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Table 2.3 Numerical values of ρ and α for top quark decays for the approximation in (2.19). Shown
are the values for the minimum value that #Rmax can take, and the 70th, 80th and 90th percentiles
of #Rmax. All values are obtained for a quark threshold of pT,q > 20GeV

a requirement of pT,q > 30GeV leads to a drop of the efficiency to 70%, and with
pT,q > 40GeV the efficiency is only 60%.

Similar to the case of vector boson and H decays, a pT threshold on the quarks
leads to a change in the distribution of the angular distance between the quarks.
Since there are three quarks involved, the relevant quantity is the maximum angular
distance

#Rmax = max
[
#R(b, q),#R(b, q ′),#R(q, q ′)

]
, (2.18)

which represents a proxy for fully merged final states. Obviously, approxima-
tion (2.14) will not yield an accurate prediction for#Rmax. Surprisingly, it still gives
a relatively good estimate for the MPV of #Rmax, as can be seen in Fig. 2.10. How-
ever, the 1/pT scaling does not give an accurate description of the minimum value
#Rmax can take, and also cannot be used to predict a given percentile of the #Rmax

distribution. A better phenomenological approximation is obtained by modifying the
scaling with an exponent α, similar to (2.16),

#Rmax =
ρ

p α
T
. (2.19)

Numerical values for ρ and α are given in Table2.3, for the three percentiles shown
in Fig. 2.10. The values given approximate the shape of the three percentiles to within
1% in the range 200 < pT < 1500GeV.

Fig. 2.10 Maximum angular
distance #Rmax of the three
quarks from the hadronic top
quark decay, as a function of
the top quark pT. The
transverse momenta of the
three quarks b, q and q ′ are
required to be
pT,q > 20GeV. The fraction
of events contained within a
given interval in #Rmax are
shown by shaded areas, the
MPV is depicted by a dashed
line. For comparison, also
shown are the expressions
2mt/pT (solid line) and
(800GeV)/pT (dotted line)  [GeV]
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Figure 16: The efficiency eS as a function of the generated particle pT for a working point
corresponding to eS = 30 (50)% for t quark (W/Z/H boson) identification. Upper left: t quark,
upper right: W boson, lower left: Z boson, lower right: H boson. The error bars represent
the statistical uncertainty in each specific bin, due to the limited number of simulated events.
Additional fiducial selection criteria applied to the jets are listed in the plots.
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HOTVR with soft drop
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Can we improve the identification of 
radiation? 

Replace mass-jump by soft drop grooming 

➡	  Soft drop [1]


•  strength of the cut


•  angle dependence 


zcut

β

min(pTi
, pTj

)
pTi

+ pTj

> zcut(
ΔRij

R
)β

[1] Soft drop: A. J. Larkoski et al., JHEP 05 (2014) 146, arXiv: 1402.2657v2

Grooming

Where is the radius used?
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Effective radius is used in 


1. Clustering step

1 Introduction 2

1 Introduction

Let’s see how references work, there should be a hyperlink there [1].

1. JME-18-002 comparison

2. Low pT still best performance

3. SD shows a better grooming performance than mass jump and is commonly used in CMS

We should reference here the paper such that I don’t need to do that in the next chapter [2].

2 Recap of the algorithm

The HOTVR algorithm is a sequential recombination algorithm that clusters particles with a
variable distance parameter R (Variable R) [3] to adapt the jet size to the transverse momentum
of the jet. In addition, a veto condition, the mass-jump [4], is used to discard soft radiation and
identify subjets. The Variable R algorithm uses an e↵ective radius to define the beam distance
diB. The e↵ective radius, Re↵ , is defined as follows:

Re↵(pT,i) =

8
>><

>>:

Rmin for ⇢/pT < Rmin

Rmax for ⇢/pT > Rmax

⇢/pT else,

(1)

where Rmin is the minimal radius Re↵ can be, Rmax is the maximum radius Re↵ can be, ⇢ is a
tunable slope parameter and pT is the transverse momentum of the jet. The distance measures
diB and dij are defined as:

diB = R2

e↵
(pT,i) (2)

dij = �R2

ij , (3)

where�Rij =
q
(yi � yj)

2 + (�i � �j)
2 is the angular distance in rapidity y and azimuth � between

the pseudojets i and j. The algorithm starts with a list of pseudojets and iterate until the list is
empty. In the beginning each particle is its own pseudojet. The distance measure diB and dij are
calculated for each pseudojet, where dij defines the distance between the pseudojet i and j that
are closest to each other. If diB < dij pseudojet i is called a jet, saved and removed from the list
of pseudojets. If dij < diB the following steps proceed:

1. If the combined jet massmij is smaller than a given threshold µ, the pseudojets are combined,
as in the original Variable R algorithm.
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4.1 Optimisation of parameters for soft drop 4

z =
min(pT,i, pT,j)

pT,i + pT,j
> zcut

✓
�Rij

Re↵

◆�

, (5)

where zcut is a tunable parameter for the soft drop strength, � is a tunable parameter for the soft
drop angular dependence.

As before, if the condition is not fulfilled, the softer branch is removed. If the soft drop requirement
is fulfilled depending on the invariant mass, mij of the two pseudojets, they are

1. combined, if mij < µ or

2. if mij > µ, the two pseudojets i and j are combined and stored as subjets of the combined
jet.

With this the jet grooming of this HOTVR algorithm only depends on the soft drop condition.
The threshold µ is used to define proper subjets but does not a↵ect the grooming process. The
choice of µ has no impact on the removal of particles in the jet.

Before the performance of HOTVR with soft drop grooming is compared to HOTVR with mass-
jump, the optimal set of parameters for the soft drop grooming needs to be found.

4.1 Optimisation of parameters for soft drop

The relevant parameters for the HOTVR algorithm using soft drop grooming are listed in Tab. 1.
In the following, the behaviour of the algorithm is studied for di↵erent parameter choices, using the
jet mass and jet substructure variables. For the soft drop angular dependence � values of 0, 1 and
2 were tested. The soft drop strength parameter zcut was varied within zcut 2 {0.01, 0.05, 0.1, 0.2}.
The performance is evaluated in tt and QCD multijet samples.

Table 1: Parameters of the HOTVR algorithm with soft drop.

Parameter Description

� soft drop angular dependence

zcut soft drop strength

µ Subjet mass threshold

The mass of the HOTVR jet, mjet, is shown in Fig. 1 for the di↵erent variations in two bins of pT.

It is observed that with increasing soft drop strength the top mass peak is shifted towards lower
values showing that too many particles are removed. The impact on the QCD background is
similar: increasing soft drop strength results in lower mass. On the other hand varying the angular
parameter � shows that mass is shifted, increased mass for increased angular strength. In order to
decide which parameter set is working best, receiver operating characteristic curve (ROC curve)

2. Grooming step
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2 and 3-body decays
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Idea:


• Combine 2 and 3 body 
decay


• One function 


• Simultaneous tagging of 
top, W, Z and Higgs 
possible

Reff(m, pT)
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Idea:


• Combine 2 and 3 body 
decay


• One function 


• Simultaneous tagging of 
top, W, Z and Higgs 
possible

Reff(m, pT)

6 Extension of HOTVR tagging to W/Z/H tagging 16
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Figure 11: The AUC curves for the VariableR (left) and HOTVR (right) algorithm, as a function of excluded
input features. The LNN is trained with Set2: dmax = 3 resulting in 13 EFPs. plus pT and ⌘
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Figure 12: TODO:.Motivation zum Radius

the mass of the jet:

Re↵(pT,i) =

8
>>><

>>>:

Rmin for
q
1/E2

T ⇤m2
term

< Rmin

Rmax for
q
1/E2

T ⇤m2
term

> Rmaxq
1/E2

T ⇤m2
term

else,

(8)

with E2

T = p2
T,i +m2

i and mterm = (150 +
m2

i
50

� a ⇤ exp((mi � b)/c)) where parameter a, b, and c
are tunable, mi is the mass and pT,i the pT of the pseudo jet. The resulting radii for the di↵erent
target masses (MW = 81GeV, MZ = 90GeV, MH = 125GeV, Mt = 173GeV) can be seen in
Fig. 13.

In this section we will first discuss the top tagging performance with the mass depended radius.
Afterwards we compare the performance of tagging heavy bosons with both radius versions and
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• Fixed radius clustering has a  threshold & a too big radius at high 


• Variable R algorithm allows to adapt and overcome these issues


• The inclusion of 2-body decays seems reasonable


• Next: test on FullSim and test ParticleNet on top of HOTVR jets
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Figure 14: The distributions of number of subjets (top left), jet mass (top right), fpT(lower left) and ⌧32
(lower right) for the pT-dependent (Eq. 1) radius and the mass-dependent radius (Eq. 8).


