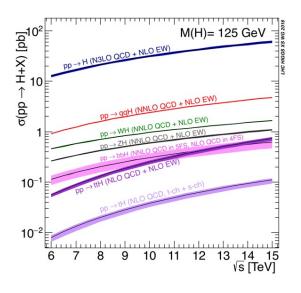
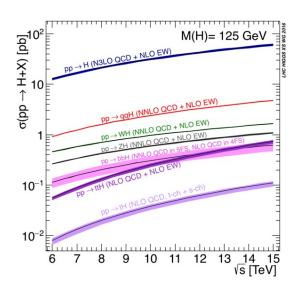


Boosted Higgs production via vector boson fusion with the CMS experiment

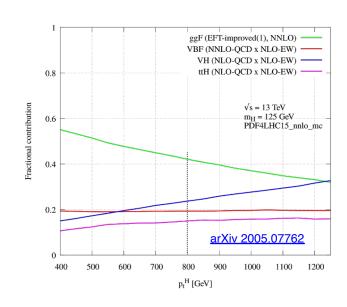

Jennet Dickinson on behalf of the CMS Collaboration BOOST 2023

Higgs production in pp collisions

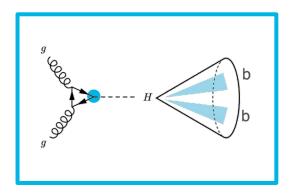
Gluon fusion accounts for 90% of the Higgs boson cross section at 13 TeV

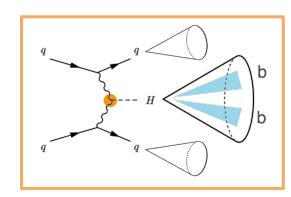


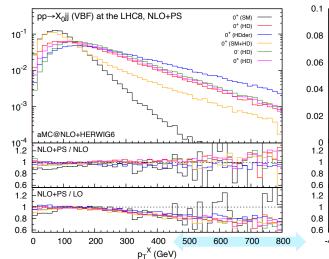
Higgs production in pp collisions

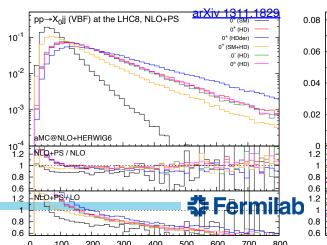

Gluon fusion accounts for 90% of the Higgs boson cross section at 13 TeV ...

if you measure inclusively in pt

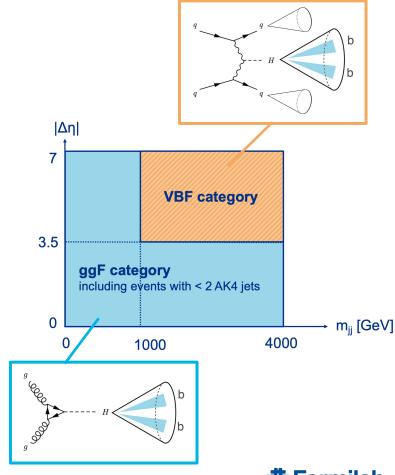





Why VBF at high p_T ?


- ggF becomes less dominant at high p_T
 - And we have precise predictions for other production modes (link)
- High p_T tails are sensitive to new physics at high energy scales

Different production modes probe different BSM operators


Analysis overview

- Apply selection targeting boosted Higgs candidates, rejecting backgrounds
- Add tailored cuts to target the VBF process
 Define orthogonal ggF and VBF categories
- Divide into b-tag passing and failing regions using the DeepDoubleB (DDB) tagger

Use DDB fail for data-driven QCD background estimate

 Fit to the soft drop mass of the Higgs candidate jet in both b-tag regions

Simultaneously extract signal strength for ggF and VBF

Event selection

- Start with events passing ≥1 trigger selecting for H_T, jet p_T, jet mass, b-tagging
 Fully efficient for leading jet p_T > 500 GeV
- Require at least one large radius jet

```
AK8 jet with p_T > 450 GeV, |\eta| < 2.5
```

Must have two-prong substructure: N_2 variable decorrelated with mass $N_2^{\text{DDT}} < 0$

If more than one jet qualifies, select the one with highest DDB score

- Lepton veto
- Top veto: MET < 140 GeV, no b-jet in the hemisphere opposite candidate jet
- If event has ≥ 2 more thin jets with Δη_{jj} > 3.5 and m_{jj} > 1 TeV → VBF category
 Otherwise → ggF category

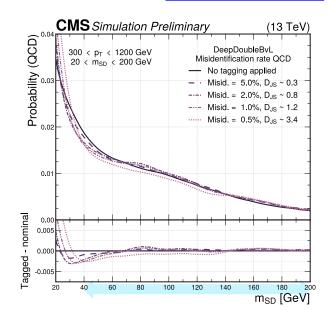
 CNN architecture trained on simulation to separate QCD and scalar X → bb decays

Signal generated for m_x from 20-200 GeV

Input features include:

Particle flow candidates (up to 40 charged, 60 neutral)

Secondary vertices


High-level jet variables

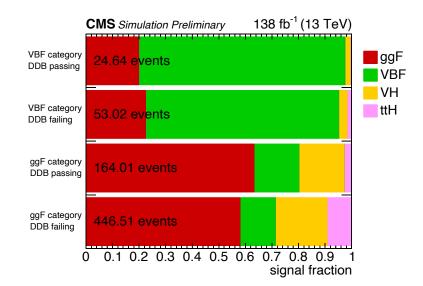
DDB threshold chosen to optimize VBF sensitivity

Events below DDB threshold (DDB fail) are used to estimate QCD background

• Tagger efficiency is constrained in-situ by the $Z \rightarrow$ bb peak

One of the dominant experimental systematics

Signal Monte Carlo

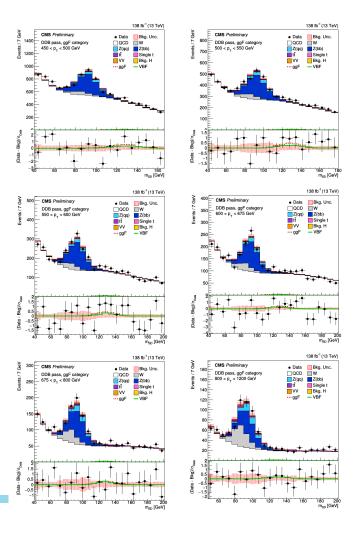

ggF: POWHEG HJMINLO

Good agreement with LHC XS WG recommendations

 VBF: POWHEG re-weighted for EW and N³I O corrections

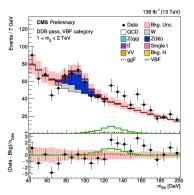
Good agreement with LHC XS WG recommendations

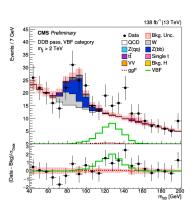
Other Higgs (WH, ZH, ttH, ggZH): POWHEG reweighted for EW corrections

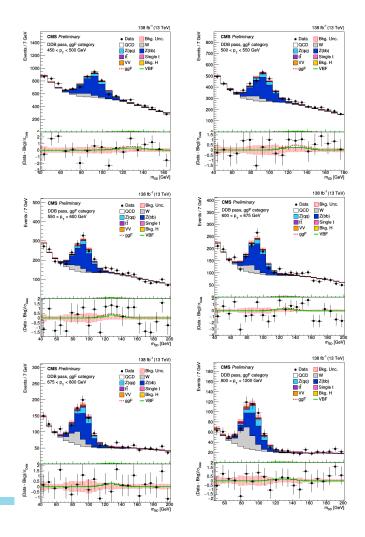

Renormalization/factorization scale, PDF and parton shower uncertainties included on all Higgs samples

Scale uncertainty on ggF (~20%) and VBF (~5%) is the dominant theory systematic

Differential bins

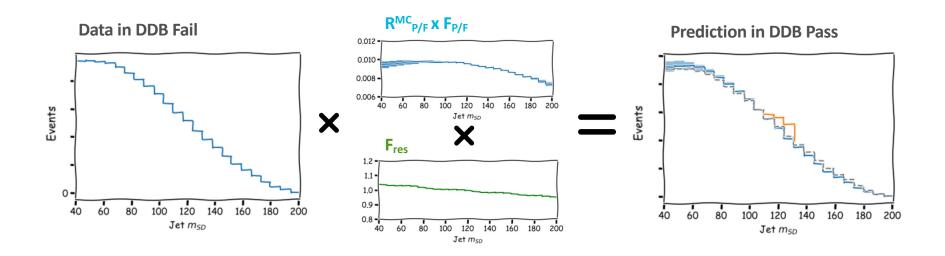

- Combining multiple bins with different signal purity gives better sensitivity
- ggF category: 6 bins in Higgs candidate p_T
 [450, 500, 550, 600, 675, 800, 1200] GeV




Differential bins

- Combining multiple bins with different signal purity gives better sensitivity
- ggF category: 6 bins in Higgs candidate p_T
 [450, 500, 550, 600, 675, 800, 1200] GeV
- VBF category: 2 bins in the invariant mass of the forward jets, m_{jj}

[1000, 2000, ∞] GeV



QCD background estimation

- Goal: predict the QCD distribution in the DDB pass region
- Use data in the DDB fail region as a starting point and apply two polynomial transfer factors

First transfer factor: F_{P/F}

- Accounts for differences in the m_{SD} shape in the DDB pass / fail regions due to tagger selection
- Coefficients extracted from a standalone fit to the DDB pass / fail ratio in QCD MC only

Overall normalization is treated as a separate factor, R_{P/F}^{MC}

Uncertainties are propagated to the final fit

$$\frac{N_P^{\text{MC},i}}{N_F^{\text{MC},i}} = R_{P/F}^{\text{MC}} F_{P/F}^i$$

First transfer factor: F_{P/F}

- Accounts for differences in the m_{SD} shape in the DDB pass / fail regions due to tagger selection
- Coefficients extracted from a standalone fit to the DDB pass / fail ratio in QCD MC only

Overall normalization is treated as a separate factor, R_{P/F}^{MC}

Uncertainties are propagated to the final fit

Second transfer factor: F_{res}

- Accounts for any additional differences the m_{SD} shape in the DDB pass / fail regions
- Coefficients extracted from simultaneous fit to DDB pass and fail regions

Uncertainty on fitted polynomial coefficients is a dominant systematic

$$\frac{N_P^{\text{MC},i}}{N_F^{\text{MC},i}} = R_{P/F}^{\text{MC}} F_{P/F}^i$$

$$N_P^i = R_{\mathrm{P/F}}^{\mathrm{MC}} F_{\mathrm{P/F}}^i F_{\mathrm{res}}^i N_F^{\mathrm{data},i}$$

Transfer factor polynomials

ggF category

1 x 2D Bernstein polynomial in jet p_T and $\rho = ln (m_{SD}^2/p_T^2)$

VBF category

 $2 \times 1D$ Bernstein polynomial in jet ρ only (one per m_{jj} bin)

$$F_{ ext{P/F}}(p_{ ext{T}},
ho) = \sum_{k=0}^{n_{
ho}} \sum_{l=0}^{n_{p_{ ext{T}}}} a_{k,l} \left[b_{k,n_{
ho}}(
ho) b_{l,n_{p_{ ext{T}}}}(p_{ ext{T}})
ight]$$
 $b_{
u,n} = inom{n}{
u} x^{
u} (1-x)^{n-
u}$

Determining polynomial order

Start with a low order polynomial, which is nested within higher order polynomials

Systematically increase polynomial order until the goodness of fit no longer increases significantly

· Independent fits performed per category, per data-taking period

Control regions

 Top control region: derive normalization and DDB efficiency on top background processes from data

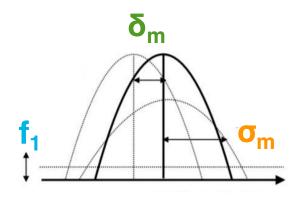
Nominal selection, but $0 \mu \rightarrow 1$ loose μ and require an additional b-jet

Treated as a single bin counting experiment per data taking period in the final fit

Control regions

 Top control region: derive normalization and DDB efficiency on top background processes from data

Nominal selection, but 0 $\mu \rightarrow$ 1 loose μ and require an additional b-jet


Treated as a single bin counting experiment per data taking period in the final fit

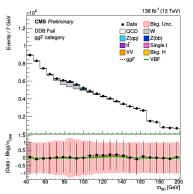
 W-tag control region: derive scale factors for substructure selection, jet mass scale & resolution

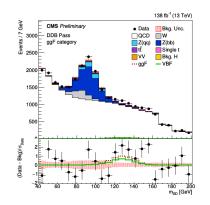
Require μ and MET \rightarrow reco W = (μ +MET) with p_T > 200 GeV

Split each MC sample into truth W-matched and unmatched

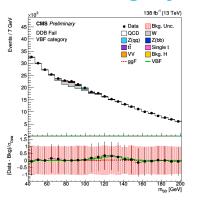
Fit regions $N_2^{DDT} > 0$ and < 0 simultaneously for substructure scale factor, jet mass resolution and jet mass scale

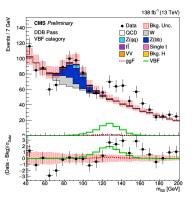
Results


 Observed significance is calculated with other process freely floating

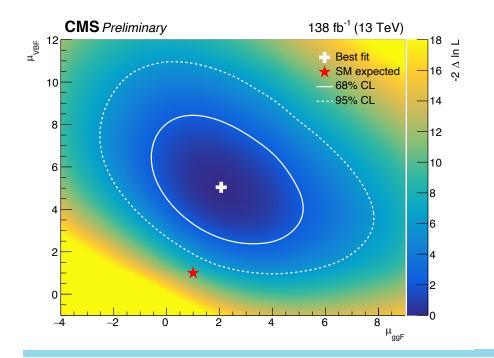

• VBF: 3.0σ (0.9σ expected)

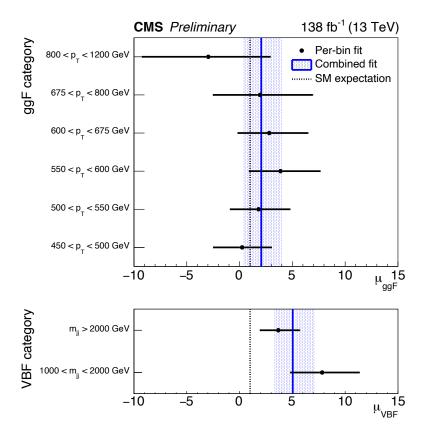
• ggF: 1.2σ (0.9σ expected)


	Lumi [fb ⁻¹]	μνε	3F	μ _{gg}	
Early 2016	19.5	2.9	+5.8 -4.5	4.3	+5.5 -5.4
Late 2016	16.8	5.8	+6.3 -4.7	-0.9	+4.7 -5.1
2017	41.5	-0.7	+2.8 -2.6	6.7	+4.0 -3.1
2018	59.8	10.0	+4.4 -3.4	-0.6	+2.8 -3.1
Combined	137.6	5.0	+2.1 -1.8	2.1	+1.9 -1.7


ggF category

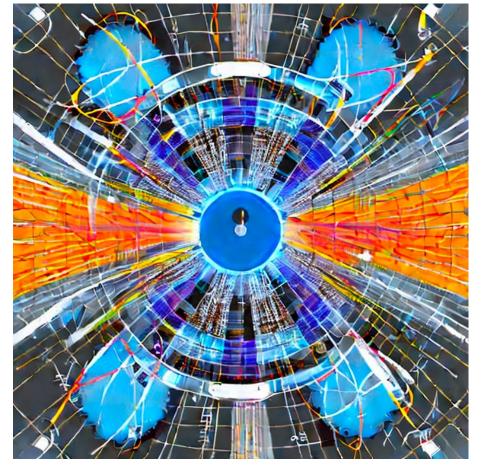
VBF category





Results

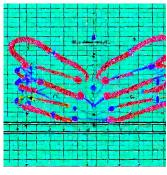
Best fit differs from SM by 2.6σ and from (0,0) by 3.9σ

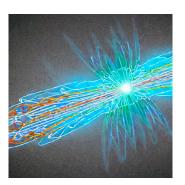


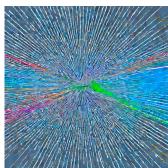
Summary

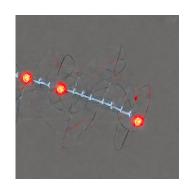
- We have presented the first search for VBF in the boosted H(bb) channel
- Simultaneous measurement of ggF and VBF signals is performed

$$\mu_{VBF} = 5.0^{+2.1}_{-1.8}$$
 $\mu_{qqF} = 2.1^{+1.9}_{-1.7}$


- Observed results differ from SM expectation by 2.6σ
- Further details in HIG-21-020






Additional material

Background simulation

V+jets:

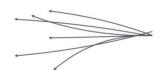
Madgraph LO corrected to NLO gen-level p_⊤ spectrum NNLO QCD, EW corrections applied following "mono-jet" prescription

- Electroweak V: Madgraph LO
- **Diboson**: Pythia LO corrected to NNLO with MCFC
- ttbar, single top: POWHEG NLO
- QCD: p_T sliced Pythia8

Estimation mostly from data

21

Substructure selection


 Variable N₂ (N₂¹) identifies two-prong jets using IRC safe energy correlation functions

$$e_{2}^{\beta} = \sum_{1 \leq i < j \leq n_{J}} z_{i} z_{j} \Delta R_{ij}^{\beta} \\ e_{3}^{\beta} = \sum_{1 \leq i < j < k \leq n_{J}} z_{i} z_{j} z_{k} \Delta R_{ij}^{\beta} \Delta R_{ik}^{\beta} \Delta R_{jk}^{\beta}$$
 $N_{2}^{\beta} = \frac{2e_{3}^{\beta}}{(1e_{2}^{\beta})^{2}}$

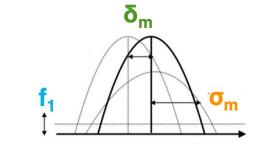
- Find the cut value on N₂ that has 26% efficiency on QCD MC, as a function of p_T and ρ: c_{0.26}(p_T, ρ)
- Resulting variable is decorrelated from jet p_T and mass

$$N_2^{1,{
m DDT}}=N_2^1-c_{0.26}(p_{
m T},\rho)\;.$$

22

W-tag control region

Derive scale factors for substructure selection, jet mass scale & resolution


Require μ and MET \rightarrow reco W = (μ +MET) with $p_T > 200$ GeV

Split each MC sample into truth W-matched and unmatched

Fit regions $N_2^{DDT} > 0$ and < 0 simultaneously for substructure scale factor, jet mass resolution and jet

mass scale

$$f_{1}n_{\text{match}}^{\text{P-sub}}(\delta_{m},\sigma_{m}) + \left[(1 - f_{1}) \frac{\sum N_{\text{match}}^{\text{P-sub}}}{\sum N_{\text{match}}^{\text{F-sub}}} + 1 \right] N_{\text{match}}^{\text{F-sub}}(\delta_{m},\sigma_{m}) + f_{2}N_{\text{unmatch}}^{\text{P-sub}} + \left[(1 - f_{2}) \frac{\sum N_{\text{unmatch}}^{\text{P-sub}}}{\sum N_{\text{unmatch}}^{\text{F-sub}}} + 1 \right] N_{\text{unmatch}}^{\text{F-sub}}$$

	Substructure (f_1)	Mass scale (δ_m) [GeV]	Mass resolution (σ_m)
Early 2016	0.85 ± 0.14	-1.50 ± 0.45	0.98 ± 0.04
Late 2016	0.68 ± 0.18	$+1.13 \pm 0.41$	1.26 ± 0.04
2017	1.18 ± 0.14	$+0.49\pm1.16$	1.18 ± 0.08
2018	0.90 ± 0.10	-0.84 ± 0.24	1.14 ± 0.04

