

SEARCHES FOR BSM PARTICLES IN BOOSTED FINAL STATES AT CMS

Lauren Hay on behalf of the CMS Collaboration BOOST Workshop (July 31st - Aug. 4th, 2023)

Introduction

Many BSM hypotheses predict heavy resonances that decay into final states with high boost in the CMS detector

- **Excited quarks (** b^*) \bullet
- Spin-1 vector boson resonances (W')
- Scalar diquark/VLQ
- **RPV SUSY (squarks, higgsinos, gluinos)** \bullet
- Randall-Sundrum warped extra dimensions (G_{KK} , ϕ)

This talk summarizes some of the latest CMS results on such resonance searches with Run II data

 $b^* \rightarrow tW$ (semilept

 $W' \rightarrow tb$ (semilept

Paired dijet resonance

High mass resonance -->

resonance + jet

Pair produced multijet res using data scoutir

otonic top)	<u>CMS-B2G-21-005</u>	
otonic top)	<u>CMS-B2G-20-012</u>	
es (*)	<u>CMS-EXO-21-010</u>	Full list of public results
• boosted	<u>CMS-EXO-20-007</u>	<u>Exotica</u> , <u>B2G</u>
sonances ng	<u>CMS-EXO-21-004</u>	

BOOST 2023

Introduction

Searches utilize a variety of techniques to distinguish signal and background

Data driven estimation of background

- Binned maximum likelihood fit
 - ** ABCD
- Gaussian process regression

To select signal and background regions

- Removal of soft, non-FSR radiation
 - Soft drop
 - Jet Trimming
- **Classification based on pronged substructure**
 - **N-subjettiness**
 - Energy correlation observable N_2
- **Designed Decorrelated Tagger (DDT)**
 - **Reduces sculpting of jet mass**
- DNN classifiers for b tagging and QGL

- * τ_{21} two-pronged (*W*, ϕ)
- * τ_{32} three pronged (\tilde{h}, \tilde{g})

Event selection

- boosted t \rightarrow non-isolated ℓ , MET, and AK4 b jet \bullet
- boosted W \rightarrow large radius jet w/ 2 pronged structure $\tau_{21} < 0.4, 0.45$ (2016, 2017-2018) ۲ and $65 < m_{SD} < 105 GeV$

Background estimation and signal extraction

Background is estimated using sideband extrapolation and fit to m_{tW}

- TTbar CR established using algorithm similar to W jet
- Minor backgrounds derived from MC \bullet
- High mass and low mass SR

CMS-B2G-21-005

Results

No statistically significant excess over SM background is observed.

LAUREN HAY

CMS-B2G-21-005

Final state	LH, RH, VL excluded at 95% CL below
<u>all hadronic</u>	2.6, 2.8, 3.1 TeV
<u>lepton + jets</u> (hadronic top)	3.0, 3.0, 3.2 TeV
combined	2.0, 3.0, 3.2 TeV
lepton +jets (leptonic top)	2.35, 2.77, 3.1 TeV

Search for W' decaying to a top and a bottom quark in leptonic final states

- This analysis probes $\Gamma/m_{W'}$ of 1, 10, 20, and 30%, for the first time \bullet
- 1% corresponds to the case where W' only decays to tb, and larger widths have additional decays

Event selection

- $t \rightarrow \ell' w/I_{mini} < 0.1$, MET, AK4 jet
- W' jet \rightarrow AK4 jet
- Require at least two AK4 jets and at least two AK8 Jets
- Use AK8 jets to veto hadronic top decays w/ soft drop mass

 j_t and $j_{W'}$ assignment strategy

- **Mass criterion** \bullet
 - choose jet whose invariant mass sum w/ candidate $\ell \nu$ minimizes $|M_t - M_t^{nom}|$ for j_t
- **Closest criterion**
 - choose the jet closest to the lepton as j_t
- Subleading criterion
 - expect leading jet to come directly from the W' boson \rightarrow choose subleading jet as j_t
- If jet passes 2 of these criteria $\rightarrow j_t$; otherwise, preference given to the mass criteria.
- $j_{W'} \rightarrow$ highest pT jet not identified as top jet
- If there are < 2 b-tagged jets, criteria are applied to the entire jet collection; otherwise, only b-tagged jets are considered

Candidate M_t

j_t and $j_{W'}$ assignment strategy

- Mass criterion \bullet
 - choose jet whose invariant mass sum w/ candidate $\ell \nu$ minimizes $|M_t - M_t^{nom}|$ for j_t
- **Closest criterion**
 - choose the jet closest to the lepton as j_t
- Subleading criterion
 - expect leading jet to come directly from the W' boson \rightarrow choose subleading jet as j_t
- If jet passes 2 of these criteria $\rightarrow j_t$; otherwise, preference given to the mass criteria.
- $j_{W'} \rightarrow$ highest pT jet not identified as top jet
- If there are < 2 b-tagged jets, criteria are applied to the entire jet collection; otherwise, only b-tagged jets are considered

j_t and $j_{W'}$ assignment strategy

- Mass criterion \bullet
 - choose jet whose invariant mass sum w/ candidate $\ell \nu$ minimizes $|M_t - M_t^{nom}|$ for j_t
- **Closest criterion**
 - choose the jet closest to the lepton as j_t
- **Subleading criterion**
 - expect leading jet to come directly from the W' boson \rightarrow choose subleading jet as j_t
- If jet passes 2 of these criteria $\rightarrow j_t$; otherwise, preference given to the mass criteria.
- $j_{W'} \rightarrow$ highest pT jet not identified as top jet
- If there are < 2 b-tagged jets, criteria are applied to the entire jet collection; otherwise, only b-tagged jets are considered

W'->tb

Background estimation and signal extraction

- Background is estimated using the ABCD method
 - matched to $j_{W'}$ and M_t
- 3 signal regions: j_t and/or j'_W are b-tagged

LAUREN HAY

 $R2B_A$ SR for 1% width (left: e, right: μ)

BOOST 2023

W'->tb

Results

Agreement between data and SM background

BOOST 2023

Event selection for resonant and nonresonant production of pairs of dijet resonances

- Resonant benchmark model is scalar diquark to VLQs $uu \rightarrow S \rightarrow \chi \chi \rightarrow (ug)(ug)$
- Nonresonant benchmark is two top squarks $pp \rightarrow \tilde{t}\tilde{t}^* > (d\bar{s})(ds)$
- Resonant search reconstruct the four-jet mass m_{4i}
- Nonresonant search reconstruct the average dijet mass \bar{m}_{ii}
- Near $m_{4i} \sim 8 TeV$ and $m_{ii} \sim 2 TeV$ observe two candidates for a resonant signal
- Bin observables by $\alpha = \bar{m_{jj}}/m_{4j}$ to remove sculpting

Paired dijet resonances

All functions used for the background estimation give a good fit to the data

Background estimation and signal extraction

- 3 parameter smoothly falling spectrum for background:
 - 13 bins of α for resonant search
 - 3 bins of α in nonresonant search

of the alpha bins

Background is derived exclusively from data

Event selection

- First dedicated search for resonances decaying into 3 final state partons
- Consider new process: $q\bar{q} \rightarrow R_1 \rightarrow R_2 + P3 \rightarrow (P_1 + P_2) + P_3$
- Benchmark: $q\bar{q} \rightarrow G_{KK} \rightarrow \phi + g \rightarrow (g + g) + g$
- Select two highest pT, wide AK15 jets
- Consider only $\rho = m(R_2)/m(R_1) < 0.2$ so that R_2 is boosted enough that its decay products resolve as one jet, and $m(R_1) > 2TeV$

Analysis Strategy

- Exploit cross pattern in experimental signature to divide the data into signal enriched regions
- Binned fit to m_{ii}
 - SM background: smoothing falling spectrum
 - R_1 signal shape: double sided crystal ball w/ parameters derived from MC fit

CMS-EXO-20-007

- and resolved search

LAUREN HAY

CMS-EXO-20-007

BOOST 2023

Search for pair of resolved trijets, merged trijets, and merged dijets

Search for RPV Higgsinos and gluinos and stop quarks below the previous lowest masses explored

Data scouting

 H_T trigger threshold was 800 GeV(1.5 TeV) in 2016(2017-2018) \rightarrow implement data scouting: partially reconstructed events at the HLT are saved for further analysis w/ a lowered trigger threshold ($H_T > 410 GeV$)

Event reconstruction

- AK4 jets for resolved trijet search and AK8 jets for the merged resonances
- Apply jet trimming to AK8 jets
- $\tau_{32}^{DDT} < 0$ and $N_2^{1,DDT} < 0$ for boosted jet searches
- For the resolved trijet resonances implement a QGL NN and Dalitz variables

Signal extraction

- QCD background is estimated using a Gaussian process regression <u>JHEP 02 (2023) 230</u>
- $t\bar{t}$ and other minor backgrounds estimated using simulation
- Signal is modeled with Gaussian distributions
- Fit the signal templates and backgrounds simultaneously to data

BOOST 2023

Results

Find no significant deviations from the SM

CMS-EXO-21-004

Summary

- •
- New unexplored channels and signatures
- No evidence for BSM physics observed \bullet
- **Extended limits** \bullet
- More results to come with evolving techniques and Run 3 data

Thank you!

Latest searches for heavy resonances decaying to boosted final states at CMS with Run II data have been presented

BACCKUP

Analysis	Fitting	Discr.
$b^* ightarrow tW$ (semileptonic top)	ABCD, ML fit to Poisson dist.	$ au_2^1 m_{SD}^W$ N(b jets)
W' ightarrow tb (semileptonic top)	ABCD w/ TF, ML fit to poisson	$m_{SD}^{W'}$ m_t
Paired dijet resonances (*)	Ratio method binned ML fit	$ au_{21}$
High mass resonance —> boosted resonance + jet	Binned ML fit	
Pair produced multijet resonances using data scouting	Gaussian Prior fit	

If more than one b jet is identified, the one which gives a reconstucted top mass closest to 172.5GeV is chosen

	Α	В	С	D	Ε
2D isolation	< 60 GeV	< 60 GeV	> 60 GeV	> 60 GeV	prel(lep,jet)>30 GeV
$ au_{21}$	> 120 GeV < 220 GeV	> 220 GeV	> 120 GeV < 220 GeV	> 220 GeV	ΔR(b-jet, AK8 jet) < 0.8
N(b-jet)	0	>=1	0	>=1	prel(lep,jet)>30 GeV

LAUREN HAY

<u>CMS-PAS-B2G-21-005</u>

k		High Mass SR	Low mass SR	TTbar C
	p_T^{miss}	> 80 GeV	< 80GeV	NA
	m _{SD,AK8}	> 400 GeV	< 400 GeV	> 400 Ge
	$ au_{3,2}$	NA	NA	< 0.65

LAUREN HAY

CMS-PAS-B2G-21-005

For the LH hypothesis, the region of the mW' s-channel single top quark production.

spectrum below 2 TeV is dominated by the SM

Mini isolation

$$I_{\mathrm{mini}} = rac{S_I(R)}{p_{\mathrm{T}}^\ell},$$

- $\overrightarrow{p_T}^{miss}$ is taken as $\overrightarrow{p_T}^{\nu}$
- for p_7^{ν}

 $\frac{10 \,\text{GeV}}{\min(\max(p_{\rm T}^{\ell}, 50 \,\text{GeV}), 200 \,\text{GeV})}'$ with R =

Top quark momentum reconstruction

• $p_{z}^{
u}$ is calculated by setting the mass of $\ell
u$ to the mass of the W boson, and the masses of the lepton and neutrino to zero, forming a second order equation

if the equations results in two real or two imaginary solutions

two real: the one that results in a value of the W boson mass closest to the value from the world average is chosen

* two imaginary: remove constraint $\vec{p}_T^{miss} = \vec{p}_T^{\nu}$, allowing discriminant of the second order equation to be set to zero, finding a single solution for $p_z^{
u}$ and setting a constraint on \vec{p}_T^{ν} . \vec{p}_T^{ν} is then found by minimizing the vectorial distance between $\overrightarrow{p_T}^{\nu}$ and $\overrightarrow{p_T}^{miss}$

Background estimation - sideband extrapolation

- Fit transfer fur

 $N^{\text{non}-\text{QCD},R_{\text{A}}} = TF(N^{\text{Data}R_{\text{B}}} - N^{\text{QCD},\text{MC}R_{\text{B}}}),$

region A.

$$CF = \frac{N^{\text{non}-Q}}{N^{\text{non}-Q}}$$

 $N^{\text{non-QCD, corr } R_A}$

TF =
$$ae^{bM_{\ell\nu jj}} + cM_{\ell\nu jj} + d$$
, for region B.

Estimate number of events, N from this fit, subtract the QCD multijet contribution estimated from simulation, and multiply by the TF to get the number of nonQCD events in region A.

Repeat this process for regions C and D.

```
N^{\text{non}-\text{QCD},R_{\text{C}}} = TF_{\text{CD}}(N^{\text{Data}R_{\text{D}}} - N^{\text{QCD},\text{MC}R_{\text{D}}}).
```

A bin by bin correction factor is found from regions C and D and applied to

CD, Data R_C

 $-QCD, R_{C}$ '

$$= CFN^{non-QCD,R_A}.$$

Background estimation and signal extraction

# b jets	j_t is b- tagged	<i>j_w</i> is b- tagged	Region
0	no	no	RO (CR)
1	yes	no	RT (SR)
1	no	yes	RW (SR)
≥2	yes	yes	R2B (SR)

	Α	B	С	D (RO, RW', RT)
M _{SD,AK8}	< 60 GeV	< 60 GeV	> 60 GeV	> 60 GeV
M_t	> 120 GeV < 220 GeV	> 220 GeV	> 120 GeV < 220 GeV	> 220 GeV

LAUREN HAY

• Subregions R2B_A, RT_A, and RW'_A are used for signal extraction

 $\alpha_{R/L}$ coupling

$$\mathcal{L}^{\text{eff}} = rac{V_{f_i f_j}}{2\sqrt{2}} g_{W'} \bar{f}_i \gamma_{\mu} [\alpha_{\text{R}}^{f_i f_j} (1 + \gamma^5) + \alpha_{\text{L}}^{f_i f_j} (1 - \gamma^5)] W'^{\mu} f_j + \text{h.c.},$$

- Models with values of α_R and α_L (coupling to chiral fermions) ranging in the interval (0.1, 0.9) in steps of 0.1 were also • tested in the hypothesis of $\Gamma/m_{W'} = 1 \%$
- For this narrow width can write cross section as

 $\sigma = (1 - 1)^{-1}$

$$\alpha_{\rm L}^2)\sigma_{\rm SM} + \frac{1}{\alpha_{\rm L}^2 + \alpha_{\rm R}^2} \left[\alpha_{\rm L}^2 (\alpha_{\rm L}^2 - \alpha_{\rm R}^2)\sigma_{\rm L} + \alpha_{\rm R}^2 (\alpha_{\rm R}^2 - \alpha_{\rm L}^2)\sigma_{\rm R} + 4\alpha_{\rm L}^2 \alpha_{\rm R}^2 \sigma_{\rm LR} - 2\alpha_{\rm L}^2 \alpha_{\rm R}^2 \sigma_{\rm SM} \right]$$

Search for resonant and nonresonant production of pairs of dijet resonances in protonproton collisions at $\sqrt{s} = 13$ TeV 138 fb⁻¹ (13 TeV) Four-jet mass

After jet pairing choose events w/ $\Delta R_{12} < 2.0$, $\Delta \eta_{1,2} < 1.1$, mass asymmetry < 0.1

Nonresonant dijet pair production

g

Ave

Ш

Paired dijet resonances

Background estimation and signal extraction

- Background is derived exclusively from data
- 3 parameter smoothly falling spectrum for background:
 - 13 bins of α for resonant search
 - 3 bins of α in nonresonant search
- To include the two events of interest together, a 5 parameter fit is performed to the sum of the alpha bins

Results

Background estimates do not account for the two events observed near $m_{4i} \sim 8 TeV$

Background estimation and signal extraction

Background Extraction

- The bin size is a function of the dijet mass and approximately equal to the dijet mass resolution (5% m(R2))
- At high masses m_{ii} is modified by a turn-on effect apply threshold $m_{ii}^{thr} = 1.15 m_{ii}$
- Simultaneous binned ML fit to m_{jj} for all categories in range $m_{ii}^{min} < m_{ii} < 1.25m(R_1)$ where m_{ii}^{min} is the greater of m_{ii}^{thr} and $0.65m(R_1)$
- If $m_{ii}^{thr} > 0.9m(R_1)$, the signal peak is truncated and the corresponding category is removed from the analysis to avoid signal biases in the fit.
- The total signal efficiency for events to pass the kinematic selection and be included in the fit range is usually between 20 and 30%. In the region with ho_mpprox 0.2 and $m(R_1) \leq 4TeV$, the signal efficiency is approximately 10%, because the signal peak is truncated as described above.
- QCD background simulation is used to optimize analysis strategy, but final bg estimation is done through a fit to data

arxiv:2201.02140

- ullet

 - from MC fit

LAUREN HAY

arxiv:2201.02140

BOOST 2023

Event selection

- Require at least two AK8 jets w/ $p_T > 300 GeV$ and $|\eta| < 2.4$
- For the resolved trijet resonances implement
 - QGL NN
 - Deep sets PFNet arxiv:1810.05165
 - jet ensemble technique
 - Consider an ensemble of 20 possible jet triplets.
 - Dalitz variable arxiv:1105.2815
 - measures the geometric spread in the jet topology ** (expect gluino to be more spread out than QCD background)

$$\hat{m}(3,2)_{ij}^2 = \frac{m_{ij}^2}{m_{ijk}^2 + m_i^2 + m_j^2 + m_k^2}.$$

•
$$D^2_{[3,2]} = \sum_{i>j} \left(\hat{m}(3,2)_{ij} - \frac{1}{\sqrt{3}} \right)^2.$$

LAUREN HAY

*

CMS-PAS-EXO-21-004

BOOST 2023

Gaussian Process Regression

- Traditional method uses an ad-hoc model for background fit GP's allow for the description of a broader set of functions
- Kernel function defines degree of correlation between any two datapoints
- Gaussian mean function represents the signal
- First mask signal region and fit kernel by maximizing the marginal log likelihood
- Fix kernel hyperparameters and fit to signal + bg w/ kernel + mean function

[JHEP 02 (2023) 230]

