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In spite of the instructions, a little history

e | came to Brookhaven 40 years ago to work on a
study of K, >n*n~y & other radiative decays:
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Most of the apparatus was recycled

A famous experiment to hunt for K—ptu-
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FIG. 1. Layout of the apparatus. MWPC’s are chambers “A,” “B,” and “D.”
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And found it
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Why did anyone care?

People knew that K, ->u*u~ was an important test of weak
neutral currents, moreover it was experimentally tractable.

There was a “unitarity” contribution from an intermediate
K,—7Yy decay which put a floor on how far down one could

chase such effects w
Y

Kp

Y .

u
So they were trying to measure the excess above this floor (~6

x1079).

But the first experiment with the sensitivity to see this
claimed the BR was less than ~2 x10~°. They couldn’t see it at
all!

Got theorists quite excited.



So the 6 events brought everyone back to earth
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Why were people still doing this 25 years later?

There was a very well-calculated electroweak SM
contribution. It was sensitive to Re(A,).

After B factory determinations of the CKM parameters,
K,—utu~ it remained quite useful for BSM hunts.

Many possibilities were ruled out by the high precision
measurement

But the unitarity contribution limits what one can do
with this result.



Murphy’s Law for Rare K Decay
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The fundamental irony of rare kaon physics:

The very interactions that make the the process detectable,
introduce obfuscating long-distance effects!

Aside from the previously mentioned absorptive part that is
many times larger than the SM short-distance contribution

there’s a hard-to-calculate dispersive component that can
interfere with it.



A long distance to go

We start off with the 6200 event experiment.

The absorptive piece can be well-determined by measuring K, — yy
— But it turns out to be ~¥95% as large as the total measured rate!
— Subtracting it gives BYsP(K —u*u)= (3.2+1.2) x1010
— A number ~20 times smaller than the absorptive part

— And ~3 times smaller than SM fits to the short-distance part! This suggests
the dispersive part has the opposite sign wrt the SM one-loop contribution

This corresponds statistically to a 7 event experiment! Nature is a
real killjoy.
And this is before trying to untangle the dispersive interference.

— Where there’s agreement from all sectors of the theory world that this is
very difficult!

Further improvement in reach very slow with increasing statistics



This led in another direction

Look at the one-loop diagrames.
A simple rearrangement kills the long-distance pieces

+

True for akmost all BSM péssibilities

But you pay the devil’s bargain — you end up with
three-body decays, two of which are undetectable.

This presents the challenges of the title.



The “Golden” Channels

e K*—>m*vv and K —>n°vv

e |nthe SM
7

e |nvirtually all BSM schemes, these are proportional to the modulus
and imaginary part of the same amplitude.

e Recent candidates appear on the next slide.



Golden Territory
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The Experimental Challenges

The SM-predicted branching ratios are ~¥3 x 10-'tand 8 x 10}
for the neutral and charged decays respectively. This means
that high rate conditions will obtain.

The kinematic signature is very poor - basically a range in CM
energy for a single (of three) particles.

The visible particle is a very common product of K decay.

One is forced to prove a negative, i.e. that the decay was not
something other than the signal. A great premium on vetoing
(tends to be lossy at high rates).

The only reason such experiments are possible is that the

leading backgrounds are two-body decays with rather good
signatures.
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Experimental considerations for K*—>ntvv

3-body decay, only 1 visible

t common K decay product
BR ~ few x 1011
Backgrounds:

— K'—=urv(y)

— K>t nP

— K*—> m*yy inpnnl @ 10°

— K*'n—>K%%; K, — n* €, lepton

missed

— Beam

e Beam " mis-ID as K*, then fakes K
decay at rest or at high energy
scatters into the detector.

e K*decayin flight
e 2 beam particles
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Just Say ‘No’

Since negative information so important in dealing with these
modes, vetoing extra decay products comes to the fore.

This tends to be more important in rare-decay experiments than in
say collider experiments.

— Thus for example calorimeters used only for vetoing may be optimized
differently from those used to measure particle characteristics, although
in some experiments (e.g. neutral K) the calorimeter may serve both
functions.

Even charged particle vetoing can be difficult at the level required.

Vetoing at high rates tends to be lossy.

— The one series of experiments that actually observed any of these decays,
E787/949, had acceptances in the 0.25% ball park.

— Thus better time resolution could improve matters.

— But sometimes even that runs into a brick wall — if the only visible
indication of a photon is a neutron that wafts across the apparatus for
10ns, your hard-fought 1ns resolution is confounded.



What else can you do?

You can reduce the rates

— Use a separated charged K beam
— Filter the neutral beam for the K| case

Other methods of rejecting the background
— Particle ID — factors of £10° can be required
— Kinematic recognition — here’s where resolution helps

In both endeavors your enemy is tails — when you need one
of these techniques to recognize 999,999 out of 1,000,000
cases, you run into non-gaussian phenomena.

You must also nail the background size

— Need to find non-correlated techniques of background rejection, e.g.
vetoing of photons from K* — n*n®, and kinematic ID of the r*

— Sometimes you have to settle for small, well-understood correlations.
— Use Monte Carlo judiciously



Approach #1 — Low Energy
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Pure beam of K’s, easier to approach hermeticity, certain

kinematic gifts, some very effective particle ID techniques
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End up with something that looks like a collider detector —
only 30 million times lower energy than at the LHC



E787/949 Technique

el = e Incoming 700MeV/c K*: identified &
tracked by beam instrumentation. Slowed

by energy loss in a BeO “degrader”

o K* stops & decays at rest in scintillating
fiber target — wait 2ns to make sure

» Qutgoing =*: verified by counters.
Momentum measured in small drift
— chamber, energy & range in target & RS

(1T magnetic field parallel to beam)

o " stops & decays in RS — detect n*—u*
—e* chain

 Photons registered by all systems so

Barrel " RSSC events can be eliminated

Veto

rg —Varenna 18



Past & Future of Stopped K* Version

e E787/949 series of experiments
over 15 years yielded 7 events
PLUS very good understanding of
technique
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What detector improvements could help?

More efficient photon vetoes, especially at very low
energy

Better charged track timing — would allow another
handle to separate n’s from u’s.

Better photon timing — would cut down on random
veto losses

Massless photodetectors — would allow 2-end
readout of the stopping target

Massless coating of target elements — coating would
also need to reflect UV light.



Approach #2 — High Energy (In-Flight)

 Most extra tracks easier to detect and thus veto. High energy
particle ID techniques available. In the current example the
beam is unseparated so rates are really high.
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e CERN NA62 — 100 event experiment — physics data in 2015
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NA62 Sighal & Background

In-flight use m?
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What detector improvements could help?

A separated K* beam



K,—>n°vV Experimental Issues
14
p &ﬂi
\ y

All-neutral initial & final state, y' s make n°

Expected BR~ 3 x 1011

— need high flux of K,
Largest background K,—n°n® BR ~ 103

— Can be “even” (miss 1 %) or “odd” (miss 1y from each %)
— need excellent vetoes, other handles if possible

Background from n-produced 7%, ns
— need 10”7 Torr vacuum
— A way to be sure decay vertex was in the beam very helpful



“High Energy” K, —m®Vv Experiment
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K,—>n%vV “High” Energy

 Get the cleanest, thinnest beam possible, the best energy resolution &
vacuum you can and veto like crazy — note the elaborate array of near &

in-beam anti-counters

* Force the 2-y vertex to make a t° emanating from the beam (a weakness!),
then select on p; — the signal persists to higher p; than most backgrounds

Csl calorimeter
CvV CC04 CCo05 CC06 BHCVY

\,

—%@ Decay reglon >

I I'

Vacuum chamber

HINEMOS BCVY LCV OEV CCo03
> 10m

e KOTO Experiment at J-PARC — mean K momentum ~1.5 GeV/c



KOTO @ J-PARC

Follows on from E391a at KEK — a program rather than a project is needed
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What detector improvements could help?

More efficient photon vetoes
Photon veto that works in a neutron beam

Better photon timing — would cut down on random
veto losses

Better energy resolution
Better separation of adjacent photons

Method of directionalizing photons without
degrading energy resolution



Low Energy K,—>n°vVv Experiment
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Low Energy K,—>n°vv Experiment
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In the K,CoM
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KOPIO K,—mn°vv Experiment

B N L AGS 1 PRERADIATOR-CONVERTED IN-BEAM AEROGEL
eX erl ment PHOTON DIRECTION & ENERGY CERENKQOV GAMMA VETO

p UPSTREAM HIGH EFFICIENCY EXTERNAL PHOTON VETO

PHOTO VETO

Aim: “100” events

D3 SWEEPING
MAGNET

Use the AGS between
RHIC fills

Capitalize on the
experience of previous
AGS rare K decay
experiments

DOWNSTREAM VETO
IN VACUUM TANK

SWEEPING MAGNET
CHARGED PARTICLE VETO &
PHOTON VETO INSIDE

MICROBUNCHED K, BEAM HIGH EFFICIENCY HIGH RESOLUTION "SHASHLYK”
(WITH NEUTRONS) BARREL PHOTON VETO PHOTON CALORIMETER



What detector improvements could help?

More efficient photon vetoes, particularly at low
energy

Photon veto that works in a neutron beam

Better photon timing — would cut down on random
veto losses, and improve CM kinematics

Better energy resolution
Better angular resolution

Better charged track rejection, particularly in the
beam direction

Entire apparatus that could work in a vacuum
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Final Thoughts on K > nvv

To achieve the sensitivities one would really like requires a factor of
100 in the charged mode and a factor 30,000 for the neutral

Rare kaon decays present somewhat different detector challenges
to those arising in collider experiments, largely because veto
inefficiency must be extremely low:

— The detectors have to be hermetic to a high degree.

— It’s necessary to veto rather low energy particles

— There’s a constraint that any substantial element of the apparatus be

active (no “dead” material).

Interesting sensitivities are so low that important phenomena are
very difficult to simulate, either because they require too much
computer time or because not enough is known about them.

There are tradeoffs between detectors and beam/accelerator
improvements

— E.g. more intense low energy K, beam would greatly reduce the need for
improved beam photon vetoes

Note - 1000 event K experiments would determine the CKM p and
n better than all current world data.
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BACKUP



One-loop K Decays

Short distance contributions to K decays. These decays include K,—nvv, Kt—rtvy,
K —ptp, K—nlete, K—>nlutw, etc. The hadronic matrix elements involved are
known from common K decays such as K*—n%e*v. These one-loop contributions can

be cleanly calculated in terms of sinB., m,, m_, and the product of CKM elements
Vis Vig =2y
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But there’ s a Murphy’ s Law to these processes. The same interactions that allow final
state leptons to be detected mediate long-distance contributions. E.g.:

S d'£+

q Qa/3

To avoid this one must exploit decays containing a final state vv pair.
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KOPIO Technique

e High intensity micro-bunched beam to measure K velocity
 Measure everything! (energy, position, direction, time)
* Eliminate extra charged particles or photons by >104

M E, T,
3 constraints {(+m,g)
Low energy (Py1.P»2.yb,T1-T2)

’)ﬁ < ¥ direction

beam comes in P (+PID)
short bursts ,//

S - yb=beam height

— Ew (TOF)
(+PID)

Beam very narrow
for extra constraint

- = ":y ¥ direction
I\ :‘\: 40 ns beA/veen (+PID) y directions
I unches

O . | E, T, aswellas E,t
K L —> A% | measured

(Momentum:TOF) L (47 veto)
YV (Energy and direction)
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Evts/MeV /c

Charged track spectrum for e decays
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