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sub-keV bosonic dark matter

• Candidates:
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Absorption

Absorption from halo 
• mono-energetic  
• doesn’t require 

coherent field
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Solar emission 
• ~keV energies 
• ``axio-electric’’ effect

Photoelectric 
effect:

absorb all of the 
energy of incoming 

dark matter 

X

Dimopoulos, Starkman, Lynn 1986 
Pospelov, Ritz, Voloshin 2008



DM absorption in materials
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Relate the DM absorption rate to photon absorption rate:
(photon absorption, 

conductivity σ)
hne�absviDM / hne�absvi� = �1

Real part gives effective mass, imaginary part gives absorption:

Re ⇧(!) ⇡ !2
p = �2! � Im ⇧(!)

!
= �1 = hne�absvi�

⇧(!) ⇡ �i�̂!~J = �̂ ~E

In-medium polarization tensor and conductivity are related:



Hidden photon dark matter
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Figure 1: Illustration of the dark photon emission process by the electromagnetic current.
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Figure 1: Illustration of the dark photon emission process by the electromagnetic current.
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Figure1:Illustrationofthedarkphotonemissionprocessbytheelectromagneticcurrent.
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Absorption in semiconductors 
and superconductors
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Electron excitations in semiconductors
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Photon absorption data

 Band gap:  
 0.7 eV  (Ge)  
 1.1 eV  (Si)

Figure 4. Scissor corrected band structure for silicon (left) and germanium (right) as calculated with Quantum

ESPRESSO with a very fine k-point mesh. The horizontal dashed line indicates the top of the highest valence band. The
four bands below the horizontal dashed line are the valence bands while the bands above the dashed line are the conduction
bands. We also show the density-of-states (DOS) as a function of the energy for a very fine k-point mesh (blue) and for our
243 k-point mesh (red). A Gaussian smearing of 0.15eV was used to generate a smooth function.
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is the total energy deposited, and N
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We have written this in such a way that the first line gives a rough estimate of the rate, about
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.
All the necessary details of the target’s electronic structure are contained in the dimensionless

crystal form factor, f
crystal

(q, E
e

), which is a property purely of the target material and is independent
of any DM physics. The computation of this form factor is one of the main results of this paper.

Crystal form factor. In the periodic lattice of a semiconductor crystal, each electron energy level is
labelled by a continuous wavevector ~k in the first Brillouin Zone (BZ), and by a discrete band index
i. The wavefunctions of these states can be written in Bloch form,
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From Essig et al 2015



Backgrounds
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SuperCDMS SNOLAB/DM2016  Sunil Golwala

ER background levels 200x lower than Soudan via more exhaustive 
materials screening and more demanding (though still moderate) req’ts

reduced surface bgnds on Cu via radon tracking (detectors ok already!)
HV detectors require extreme care with cosmogenics

3H by cosmo. spallation of Ge and Si, 32Si from atmosph. Ar (contam. path not clear)

Background Expectations

12

After fiducialization  
in z and radius,  

cosmogenics given for 
low-exposure HV 

detectors assuming:

days

detectors (3H) 120

housings/tower (60Co) 90

cryostat (60Co) 180

10 eVee

= 30 eVr

= 330 eVt (~ 7σ)

Ge HV detectors expected bgnd spectrum at Vb = 100V,  σt = 50 eV

Slide: S. Golwala



Multi-phonon excitation
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Photon absorption data

Optical absorption below the band gap is allowed 
if (multiple) phonons are excited instead

V
phonon

phonon

From second order dipole moment 
coupling of (hidden) photon with lattice 
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Hidden photon dark matter
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Hidden photon DM
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(Si, 0.6 kg-d)

(Ge, 70 kg-d)

Stellar, Xenon10 constraints: 
An, Pospelov, Pradler 2013, 2014 

Redondo & Raffelt 2013

See also: 
I. Bloch, Tien-Tien Yu, etc 2016 

for similar study
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DC  : 4e-/mm2/day ~ 0.0009 e-/pix/day ~ 7x10-22 A/cm2 

17

arXiv:1611.03066

this dark current, by itself provides the best direct detection limits for 
low mass hidden-photon dark matter. We believe we have not reach 
the DC limit for the sensors yet.

Slide: J. Tiffenberg

Theory prediction orders of magnitude lower



Superconductor target
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Superconducting Substrate (Al)

Insulating layer

 TES and QP collection antennas (W) 

SuperConducting Bias Rails (Al)

Superconducting Substrate (Ta)

Insulating layer

 TES and QP collection antennas (W) 

Athermal Phonon Collection Fins (Al)

Figure 1. Schematic designs for superconducting detectors that are sensitive to DM-electron scattering.
Left: Quasiparticles produced by a recoiling e� in a large aluminum arbsorber are collected by tungsten
quasiparticle collection fins and then their energy is sensed by a TES.Right: Athermal phonons produced
by a recoil e� in a large tantalum absorber are collected by aluminum collection fins and then their energy
is sensed by a TES.

athermal phonons and quasiparticles have very long lifetimes, and as such can potentially be

collected before they thermalize. Thus in the systems we consider, detection of DM operates via

the breaking of Cooper pairs in a superconducting target. We consider this idea in more detail

next.

2.2 Detector design with milli-eV sensitivity

Our detector concept is based on collecting and concentrating long lived athermal excitations

from DM interactions in a superconducting target absorber onto a small volume (and thus highly

sensitive) sensor. The collection and concentration of long lived excitations is a general concept

that has been a core principle of detector physics, from ionization in semiconductor CCDs to

athermal phonon collection in CDMS. Here we propose that this general detection philosophy be

applied in large volume (very pure, single crystal) superconductors to search for DM with mass

as low as the warm DM limit of a keV using standard superconducting sensor technology that

has been pushed to its ultimate theoretical sensitivity. A schematic of two proposed detector

concepts for light dark matter, that we describe in greater detail through the remainder of this

section, is shown in Fig. 1.

Detection of dark matter in such detectors is comprised of a three part process:

• Dark Matter Scattering on Target Absorber and Subsequent Excitation Production. A DM

particle scatters o↵ an e� in the target metal or superconducting absorber. In subse-

quent interactions, the recoil energy is converted into long lived athermal phonons and

quasiparticles.

• Collection of Excitations. The resulting excitations must be collected and concentrated

onto a small volume (and thus very sensitive) sensor; this is typically done via ‘collection

– 6 –

Hochberg, Zhao, and Zurek 2015  
Hochberg, Pyle, Zhao, and Zurek 2015

QP/phonon 
measurement 

with Eth~meV goal

T = 10mK

5 mm
Aluminum
Tc = 1.2 K
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factor relevant for these excitations.The so-called coherence
factor ((Ek,Ek!) describes the scattering of a quasiparticle
from a state k with energyEk to a state k$ = k+qwith energy
Ek! = Ek + ℏ# upon absorption of a photon with energy ℏ#
and momentum q. If summed over all k values, it reads [41–
43, 46] ( (Δ,E,E$) = 12 (1 + Δ2EE$) . (5)

Only for energies below the gap 2Δ, this factor is appreciable:( ≈ 1 for ℏ# ≪ 2Δ. For ℏ# ≥ 2Δ, the coherence
factors are reversed, and ( vanishes in the present case. For
large energies, the coherence effects become negligible since
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it becomes smaller with increasing frequency and shifts to
higher temperatures.The height of the peak has the following
frequency dependence:
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∼ log {2Δ (0)ℏ# } . (6)

The peak disappears completely for ℏ# ≥ Δ/2 (well below2Δ). At " = 0 and # < 2Δ/ℏ the complex part of the
conductivity12/1% describes the response of the Cooper pairs
and is related to the gap parameter through the expression12 (")1% ≈ 7Δ (")ℏ# tanh{Δ (")29&"} ≈ lim'→ 07Δ (0)ℏ# . (7)
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Superconductor

How we compute:



Absorption via phonon emission
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Phonon energy:
⌦ = cs| ~Q|

The phonon can carry large 
momentum, with small energy.

Speed of sound in aluminum:
cs ' 6320 m/s ⇠ 2⇥ 10�5 Electron-phonon coupling is 

fixed by matching onto high-T 
resistivity of material.
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describes the conductivity at energies above the super-
conducting gap and below the gap for direct transitions
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We immediately see the correspondence between �
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in
the Drude theory and the result Eq. (8), once ⌧ is de-
termined in the Drude theory. In what follows we use
!p = 12.2 eV for aluminum [28].

The parameter ⌧ represents an electron scattering time
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peratures of the proposed superconducting detectors are
O(10mK) ⇠ µeV), ⌧ is set by electron interactions with
athermal phonons. Using the simple Debye model for
the phonon dispersion, the phonon-electron interactions
give ⌧ = ⌧

�

, where the rate for the electron to emit the
phonon is [29]

1

⌧
�

=

(
4

5

⇡�
tr

!D

�
1 � 5

6

!D
!

�
, ! � !D

2
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⇡�
tr

!5

!4
D

, ! < !D
. (16)

For aluminum, !D ⇡ 0.037 eV, and the measured high-
temperature resistivity gives �

tr

= 0.39 [30]. Then !⌧ �
1 and we see that Eq. (8) thus gives the same result as
the Drude model, Eq. (13), which can be used to fix C

�

.
In practice we will use the Drude model, normalizing ⌧

�

by comparing directly with data.
The Drude theory, from a strict point of view, applies

only for a metal in the normal (non-superconducting)
phase. For the case of absorption, however, the di↵er-
ence between an ordinary metal and a superconductor is
only relevant when the absorbed particle energy is close
to twice the superconducting gap, 2�, which is the min-
imum energy required to break a Cooper pair. Once
the absorbed energy is much larger than 2�, the sys-
tem is once again described by the free electron model of
a metal. Near the gap, the modification of the absorp-
tion rate in a superconductor relative to that of a metal
can be encoded in a so-called coherence factor. Following

FIG. 2. Absorptive part of conductivity in low temperature
aluminum: below ! = 0.2 eV, we use the analytic Drude
theory, Eqs. (13) and (16), here shown in the normal metal
phase (dashed blue curve) and with the inclusion of coherence
e↵ects (Eq. (17)) in the superconducting phase (solid blue
curve); we match this onto low-temperature data [31] (solid
thick red curve); and then extrapolate to higher energies.

Ref. [29], we include this e↵ect on the rate by using a dif-
ferent ⌧S

�

in the superconducting phase, which is related
to the normal metal phase ⌧N

�

close to the gap by

⌧N
�

⌧S
�

=

R !�2�

0

d⌦(! � ⌦)⌦4 E
h
(1 � 4�

2

(!�⌦)

2 )1/2
i

R !
0

d⌦(! � ⌦)⌦4

, (17)

where E is the complete elliptic integral of the second
kind. The inclusion of this factor only modestly a↵ects
our results near threshold.

For higher energies (! ⇠ 0.5 eV in aluminum), inter-
band transitions are possible, and the Drude theory is
incomplete. In principle, the integral in Eq. (4) over
electron momentum states must be modified to take into
account the full band structure of the material. Fortu-
nately, measurements of photon absorption in aluminum
are available in this energy range and, where possible, we
directly obtain �

1

from the data. As long as we can sim-
ply relate the matrix-element-squared of DM absorption
to photon absorption, we are free to use measured �

1

to
normalize absorption rates, rather than performing the
many-body calculation.

To summarize, we determine �
1

over the meV-10 eV
energy range through a combination of theoretical calcu-
lation and experimental measurements. Our resulting �

1

for aluminum is shown in Fig. 2. At the lowest energies,
we use the analytic result in the Drude theory, Eqs. (13)
and (16), including the coherence e↵ects close to the su-
perconducting gap at � ' 0.3 meV using Eq. (17). We
fix the overall normalization of ⌧

�

by matching onto low-
temperature data on �

1

in the 0.2–3 eV energy range [31].
From 3 eV to 10 eV, we extrapolate �

1

with an !�3 power
law; we note that for these energies, �

1

is expected to be
approximately independent of temperature and our ex-

Time-scale for electron to emit 
photon (in Debye limit):
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FIG. 5. Estimated sensitivity of an aluminum superconductor target for 1-kg-year (thick solid black) and 1-kg-day (thin solid
black) exposures, for absorption of scalar dark matter. For comparison, we also show constraints from fifth-force (shaded blue
and solid red curve) [46]; horizontal branch (HB) cooling (shaded purple) [47, 48]; and decays into photons (dashed green
outline) [43].

B. Pseudoscalars

We now proceed to pseudoscalars X = a coupling to
electrons:

L � gaee
2me

(@µa)ē�µ�5e . (21)

While a candidate for a is the QCD axion, the relic den-
sity for the QCD axion cannot saturate the observed DM
relic abundance in the mass range we consider, at least
in the standard cosmology. More exotic mechanisms may
be required for QCD axions to be all of the DM; alterna-
tively, the pseudoscalar may be an axion-like particle [38].

Comparing the pseudoscalar matrix-element-squared
to the case of a photon, we find the same leading ~Q-
dependence, |M|2 ⇡ 3(gaee/2me)2(!/e)2|M� |2. Then
the DM absorption rate is related to the conductivity as:

R =
1

⇢

⇢X
mX

3m2

a

4m2

e

g2aee
e2

�
1

. (22)

The expected reach into the parameter space of pseu-
doscalar DM via absorption on an aluminum supercon-
ducting target is shown in Fig. 4, for a kg-day (thin solid
black curve) and kg-year (thick solid black curve) ex-
posure. Stellar constraints on light pseudoscalars are
shown as well — the electron coupling allows for emission
of the pseudoscalar in the mass range of interest within
electron-dense environments such as white dwarfs. The

cooling curves of white dwarfs give the strongest con-
straints on the electron coupling over our entire mass
range [41]. It has been argued that some of the data are
in favor of a new weakly coupled particle [49], and the
limits shown are subject to a factor of a few uncertainty.
We also show constraints from Xenon100 [40] (shaded
pink) on DM emitted from the sun, which have keV en-
ergies and can be detected via an absorption process.

For completeness, we also show the relation between
mass and fa for the QCD axion, (0.60 meV/ma) =
(fa/1010 GeV). Then the e↵ective coupling can be
written as gaee = Ceme/fa, where for DFSZ axions,
Ce = 1

3

cos2 �, and for KSVZ axions with only a loop-
induced electron-coupling, Ce / ↵2. In the shaded grey
region, we take as an upper bound Ce = 1/3.

Given an electron coupling, a loop-induced coupling of
the pseudoscalar to photons arises,

↵

8⇡

gaee
me

aFµ⌫ F̃
µ⌫ . (23)

If the pseudoscalar couples to other charged particles,
this coupling will be modified by an O(1) factor. As-
suming only the induced photon coupling above, we can
place constraints on gaee from CAST [42] (shaded blue),
cooling of HB stars (shaded purple), and the a ! �� de-
cay time [43] (shaded green). (The IAXO experiment is
expected to improve on the constraint from CAST by at
least an order of magnitude [50].) While a kg-year expo-
sure can cut into the QCD axion parameter space, stellar
constraints remain stronger. Superconductors will be a
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strong alternative, however, to model-dependent stellar
constraints.

C. Scalars

We now consider scalar DM X = � coupling to elec-
trons via

L � d�ee
p

4⇡
me

Mpl
�ēe , (24)

where we follow the normalization of Refs. [46, 51]. Sim-
ilar to the hidden photon and axion, the relic abun-
dance of scalar DM can be set by a misalignment mech-
anism [52].

The dominant piece of the matrix-element-squared for
the absorption of a scalar is

|M|2 ⇡ 3

↵

✓
d�eeme

Mpl

◆
2 !2

| ~Q|2 |M� |2 , (25)

and thus di↵ers in ~Q-dependence from the photon case,
suppressed in comparison by !2/| ~Q|2. Performing the
integration in Eq. (4) and comparing with the photon
rate in Eq. (8), we thus obtain an !-dependent mapping
from �

1

to the scalar case. We arrive at a rate for scalar
absorption of

R =
1

⇢

⇢X
mX

3

↵

✓
d�ee

me

Mpl

◆
2

�
1

⇥
8
<

:

5

2

c2s , ! < !D

5

3

c2s!
2

!2
D

(1� 3!D
4! )

(1� 5!D
6! )

, ! > !D
(26)

We use this result over the entire ! range shown, even
though it does not account for interband transitions
which are relevant above ! & 0.5 eV. Nevertheless, we ex-
pect Eq. (26) to be a reasonable proxy because the phase-
space volume factor favors large phonon energies near the
upper limit of !D, where the suppression factor appear-
ing in Eq. (25) is well-captured by !2/| ~Q|2 ⇠ !2/| ~QD|2
with | ~QD| = !D/cs, up to an O(1) factor.

The projected sensitivity of a superconducting alu-
minum target for scalar DM absorption is presented in
Fig. 5, for a kg-day (thin solid black curve) and kg-
year (thick solid black curve) exposure. For compari-
son, we present the fifth-force constraints of Ref. [46]
(shaded blue and solid red curve), using the transla-
tion |↵

mod

| = (d�eeQe)2 where Qe ⇡ 1/4000 is the frac-
tional rest mass in electrons. For masses above 0.1 eV,
the derived constraints come from Casimir force experi-
ments, and are not as rigorous. We also plot HB cooling
constraints (shaded purple), applying the limit g�ee ⇠<
1.3⇥10�14 [47, 48] and setting g�ee = d�ee

p
4⇡ me

Mpl
. Sim-

ilar to the pseudoscalar case, the loop-induced coupling
to photons

↵

3
p

⇡

d�ee
Mpl

�Fµ⌫F
µ⌫ (27)

yields limits on d�ee from the � ! �� decay time com-
pared telescope searches [43], which we plot as well
(dashed green outline). We find the superconducting
detector gives the best sensitivity above 30 meV. Fi-
nally, we note the entire unexplored portion of the pa-
rameter space shown is technically natural, in that the
� mass-correction due to the electron coupling leads to
�m2

�/m2

� < 1.

IV. CONCLUSIONS

We have explored the prospects of detecting ultralight
DM, with mass in the meV to 10 eV range, via absorption
in an aluminum superconductor. We find that even with
modest exposure, the aluminum superconductor is par-
ticularly powerful for the case of hidden photon DM, eas-
ily superseding stellar constraints. In the case of a light
pseudoscalar, absorption on a superconducting target can
also cut into the QCD axion parameter space. Likewise,
superconductors can probe scalar DM parameter space
beyond constraints from stellar emission and fifth-force
searches. Our results are summarized in Figs. 3, 4 and 5.
Strikingly, the excellent reach of the superconducting tar-
gets is obtained despite the fact that the proposed detec-
tion method does not make use of DM coherence e↵ects
in the absorption process.

In fact, the DM mass range accessible to a supercon-
ducting absorber is exactly the mass range where the
behavior of light bosonic DM transitions to that of a clas-
sical field, at masses of an eV. For masses well below this
range, experimental techniques can rely on the coherence
of the DM field to probe extremely small couplings. Our
method, however, does not require a long coherence time
of the DM field. The DM signal is a single-particle mono-
energetic absorption, which takes advantage of the su-
perconductor sensitivity to an electronic excitation with
energy as low as ⇠ meV.

In a future publication, we will present the sensitiv-
ity of semiconducting targets to DM with masses above
an eV via a similar absorption process, where we expect
excellent reach [25].
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Superfluid helium
• Probe light DM scattering 

with phonon-roton excitations  
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Fig. 1.6. The broad high-energy multiparticle (or multiphonon) structure in
S(Q,co) at intermediate Q at 1.1 K and SVR The "peak" position and its
width are indicated [Source: Cowley and Woods, 1971].

Woods (1971), in the region up to about g ^ 2.5 A 1 there is always
an additional broad "multiparticle" structure centred around ~20-25 K,
with an intensity which increases with Q. This is obvious from results
such as those shown in Fig. 1.5. This multiparticle (or multiphonon)
spectrum shown in Fig. 1.6 makes it very difficult to clearly separate
out the quasiparticle peak - especially as we go to higher temperatures
(T ^ 1.3 K) where it becomes increasingly broadened. To carry out
this separation, we must have some theoretical guidance as to what the
quasiparticle and the multiparticle structure involve. The same kind of
problem occurs with extracting the phonon frequencies from the S(Q,a>)
data in solid Helium, as we discuss in Chapter 11.

These sorts of questions force us to search for a more fundamental
understanding of the elementary excitations of superfluid 4He and their
relation to the structure exhibited by 5(Q,co).
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IV. HIDDEN PHOTON PROCESSES

A hidden photon is a well-motivated ingredient of many dark matter models, either as a
component of the dark matter itself (e.g. [56–58]) or as a mediator for DM interactions. (For
a recent review, see Ref. [10].) The hidden photon A0 couples to standard model fields through
the kinetic mixing operator,

L � 

2

F µ⌫F 0
µ⌫ (50)

where  is the kinetic mixing parameter and Fµ⌫ (F 0
µ⌫) is the photon (hidden photon) field

strength. For a massive hidden photon, this mixing leads to a coupling of the hidden photon
with the regular electromagnetic current, eA0

µJ
µ
EM , after performing a field redefinition Aµ !

Aµ + A0
µ. Here, we consider two scenarios: in the first case, a fermionic DM candidate with

keV-MeV mass scatters via the hidden photon mediator. Since our expressions only depend on
⇥gA0 , with gA0 the DM coupling to the hidden photon, for simplicity we set gA0

= 1 and quote
our results only in terms of . In addition, we will calculate absorption of sub-eV mass hidden
photons in helium, assuming that the hidden photons constitute the dark matter.

Since the electric charge of the helium atom is screened at long wavelengths (or small mo-
mentum transfers q . 1 keV), the analysis of the previous section no longer applies. Instead,
a hidden photon (or photon) couples to the medium by inducing a dipole moment, where the
strength of the dipole is determined by the atomic polarizability ↵. Note also that this im-
plies there is negligible difference between the in-medium kinetic mixing and the vacuum kinetic
mixing, in contrast to other low-threshold targets like superconductors where in-medium effects
substantially affect the rate [26].

Our treatment of this coupling via the polarizability will closely follow Ref. [59], which
considered photon scattering in liquid helium. First, we obtain the photon coupling with the
medium. To leading order, the target medium is treated as a linear dielectric, with an atomic
polarizability ↵ ⇡ 2 ⇥ 10

�25
cm

3 (see e.g. [59]) for helium. The polarization of the medium is
given by

P(r) = ↵ n(r)E(r), (51)

where n is the number density at helium atoms and E is the total electric field in the medium.
The interaction Hamiltonian of the polarization with a radiation field E� is then

HI = �1

2

Z
d3rP(r) · E�(r). (52)

If the polarization is solely induced by the incident radiation field, then E(r) ⇡ E�(r). From the
coupling to the number density n(r), this interaction allows for photon scattering by creation
of excitations in the liquid. When just a single excitation is emitted, this process is known as

25

Kinetic mixing:

At long wavelengths, the electric charge is screened and the hidden 
photon must couple to the atomic polarizability.

Leading operator for hidden photon coupling in helium:

particle number density. The relevant term in Hamiltonian is then

HI = �1

2

Z
d3rP(r) · E�(r) (47)

with E� the electric field associated with the radiation field. The origin of the polarization

vector P depends on whether or not the experimental setup is placed in a strong external

electric field. Since the response of the system qualitatively depends on this choice, we consider

both cases separately.

A. Without external field

In the absense of a strong external electric field, the polarization is solely induced by the

electric field of the incoming radiation, since E(r) ⇡ E�(r).2 After shifting the operator in (45),

the Hamiltonian is then

HI = �↵

Z
d3r n(r)E(r) · E0(r) (48)

where we dropped the subscripts from the electric fields, and use E0 to denote the electric field

associated with the dark photon. Note that the density field n now couples to two insertions of

the radiation field. The physical interpretation of this feature is straightforward, as an incoming

dark photon must first induce a polarization in the medium, which subsequently relaxes back

to the ground state by emmitting a photon and one or more phonons. If only one phonon is

emitted, this process is known as Brioullin scattering. The photon only carries a small fraction

of the energy, such that the frequency shift in the outgoing photon is minimal. Another second

possibility is Raman scattering, where in addition to the final state photon, two back-to-back,

high momentum phonons are being emitted. Raman scattering is however higher order in ↵ and

is generally three to four orders of magnitude weaker than Brioullin scattering and we neglect

it in our discussion. We refer to [? ] for a review of both Brioullin and Raman scattering in

superfluid Helium.

The case of dark matter scattering is shown schematically in 6, which also defines our

conventions for the kinematic variables used in this section. Since the dark matter is non-

relativistic, a typically collision is characterized by a small energy deposit, but a relatively

2 We neglect the strong intra-atomic electric fields, which are screened at the distances we are interested in

here.
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The interaction Hamiltonian of the polarization with a radiation field E� is then

HI = �1

2

Z
d3rP(r) · E�(r). (52)

If the polarization is solely induced by the incident radiation field, then E(r) ⇡ E�(r). From the
coupling to the number density n(r), this interaction allows for photon scattering by creation
of excitations in the liquid. When just a single excitation is emitted, this process is known as
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IV. HIDDEN PHOTON PROCESSES
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L � 

2

F µ⌫F 0
µ⌫ (50)

where  is the kinetic mixing parameter and Fµ⌫ (F 0
µ⌫) is the photon (hidden photon) field
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µJ
µ
EM , after performing a field redefinition Aµ !

Aµ + A0
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given by
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particle number density. The relevant term in Hamiltonian is then

HI = �1

2

Z
d3rP(r) · E�(r) (47)

with E� the electric field associated with the radiation field. The origin of the polarization

vector P depends on whether or not the experimental setup is placed in a strong external

electric field. Since the response of the system qualitatively depends on this choice, we consider

both cases separately.

A. Without external field

In the absense of a strong external electric field, the polarization is solely induced by the

electric field of the incoming radiation, since E(r) ⇡ E�(r).2 After shifting the operator in (45),

the Hamiltonian is then

HI = �↵

Z
d3r n(r)E(r) · E0(r) (48)

where we dropped the subscripts from the electric fields, and use E0 to denote the electric field

associated with the dark photon. Note that the density field n now couples to two insertions of

the radiation field. The physical interpretation of this feature is straightforward, as an incoming

dark photon must first induce a polarization in the medium, which subsequently relaxes back

to the ground state by emmitting a photon and one or more phonons. If only one phonon is

emitted, this process is known as Brioullin scattering. The photon only carries a small fraction

of the energy, such that the frequency shift in the outgoing photon is minimal. Another second

possibility is Raman scattering, where in addition to the final state photon, two back-to-back,

high momentum phonons are being emitted. Raman scattering is however higher order in ↵ and

is generally three to four orders of magnitude weaker than Brioullin scattering and we neglect

it in our discussion. We refer to [? ] for a review of both Brioullin and Raman scattering in

superfluid Helium.

The case of dark matter scattering is shown schematically in 6, which also defines our

conventions for the kinematic variables used in this section. Since the dark matter is non-

relativistic, a typically collision is characterized by a small energy deposit, but a relatively

2 We neglect the strong intra-atomic electric fields, which are screened at the distances we are interested in

here.
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it in our discussion. We refer to [? ] for a review of both Brioullin and Raman scattering in

superfluid Helium.

The case of dark matter scattering is shown schematically in 6, which also defines our

conventions for the kinematic variables used in this section. Since the dark matter is non-

relativistic, a typically collision is characterized by a small energy deposit, but a relatively

sizable momentum transfer (q � !). Since the speed of sound in the superfluid is much smaller

than the speed of light, nearly all the deposited energy will be carried away by the photon,

while the phonon will absorb the momentum. In formulas this is

!1 ⇡ !, k2 ⇡ q and !2 ⇡ 0. (33)

To calculate the matrix element, we quantize the electric field of the photon on an arbitrary

volume V by

E(r) =
ip
2V

X

k1,�

p
!1

"
✏(k1, �)ak1,�e

i(k1·r�!1t) � ✏⇤(k1, �)a†
k1,�e

�i(k1·r�!1t)

#
(34)

where ✏(k1, �) is the polarization vector and ak1,� (a†
k1,�) the annihilation (creation) operators.

Since the dark matter is non-relativistic, we can work in the Coulomb approximation for the

dark photon. Concretely

E0(r) = i
1

V

X

q,r

q eiqrNc,r(q) � Nd,r(q)

q2 + m2
(35)

where we set the dark matter charge under the dark photon to be one. m is the dark photon

mass and Nc,r(q) and Nd,r(q) are the number operators for dark matter and anti-dark matter
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Helium is (very) transparent: No in-medium suppression !
Coupling through polarizability small "



• Consider applying E ~ 100 kV/cm   (Ito et al. 2015) 

• Energy threshold + kinematics now requires multi-phonon 
excitations again: this is highly suppressed for absorption of non 
relativistic bosons (small q). Again, sensitivity is not competitive.
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FIG. 10. Processes for dark matter scattering via a hidden photon mediator; the diagrams for

absorption of hidden photons are identical to these but without the external fields pi and pf . (left)

In the absence of an external E-field, the DM scattering creates a photon and quasiparticle excitation

(dashed line) in the final state. The coupling of the hidden photon is given in Eq. (53). (right) In the

presence of an external electric field E0, the intermediate hidden photon is converted to an off-shell

excitation, which subsequently splits into two or more on-shell excitations. See Eq. (54).

Brioullin scattering.2 Since the sound speed is much smaller than the speed of light, here the
phonon excitation only carries a small fraction of the energy, such that the frequency shift in
the outgoing photon is minimal.

To obtain the coupling for the hidden photon field, we perform the field redefinition Aµ !
Aµ + A0

µ, which gives

HI = �↵

Z
d3r n(r)E(r) · E0

(r) (53)

and E0
(r) is the hidden photon field. From this, we see that the hidden photon couples to a

photon and the density field. A DM scattering (or absorption) would thus give rise to both
an observable photon and quasiparticle excitation, as shown in the left panel of Fig. 10. The
physical interpretation is as follows: an incoming hidden photon must first induce a polarization
in the medium, which subsequently relaxes back to the ground state by emitting a photon and
a phonon. We calculate the rate for these processes in Sec. IV A.

Additionally, the polarization vector P may be present already if the experimental setup
includes a strong external electric field applied in the liquid. In particular, in neutron EDM
experiments, superfluid helium is used for storage of the cold neutrons, and a strong electric
field is applied to study the neutron spin precession. Recently, a stable electric field as high as
2 Another possibility is Raman scattering, where in addition to the final state photon, two back-to-back, high

momentum phonons are being emitted. However, the rate for Raman scattering is proportional to ↵2 and is

generally three to four orders of magnitude weaker than Brillouin scattering. We neglect it here, but refer to

Ref. [60] for a review of both Brillouin and Raman scattering in superfluid helium.
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µ, which gives
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and E0
(r) is the hidden photon field. From this, we see that the hidden photon couples to a

photon and the density field. A DM scattering (or absorption) would thus give rise to both
an observable photon and quasiparticle excitation, as shown in the left panel of Fig. 10. The
physical interpretation is as follows: an incoming hidden photon must first induce a polarization
in the medium, which subsequently relaxes back to the ground state by emitting a photon and
a phonon. We calculate the rate for these processes in Sec. IV A.

Additionally, the polarization vector P may be present already if the experimental setup
includes a strong external electric field applied in the liquid. In particular, in neutron EDM
experiments, superfluid helium is used for storage of the cold neutrons, and a strong electric
field is applied to study the neutron spin precession. Recently, a stable electric field as high as
2 Another possibility is Raman scattering, where in addition to the final state photon, two back-to-back, high

momentum phonons are being emitted. However, the rate for Raman scattering is proportional to ↵2 and is

generally three to four orders of magnitude weaker than Brillouin scattering. We neglect it here, but refer to

Ref. [60] for a review of both Brillouin and Raman scattering in superfluid helium.
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Conclusions
• Semiconductors and superconductors: 

excellent prospects for DM absorption 
on electrons, despite in-medium effects 

• Superfluid helium: great for nuclear 
recoils, difficult to probe hidden photon 
models  

• Diversity of targets important

25

4 1. Introduction
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Figure 1.1: (a), Schematic of pair-breaking in a superconductor. A photon with an energy

hf > 2� breaks a Cooper pair and excites two additional quasiparticles. (b), Simplified circuit

diagram of a microwave resonator, which is capacitively coupled to a readout line. The change

in the number of quasiparticles and Cooper pairs induces a change in the kinetic inductance

and resistance of the resonator. (c), The microwave transmission as a function of frequency in

an aluminium microwave resonator. Upon absorption of pair-breaking radiation, the resonant

frequency shifts (inductance) and the depth of the resonance dip decreases (resistance). The

legend gives the applied radiation power at 1.54 THz.

temperatures. In the field of circuit quantum electrodynamics, superconducting qubits

are used as the building blocks of a quantum computer. Not only the building blocks,

but also the embedding circuitry is superconductor based [11]. Quasiparticle excitations

are detrimental to the coherence time of the qubit state and need to be eliminated to

preserve the qubit state long enough to perform useful computations. Other devices

based on low temperature superconductors su↵er from excess quasiparticles as well,

such as single-electron transistors [12]. For solid-state refrigeration based on supercon-

ducting junctions, excess quasiparticles could deteriorate the cooling power and limit

the temperature to which a superconducting system can be cooled down [13].

1.2 Detection of radiation with superconducting res-

onators

The number of quasiparticle excitations can be measured in several ways. An estab-

lished method is by measuring the current arising from photo-excited quasiparticles

through a tunnel barrier (STJ) [14]. These detectors have to be tuned individually,

which is an important drawback for use in large arrays. The number of quasiparticles

can also be measured by monitoring the charge of a Cooper pair box, coupled to an

absorber by tunnel-junctions, the quantum capacitance detector (QCD) [15]. QCDs

can potentially be used in large arrays, because they can be embedded in microwave

resonators and they have recently proven high sensitivity [16].
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