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• Anomaly detection is a promising approach for detecting BSM physics 
without a BSM model prior

• It is particularly helpful in detecting jets with non-standard substructure 

Introductions
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Introduction
• A standard approach for anomaly detection in High Energy Physics (@ LHC)

• Look for “deviations” from expected (dominant) background physics

• Encode the input into a smaller latent representation

• Decode the representation back to initial input,  
examine reconstruction loss (~MSE)

• Use this reconstruction loss to find anomalies
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Introduction
• A standard approach for anomaly detection in High Energy Physics (@ LHC)

• Look for “deviations” from expected (dominant) background physics

• Encode the input into a smaller latent representation

• Decode the representation back to initial input,  
examine reconstruction loss (~MSE)

• Use this reconstruction loss to find anomalies

• Primary concerns

• Is algorithm modeling the desired physics correctly?

• Is it learning anything we don’t want it focus on ? 

• AEs model everything, even the unimportant features

• Different take in approaching this challenge using NuRD
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Robust anomaly detection
• More importantly, is it learning anything we don’t want it to know ?

• Objective: Detect animal other than cow
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Our Training data: 
 

Cows in a typical  
Grass background
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Robust anomaly detection
• More importantly, is it learning anything we don’t want it to know ?

• Objective: Distinguish between the animals ?
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Our Training data:

Cows in a grassland backdrop

Sure, we may detect 
penguins in show 
Expected anomaly
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Robust anomaly detection
• More importantly, is it learning anything we don’t want it to know ?

• Objective: Distinguish between the animals ?
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Our Training data:

Cows in a grassland backdrop

Sure, we may detect 
penguins in show 
Expected anomaly

This ?  
Actual Anomaly
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Robust anomaly detection
• More importantly, is it learning anything we don’t want it to know ?

• Objective: Detect animal other than cow
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Our Training data:

Cows in a grassland backdrop

Sure, we may detect 
penguins in snow 
Expected anomaly

How about this ? 
Atypical BKG in dataThis ?  

Actual Anomaly
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Robust anomaly detection
• More importantly, is it learning anything we don’t want it to know ?

• Objective: Detect animal other than cow
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Our Training data:

Cows in a grassland backdrop

Sure, we may detect 
penguins in show 
Expected anomaly

How about this ? 
Typical BKG in dataThis ?  

Actual Anomaly

Needs to learn this !

What if it learnt this ?
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Robust anomaly detection
• In the case of Anomaly detection on jets

• Objective: Detect animal Jets other than cow SM
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Our Training data:

Jets in a grassland backdrop

Substructure, etc . . . !

Mass,   etc . . .PT
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From inputs to representations
• Issue : Density estimation on the inputs typically models everything about the data 

          (e.g:  Autoencoders)

• We want to model semantic features (like jet structure),  while being decorrelated 
with nuisances (like mass, etc . . .)
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From inputs to representations
• Issue : Density estimation on the inputs typically models everything about the data 

          (e.g:  Autoencoders)

• We want to model semantic features (like jet structure),  while being decorrelated 
with nuisances (like mass, etc . . .) 

• Idea:  Use different backgrounds to learn what is important 
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From inputs to representations
• Issue : Density estimation on the inputs typically models everything about the data 

          (e.g:  Autoencoders)

• We want to model semantic features (like jet structure),  while being decorrelated 
with nuisances (like mass, etc . . .) 

• Idea:  Use different backgrounds to learn what is important 

• Solution:  Use multiple known background labels (not just QCD)

• Avenue to learn what’s important [~ minimal hand holding]

• Build representations to have maximum information with the labels

• Ensure representations do not vary w/ nuisances (Zhang et al. 2022, Puli et al. 2022).

• This way, we can maximize only the relevant information
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• For out dataset we have input features (X), labels for BKG types (Y), and Nuisance (Z)

• Objective is to learn particles decays at LHC, specifically hadronic jet shower 
 

• Input: Energy deposits in the detectors

• Images ~ 50 X 50 pixels

• Images normalized individually

• We have two background samples to learn semantics

• We use QCD and W/Z jets w/ labels 
 

• We want the our representation to capture  
physics and not depend on the nuisance

Input Dataset

14[1] JEDI-Net, Eric A. Moreno et al 
  

[1]

https://arxiv.org/abs/1908.05318
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Nuisance Randomized Distillation

• For out dataset we have input features (X), labels for BKG types (Y), and Nuisance (Z)

• Nuisance Randomized Distillation:

•  I : Do not let model learn nuisance: break the dependence b/n label and nuisance.

• Use importance weights  to break dependence.

• II : Build informative representations that do not vary with the nuisance

• Intuitively,  it shouldn’t be possible to distinguish b/n [ Joint independence]

•  ( ,  Y,  Z) vs ( ,  Y,  randomized nuisance( ))

• If representations contain info about nuisance, penalize the mutual information

• Use the representations to detect anomalies.

w

rX rX
̂Z

15[1] Puli et al. 2022

https://openreview.net/forum?id=12RoR2o32T


Lily Zhang, Abhijith Gandrakota, Aahlad Puli

Nuisance Randomized Distillation
• Building out representation:

• Start with a simple classifier b/n different background process

• CNNs w/ final dense layers output to logits / softmax probabilities 
 (Similar to the CNN Encoder architecture used in QCD AE)
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Classifier

X: Inputs

Output

r(x): N-1 Layer Representation ( )rX

https://arxiv.org/pdf/1808.08979v1.pdf
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Nuisance Randomized Distillation
• Penalize mutual information

• Input  to critic model , a simple MLP

• Approximates the mutual information, use this to penalize the loss

(rX, Y, [Z, ̂Z]) (ϕ)
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Classifier

X: Inputs

Output

r(x): N-1 Layer

Critic

Z: Nuisance, Y: label

r(x), Y, [ Z, Ž ] 

• Critic is trained to differentiate  
( ,  Y,  Z) vs ( ,  Y, )

• Critic model is updated for 
every batch of the classifier 
training

• It is proxy as the likelihood 
approximator

rX rX
̂Z
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Nuisance Randomized Distillation
• Training

• Train and update critic model for every batch of classifier training
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Classifier

X: Inputs

Output

r(x): N-1 Layer

Critic

Z: Nuisance, Y: label

r(x), Y, [ Z, Ž ] 

ℒ = w (CE(Ypred, Ytrue) − λ log
pϕ(rX, Y, [Z, ̂Z])

1 − pϕ )

• Critic is trained to differentiate  
( ,  Y,  Z) vs ( ,  Y, )

• Critic model is updated for 
every batch of the classifier 
training

• It is proxy as the likelihood 
approximator

rX rX
̂Z
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Nuisance Randomized Distillation
• Training

• Train and update critic model for every batch of classifier training
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Classifier

X: Inputs

Output

r(x): N-1 Layer

Critic

Z: Nuisance, Y: label

r(x), Y, [ Z, Ž ] 

ℒ = w (CE(Ypred, Ytrue) − λ log
pϕ(rX, Y, [Z, ̂Z])

1 − pϕ )
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Nuisance Randomized Distillation
• OOD Detection: 

• Outlier Dataset:  Top quarks jets

• Use representations to build anomaly metrics
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Classifier

X: Inputs

Output

r(x): N-1 Layer

Critic

Z: Nuisance, Y: label

r(x), Y, [ Z, Ž ] 

ℒ = w (CE(Ypred, Ytrue) − λ log
pϕ(rX, Y, [Z, ̂Z])

1 − pϕ )

• Metrics: 

• Calculate the distance from 
samples in representation space 
 
 

• Obtain distance from all BKG 
samples

• Here:  [ ] 

• Use this to find anomalies

dQCD, dWZ

dA = (rX − μA) Σ−1
A (rX − μA)T

(dist. from BKG A)
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Nuisance Randomized Distillation
• OOD Detection: 

• Outlier Dataset:  Top quarks jets

• Use representations to build anomaly metrics
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Classifier

X: Inputs

Output

r(x): N-1 Layer

Critic

Z: Nuisance, Y: label

r(x), Y, [ Z, Ž ] 

ℒ = w (CE(Ypred, Ytrue) − λ log
pϕ(rX, Y, [Z, ̂Z])

1 − pϕ )

• Metrics: 

• Obtain distance  from all BKG 
samples

• Here:  [ ]

• Alternative Metrics: 

• Max(Logits) also serves as a OOD 
Score

• Max Logits (OOD) < Max Logits (BKG)

dA

dQCD, dWZ
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Experiments and Results
• Trained on QCD and W/Z labeled data to build out the  

representation space

• Representation space is has a dimension of 20

• The critic model :3 layers w/ 256, 128,  68 neurons 

• Examined OOD performance w/ two metrics

• AUC w/ Mahalnobis distance: 0.90

• AUC w/ Max(Logits) score: 0.91

• (Baseline: AUC w/ plain AE : 0.88) 

• Representation w/ Joint independence gives  
us robustness:

• Performance guarantees across  
different BKG-distributions
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Results
• Obtained representations denotes the 

diversity of what is typical

• While keeping relevant info for 
anomaly detection

• Achieves this while staying decorrelated 
with kinematics of the jet  

• Classifier in NuRD is built on the 
“Encoder” block on baseline VAE

• Resulting AD model is lighter and faster

• Technique can be adapted to any 
network architecture 
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Method AUC ↑ JSD ↓ Sig. Imp. ↑
VAE 0.88 0.065 2.03

NuRD-MD 0.90 0.013 2.47

NuRD-ML 0.91 0.027 2.32
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Summary
• In HEP (often many other fields) we have multiple backgrounds. We should use 

information contained in all of them.

• This is a new take on building a representation space to detect anomalies:

• Training w/ background labels gives us good performance.

• NuRD,  via joint independence, helps

• Maximize physics learnt while decorrelating nuisances 

• This technique although takes longer to train, results in smaller models

• A primary benefit of increased robustness.

• Paper will be out on Arxiv soon (w/ code)
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Thank you
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https://xkcd.com/2451/


