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Detector optimization

Generators that mimics detector conditions Reconstruction algorithm to produce physics 
object

● Traditionally only small number of detector configurations are considered 

● Reconstructions algorithm not optimized for a given detector condition 

● Allows to have  high-fidelity fast simulation and optimized reconstruction algorithms

Our group is working on deploying Artificial Intelligence (AI)  methods for EIC hadronic calorimeter design
● Generative models (fast simulation) 
● Reconstruction algorithm (Regression) 

arXiv: 23307.04780

https://arxiv.org/abs/2307.04780


3

Outline
● Challenges of non-compensating calorimeters

● “software compensation” for non-compensating

calorimeters

○ Traditional  Methods

○ AI/ML-based approach

● Impact of longitudinal segmentation and transverse cell information (cell Z, and 

XY) on model performance



Non-Compensation in Hadronic Calorimeters 

● Smaller response to hadrons compared to EM particles of the same energy
● Difference in visible signal for EM and purely hadronic energy deposits deteriorates energy 

resolution
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Fig. arXiv:1710.10535v1

Non-compensating calorimeter (e/h ≠1)
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Hardware compensation 
○ Imposes very strict requirements on the materials used and the overall 

geometry. E.g ZEUS Uranium/Sc calorimeter

Software compensation (“offline”)
○ Assigning weights to EM and HAD energy deposits event by event

○ As argued in the YR report, the potential of software compensation 
motivates longitudinal segmentation in calorimeters

Ways to deal with non-compensation

https://www.sciencedirect.com/science/article/pii/0168900291900947
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Deep Sets 

● Deep sets are designed to operate on sets for permutation-invariant and variable length data 
● Set collection of object without any order
● Each particle is mapped by 𝚽 to an internal particle representation (latent space)

Fig. ATLAS PUB Note

JHEP 01 (2019) 121

arXiv: 1703.06114 

http://cds.cern.ch/record/2825379/files/ATL-PHYS-PUB-2022-040.pdf
https://arxiv.org/pdf/1703.06114.pdf


Case Study: Optimization of forward HCAL in ePIC detector

HCAL

ECAL
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● Proton/ion beam has 
significantly larger kinetic 
energy compared to e- beam

● Most of the hadrons are 
emitted in the same direction 
as the hadron beam (“forward 
direction”)

● Granularity is key component 
to measure jets

Figure Courtesy



Optimization Possibility in ePIC
- Technology in ePIC HCAL and Insert uses SiPM-on-tile approach.
- Number of longitudinal sections and their position can be easily 

changed in practice (summing SiPM pulses) before readout. 
- Default is 7 equidistant z-sections regardless of radius. 
- Energy density varies with radius, so this is likely non-optimal

HCAL and Insert:

8Figure Courtesy



Detector Simulation and reconstruction

● Using standalone DD4HEP with simplified geometry 
similar to ePIC HCAL / insert

● Single particle Geant4  Simulation
○ Particle:  𝞹+,    Polar angle:  10< 𝝷 < 30 deg,               

Azimuthal angle:   0< ɸ< 360
○ Calorimeter Configuration: ECAL in front of 

HCAL

● Segmentation: 
Longitudinal segmentation: 55 z-sections
Transverse segmentation: 10 x 10 cm2 ( 55 cells)

● Point cloud representations of calorimeter showers

● Established models to predict the generated energy 
from given cell information

○ With different number of Z- sections 
○ With given transverse and longitudinal cell hits 

(Z, XY)
9
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Re-grouping

Varying longitudinal segmentation
Regrouping illustration with 5 z sections

Z edges

Z centers

[[0.028    3821.500    300.000    -1100.000]
 [0.058    3844.900   300.000     -1100.000]
 [0.092    3938.500   300.000     -1100.000]
 [0.070    3961.900   300.000     -1100.000]
 [0.109    3868.300   300.000     -1100.000]
 [0.132   3891.700   300.000      -1100.000]
 [0.116   3915.100   300.000      -1100.000]
 [0.001   4429.900   300.000      -1100.000]
 [0.001   4359.700   300.000      -1100.000]
 [0.003   4055.500   300.000      -1100.000]
 [0.016   4008.700   300.000      -1100.000]
 [0.032   3985.300   300.000      -1100.000]
 [0.003   4032.100   300.000      -1100.000]
 [0.003   4125.700   300.000     -1100.000]
 [0.001   4172.500   300.000      -1100.000]
 [0.003   4078.900   300.000     -1100.000]
 [0.001   4149.100   300.000     -1100.000]
 [0.001   4640.500   300.000     -1100.000]
 [0.001   4242.700   300.000     -1100.000]
 [0.002   4102.300   300.000     -1100.000]
 [0.001   4195.900   300.000     -1100.000]
 [0.001   4336.300   300.000     -1100.000]
 [0.001   4289.500   300.000     -1100.000]]

E         Z                 Y               X 

[[0.656     3933.820    300.000    -1100.000]
 [0.016     4158.460    300.000    -1100.000]
 [0.003     4383.100    300.000    -1100.000]
 [0.001    4607.740    300.000     -1100.000]]

Esum     Z centers                 Y               X 

Regrouping in real world is just summing SiPMs outputs



 Performance with Z- sections 
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● Baseline is sum of cell hit energy corrected by sampling fraction
● Resolution improves with larger number of Z-section (default configuration 7 section)

baseline

baseline



Performance longitudinal, transverse cell information
● 1D: cell hits E
● 2D: cell hits E, Z
● 4D: cell hits E, Z, X, Y

Resolution improves most given longitudinal cell information. Transverse cell information improves model 
performance at high energy 12

baseline

baseline
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Comparison of performance with existing result

● CALICE Fe-Sc calorimeter similar in 
design

● Our baseline, CALICE uncorrected are 
sum of cell energy corrected by 
sampling fraction

● AI based methods yields better 
performance compared to traditional 
reconstruction methods

CALICE arXiv:1207.4210v2,2012
baseline

https://arxiv.org/pdf/1207.4210.pdf
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Conclusion:

● Established a deepset model trained on point cloud to predict the generated energy

○ Given different number of longitudinal segments

○ Given Transverse and longitudinal cell information (Z, XY)

● Resolution improves most given longitudinal cell information

● Transverse cell information improves model performance

● AI based reconstruction performs better than traditional reconstruction methods

Outlook
● Manuscript in preparation

● Develop a model condition on Z-sections
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Backup
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Typical Gaussian Fit 
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Training input and tuned hyperparameters and architecture
● Used simulated data, 2 M  𝞹+  events,     Data splitted:  Training, Validation, and Test 

● Batch size =2048, number of layers=4, latent size = 64

● Each dense layer uses Rectified Linear Unit (ReLu) activation functions

● Adam optimizer , Mean Squared Error  (MSE) for loss

● Trained until converges (approximately 100 Epochs)

https://icml.cc/Conferences/2010/papers/432.pdf
https://arxiv.org/pdf/1412.6980.pdf
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Software compensation has been around since at least 1980!

Poor energy resolution with 
no compensation

Cleaner Gaussian with 
software compensation

~20% improvement 
at high energies

● CERN study of a longitudinally segmented Fe/Sc scintillator [H. Abramowicz et al., NIM 180 (1981) 429]
● Simple adjustment of cell event energy:

○ Ecell, weighted = Ecell, unweighted(1 – C · Ecell, unweighted), C = 0.03/√Etotal
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Modern software compensation with imaging calorimetry 
(CALICE Collaboration)

● Human-made algorithm, culmination of many decades of study
● Improves resolution by up to 30-40%

CALICE arXiv:1207.4210v2,2012 JINST 17 (2022) P08027

https://arxiv.org/pdf/1207.4210.pdf
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Detector optimization

Generators that mimics detector conditions Reconstruction algorithm to produce physics 
object

● Typically neither of components are optimized using the automated tools

● Traditionally only small number of detector configurations are considered as consequence 

reconstructions algorithm not optimized for a given detector condition 

● This challenges can be addressed by deep learning, 

● Allows to have  high-fidelity fast simulation and optimized reconstruction algorithms


