energy thresholds (<100 eV) and n/γ discrimination for dark matter, neutrino-nucleus coherent scattering, neutrino magnetic moment and milli-charged neutrinos; (3) improve electron/gamma discrimination and segmentation for neutrinoless double-beta decay (0νββ); and (4) accelerate education and training for young scientists.