Future Perspective: Sensors and
Electronics Integration Frontier

Veljko Radeka

Instructions from the organizers:

"We encourage you to describe ways in which the physics is currently, or
will be, enabled by new and creative innovations in electronic instrumentation
and methods, rather than giving a historical overview .."

Nygren FEST
LBNL, May 2-3, 2014
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Application:

Transition Edge Sensors (TES)
Superconducting Tunnel Junctions ~1-2 x 103
(Bolometers, Microcalorimeters)

Ge
Si

Xe
Kr

Ar
Ne

Nal (+PM)
LSO (+APD, SiPM)
PbWSO, (+APD)

EM spectrum, meV — keV,
eV-resolution spectrometry;
precision microcalorimetry

Detectors for:

X-ray, y-ray spectrometry;
Charged particle tracking,
Monolithic Active Pixel Sensors;
sampling calorimeters

GeV-TeV calorimetry;

Gas and liquid TPCs for detection of
neutrinos, nucleon decay, 086-
decay, dark matter

SPECT
PET
GeV calorimetry




Where is prediction on detectors possible for the next
~ 20 years?

LHC upgrades| e*-e~ e-ion SLHC TPCs for 0BB- LAr TPCs: Detectors for
and Il collider collider decay, dark scaling up to  astrophysics;
Increasing level 1 matter : 10-30 kton photon science

trigger rate scaling up to [EInEE
from LAr ton size

calorimetry; new

all-silicon tracking

Symbiosis of “Sensors” and Microelectronics
- “composite of two species as one unit”; “obligate” — “one cannot exist without the other”

cee “pn: (P )
“Silicon” TPCs Microelectronics

- (bump/directly bonded) - Gas and liquid, - What after CMOS?

- MAPS charge and light
- SiPMs




Si “Pixel” Detectors
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3D Integration of Sensors and Readout ICs (“ROICs”) - Goals

Particle Tracking (ENC~50 e rms) X-ray Detectors (ENC<10 e rms)
Thin sensors (~50-100um) Thick sensors (300-500um)
\

X A ‘ ~V %- new sensors
” Top detector . _ o _

I
Long 91 cm) strips

Innovative materials

Advanced interconnect

Thinned and 3D ASICs

High-speed I/O
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From: G. Deptuch, R. Lipton
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A more sober view ....

TSS Status
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Technology Challenge - 3D or 2%:D?

3rd generation 3 PCB Bonding technology:
Siinterposer - Copper to copper
bump " or more tiers - Oxide to oxide fusion
bonding DIGITAL -
ROIC [ - Copper to tin

= FUSION BONDING - Polymer/adhesive
ANALOG ~lsn Ry
FUSION BONDING - Copper stud

T

Through Silicon
Via (TSV): Cu filled

GND
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From: R. Yarema, G. Deptuch = ' = ' ' ' '!
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¢ Z%D 9 no Vias in aCtiVE g S 5500 4.0kV 0.8mm x100k SE 12/22/2011 ' 300nm’

SiliCOn Only in passive m==_ Expected course of strain

. ’ 4 ‘ Package (general approach)
Interposers Sy Substrate

*3D-> specialized (e.g., + TSV: uym-range

memories) + Strain engineering @ MOSFETs nm-range R
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Charge collection in MAPS (Monolithic Active Pixel Sensors) — sensor

00 01 02 03 04

and transistors in “standard” CMOS technology

Electrical Potential

A

Ionising
Particle

P- Epitatial Layer

P++ Substrate

Diffusion constant (“Einstein 17)

oA Diffusion time vs r (“Einstein 27)
= 15ns to diffuse to 10um;
=135ns to 30um in silicon.

-lo p 1o 20 3o Drift time for electrons and holes ~1/vy

~< 10ns for 100um
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MAPS: From Charge Diffusion to Drift

High-voltage pixel (100% fill-factor)
particles MAPS Pixel (100% fill-factor)

\ o S BMOS particles
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Challenge: How to do it in a * Better S/N
“standard” process? * Shorter charge collection time

* Higher radiation tolerance
Adapted from: I. Peric



Silicon Photo Multipliers (SiPMs) — Geiger-mode Avalanche Photo

Diodes
e N N
Analog SiPM Digital SiPM
Passive sEiEE
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www.hamamatsu.com
* Cells connected to common readout » Each diode is a digital switch
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SiPMs: “Dark” Noise and Optical Crosstalk - Active Quenching
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Challenge: SiPMs to cover large areas ...

e Light collection on the barrel behind field
shaping rings
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1. GEM vs Micromegas

2. Interpolating anode configuration - chevron
3. Anode-pad—-ASIC board topology
4

S/N, minimize capacitance, gas gain and
positive ion space charge

HV Cathode Plane Double GEM
Field cage planes

Fine Granularity Gas TPCs:

Digital readout
board

Interpolating anode pad
plane with front end ASICs
(7296 channels) in the LEGS

Bo Yu et al. TPC; 10 watts total on TPC.
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Effective Gas Gain

Effective Gas Gain of the Double GEM Detector

Ar+20% CO,, 5.4 keV x-rays (~1lmm*, 2kHz), E;=1kV/cm, E=4kV/cm, E;=5kV/cm
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Signal Formation on Wire Electrodes in Noble Liquid TPCs:
Induced Signals from a Track Segment

Time scale is determined by the electron drift
velocity and wire plane spacing (3 mm shown)

_u
T
¥ z ¥] ] [ 1 10 12 14 18 18 20
—'ll'
1 T
2 z F] & 5 10 12 14 18 18 p21]
1
i z F] ] [ 10 12 14 18 18 20

[us]

LBNE style wire arrangement: 3 instrumented wire planes + 1 grid plane
Raw current waveforms convolved with a 0.5us gaussian (~1/2 drift length) to mimic diffusion
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Signal Formation on Wire Electrodes in Noble Liquid TPCs:
Induced Signals from a Track Segment

Time scale is determined by the electron drift
velocity and wire plane spacing (3 mm shown)

A
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LBNE style wire arrangement: 3 instrumented wire planes + 1 grid plane

Raw current waveforms convolved with a 0.5us gaussian (~1/2 drift length) to mimic diffusion
4



collection coord. [cm]

collection coord. [cm]

Testing MicroBooNE cold preamps with ARGONTUBE

~ 5 m long electrons drift in LAR: first time!

twice MicroBooNE drift lentgh, <2 E-field

4.76m/ 7.2 ms

M S/N for MIP ~ 16
d ENC ~530e
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From: Igor Kreslo, Bern
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PMT's Dual-Phase Noble Liquid-Gas Detectors:

CAS . ' . . . Small (multi-ton) for Dark Matter (WIMP) detection and
Secondary _S2 Large (multi-10 kton) for neutrino studies, proton decay,
scintillation  *3..¢  Multiplying grid neutrinos from SN

I’“l cm

From: H. Sobel o

2D readout anode+
amplification stage

Extraction stage p ::: By

2 LEM
stages

extraction
grids

/] o 4 ° \
Cathode p===sccccccccaa- .
Scintillation light ? | | \ e lavel

readout




Large Two-Phase LAr TPCs: The Challenge of Scaling up Readout

Electrodes
Assume

From: F. Resnati

» X-Y strip electrodes have a large capacitance g
* above ~100-200 pF per 1 m strip, the S/N is affected 20 KT design
« signal channels: =400/m? - >5x10°for ~ 20 kton with 12m drift A scaled down

(~ 25 strips-channels/ton, nearly the same as for LBNE with 2.5 meter LAGL.JNA CEEFEPt
drift distance) From: A. Rubbia, A.
Ereditato

e Cold electronics with multiplexing clearly needed
*Electron multiplication leads to loss of easy charge
calibration inherent to ion chambers 18

Aiming at 2 100 kton



CMOS Scaling: -
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The promise of graphene ...

Electron mobility: >10° !!!
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Graphene issue:

PROCEEDINGS OF THE IEEE | Vol. 101, No. 7, July 2013
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Beyond CMOS?

CMOS NAND Gate:
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Any “Beyond CMOS” device should
have many of the same
characteristics as CMOS devices :

- power gain >1

- ideal signal restoration and fanout
- high ON/OFF current ratio ~10°7

- low static power dissipation

- compatibility with Si CMOS
devices for mixed functions

Physical (computational) variables:
charge, current, voltage, electric
dipole,magnetic dipole, orbital state

Devices considered by NRI:
- tunelling FET

- graphene nanoribbon FET

- bilayer pseudospin FET

- SpInFET

- spin transfer torque/domain wall
- spin majority gate

- spin transfer torque triad

- spin torque oscillator logic

- all spin logic device

- spin wave device

- nanomagnet logic

- lI-V tunnel FETs

Upon analysis: Spintronic devices have longer
switching delays and higher switching energies,
due to inherent time of magnetization
propagation ...



CMOS Scaling:
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After the transistor revolution:

s

“What about that! His brain still uses the old vacuum tubes.”
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It will be some time before the cartoon

reappears .
ke e f &
Pl /. e
/ — =
« . /= =
¥ {L I . n, —_ = =
: t' |
& - R

“What about that! His brain still us:es those old CMOS
3D systems on chip.” 2



Creating fertile ground for future Nygrens

The gas TPC was a unique breakthrough idea - its value has
been growing due to its continuing evolution. The current
and future activity on numerous gas and liquid TPCs is the
best tribute to David.

To continue in David's tradition with the next generation of
detector researchers, some thought will have to be
devoted how to maintain a climate favorable to creation
and pursuit of new ideas.

In addition to carefully planned R&D programs under tight
funding conditions and the resulting oversight, the burden
will be on research institutions to provide continuity and a
degree of freedom. A difficult task that will require
considerable vision from the future laboratory leaders ...




