

Robust Anomaly Detection with NuRD

Abhijith Gandrakota¹, Lily Zhang², Aahlad Puli², Nhan Tran¹, Jennifer Ngadiuba¹

I: Fermilab 2: New York University

BOOST 2023, LBNL

Arxiv: 2308.SOON

Lily Zhang, Abhijith Gandrakota, Aahlad Puli

Introductions

- Anomaly detection is a promising approach for detecting BSM physics • without a BSM model prior
 - It is particularly helpful in detecting jets with non-standard substructure

Introduction

- A standard approach for anomaly detection in High Energy Physics (@ LHC)
 - Look for "deviations" from expected (dominant) background physics
 - Encode the input into a smaller latent representation
 - Decode the representation back to initial input, examine reconstruction loss (~MSE)
 - Use this reconstruction loss to find anomalies

Introduction

- A standard approach for anomaly detection in High Energy Physics (@ LHC)
 - Look for "deviations" from expected (dominant) background physics
 - Encode the input into a smaller latent representation
 - Decode the representation back to initial input, examine reconstruction loss (~MSE)
 - Use this reconstruction loss to find anomalies
- Primary concerns
 - Is algorithm modeling the desired physics correctly?
 - Is it learning anything we don't want it focus on ?
 - AEs model everything, even the unimportant features
- Different take in approaching this challenge using NuRD

- More importantly, is it learning anything we don't want it to know ?
- Objective: Detect animal other than cow

Our Training data:

Cows in a typical Grass background

- More importantly, is it learning anything we don't want it to know ?
- Objective: Distinguish between the animals ?

Cows in a grassland backdrop

Our Training data:

Sure, we may detect penguins in show Expected anomaly

- More importantly, is it learning anything we don't want it to know ?
- Objective: Distinguish between the animals ?

Cows in a grassland backdrop

Our Training data:

Sure, we may detect penguins in show Expected anomaly

This ? Actual Anomaly

Lily Zhang, Abhijith Gandrakota, Aahlad Puli

- More importantly, is it learning anything we don't want it to know ?
- Objective: Detect animal other than cow

Cows in a grassland backdrop

Our Training data:

Sure, we may detect penguins in snow Expected anomaly

This ? Actual Anomaly

Lily Zhang, Abhijith Gandrakota, Aahlad Puli

How about this ? Atypical BKG in data

- More importantly, is it learning anything we don't want it to know ?
- Objective: Detect animal other than cow

Cows in a grassland backdrop

Needs to learn this !

What if it learnt this ?

Our Training data:

Sure, we may detect penguins in show Expected anomaly

This ? Actual Anomaly

How about this ? Typical BKG in data

Lily Zhang, Abhijith Gandrakota, Aahlad Puli

- In the case of Anomaly detection on jets
- Objective: Detect animal Jets other than cow SM

Our Training data:

From inputs to representations

- Issue : Density estimation on the inputs typically models everything about the data (e.g: Autoencoders)
 - We want to model semantic features (like jet structure), while being decorrelated with nuisances (like mass, etc . . .)

From inputs to representations

- Issue : Density estimation on the inputs typically models everything about the data (e.g: Autoencoders)
 - We want to model semantic features (like jet structure), while being decorrelated with nuisances (like mass, etc . . .)
- · Idea: Use different backgrounds to learn what is important

From inputs to representations

- Issue : Density estimation on the inputs typically models everything about the data (e.g: Autoencoders)
 - We want to model semantic features (like jet structure), while being decorrelated with nuisances (like mass, etc . . .)
- Idea: Use different backgrounds to learn what is important
- Solution: Use multiple known background labels (not just QCD)
 - Avenue to learn what's important [~ minimal hand holding]
 - Build representations to have maximum information with the labels
 - Ensure representations do not vary w/ nuisances (Zhang et al. 2022, Puli et al. 2022).
 - This way, we can maximize only the relevant information

[1] JEDI-Net, Eric A. Moreno et al Lily Zhang, Abhijith Gandrakota, Aahlad Puli

Input Dataset

- For out dataset we have input features (X), labels for BKG types (Y), and Nuisance (Z)
- Objective is to learn particles decays at LHC, specifically hadronic jet shower

- Input: Energy deposits in the detectors
 - Images ~ 50 X 50 pixels
 - Images normalized individually
- We have two background samples to learn semantics
 - We use QCD and W/Z jets w/ labels

 We want the our representation to capture physics and not depend on the nuisance

- For out dataset we have input features (X), labels for BKG types (Y), and Nuisance (Z)
- Nuisance Randomized Distillation:
 - I : Do not let model learn nuisance: break the dependence b/n label and nuisance.
 - Use importance weights w to break dependence.
 - II : Build informative representations that do not vary with the nuisance
 - Intuitively, it shouldn't be possible to distinguish b/n [Joint independence]
 - (r_X, Y, Z) vs $(r_X, Y, randomized nuisance(\hat{Z}))$
 - If representations contain info about nuisance, penalize the mutual information
- Use the representations to detect anomalies.

[1] <u>Puli et al. 2022</u>

•

- Building out representation:
 - Start with a simple classifier b/n different background process
 - CNNs w/ final dense layers output to logits / softmax probabilities (Similar to the CNN Encoder architecture used in <u>QCD AE</u>)

....

- Penalize mutual information
 - Input $(r_X, Y, [Z, \hat{Z}])$ to critic model (ϕ) , a simple MLP
 - Approximates the mutual information, use this to penalize the loss

- Training
 - Train and update critic model for every batch of classifier training

- Training
 - Train and update critic model for every batch of classifier training

Lily Zhang, Abhijith Gandrakota, Aahlad Puli

- OOD Detection:
 - Outlier Dataset: Top quarks jets
 - Use representations to build anomaly metrics

- Metrics:
 - Calculate the distance from samples in representation space
 - $d_A = (r_X \mu_A) \Sigma_A^{-1} (r_X \mu_A)^T$ (dist. from BKG A)
 - Obtain distance from all BKG samples
 - Here: $[d_{QCD}, d_{WZ}]$
 - $\cdot\,$ Use this to find anomalies

- OOD Detection:
 - Outlier Dataset: Top quarks jets
 - Use representations to build anomaly metrics

- Metrics:
 - Obtain distance d_A from all BKG samples
 - Here: $[d_{QCD}, d_{WZ}]$
- Alternative Metrics:
 - Max(Logits) also serves as a OOD Score
 - Max Logits (OOD) < Max Logits (BKG)

Lily Zhang, Abhijith Gandrakota, Aahlad Puli

Experiments and Results

- Trained on QCD and W/Z labeled data to build out the representation space
 - Representation space is has a dimension of 20
 - The critic model :3 layers w/ 256, 128, 68 neurons
- Examined OOD performance w/ two metrics
 - AUC w/ Mahalnobis distance: 0.90
 - AUC w/ Max(Logits) score: 0.91
 - (Baseline: AUC w/ plain AE : 0.88)
- Representation w/ Joint independence gives us robustness:
 - Performance guarantees across different BKG-distributions

Mass [GeV]

Lily Zhang, Abhijith Gandrakota, Aahlad Puli

Results

- Obtained representations denotes the diversity of what is *typical*
 - While keeping relevant info for anomaly detection
 - Achieves this while staying decorrelated with kinematics of the jet
- Classifier in NuRD is built on the "Encoder" block on baseline VAE
 - Resulting AD model is lighter and faster
 - Technique can be adapted to any network architecture

Summary

- In HEP (often many other fields) we have multiple backgrounds. We should use information contained in all of them.
- This is a new take on building a representation space to detect anomalies:
 - Training w/ background labels gives us good performance.
 - NuRD, via joint independence, helps
 - Maximize physics learnt while decorrelating nuisances
- This technique although takes longer to train, results in smaller models
 - A primary benefit of increased robustness.
- Paper will be out on Arxiv soon (w/ code)

Thank you

https://xkcd.com/2451/