Benjamin Jones (UTA): "Better Neutrinoless Double Beta Decay through Biochemistry

LBNL - Bldg. 50 Auditorium

LBNL - Bldg. 50 Auditorium

Abstract: The goal of future neutrinoless double beta decay experiments is to establish whether neutrino is its own antiparticle, by searching for an ultra-rare decay process with a half life that may be more than 10^27 years.  Such a discovery would have major implications for cosmology and particle physics, but requires ton-scale detectors with backgrounds below 1 count per ton per year.  This is a formidable technological challenge that has prompted consideration of unconventional solutions.  I will discuss an approach being developed within the NEXT collaboration: high pressure xenon gas time projection chambers augmented single molecule fluorescent imaging-based barium tagging. This combines techniques from the fields of biochemistry, super-resolution microscopy, organic synthesis and nuclear physics, possibly enabling the first effectively background-free, ton-scale neutrinoless double beta decay technology.
Short bio:  Dr. Jones earned his BS (2007) and MS (2008) degrees in Natural Sciences (specializing in Physics) at the University of Cambridge, UK, and a Ph.D. degree (2015) in Physics at the Massachusetts Institute of Technology. His Ph.D. research topics were searches for sterile neutrinos at the IceCube South Pole Neutrino Observatory and development of liquid argon technology for MicroBooNE, and his PhD thesis entitled “Sterile Neutrinos in Cold Climates" was awarded the Mitsuyoshi Tanaka Dissertation Award in Experimental Particle Physics from the American Physical Society. 
He worked as a post-doc at the University of Texas at Arlington for one year, and from this position advanced to Assistant Professor of Physics in 2016.  He is presently pursuing research on neutrino oscillations at IceCube, and development of technologies to search for neutrinoless double beta decay in high pressure xenon gas time projection chambers with NEXT. 
The agenda of this meeting is empty