Al-based reconstruction for highly granular calorimeters

Bishnu Karki

University of California, Riverside

Boost 23

05/03/2023

In Collaboration with: LBNL - B. Nachman, F. Torales-Acosta LLNL- A. Angerami, R. Soltz, P. Karande A. Sinha UCR: M. Arratia, K. Barish, S. Paul, R. Milton, S. Vasquez

DOE grant award number DE-SC0022355

- Traditionally only small number of detector configurations are considered
- Reconstructions algorithm not optimized for a given detector condition
- Allows to have high-fidelity fast simulation and optimized reconstruction algorithms

Our group is working on deploying Artificial Intelligence (AI) methods for EIC hadronic calorimeter design

- Generative models (fast simulation) arXiv: 23307.04780
- Reconstruction algorithm (Regression)

Outline

- Challenges of non-compensating calorimeters
- "software compensation" for non-compensating calorimeters
 - Traditional Methods
 - AI/ML-based approach
- Impact of longitudinal segmentation and transverse cell information (cell Z, and XY) on model performance

Non-Compensation in Hadronic Calorimeters

Non-compensating calorimeter (e/h ≠1)

Fig. arXiv:1710.10535v1

- Smaller response to hadrons compared to EM particles of the same energy
- Difference in visible signal for EM and purely hadronic energy deposits deteriorates energy resolution

Ways to deal with non-compensation

Hardware compensation

 Imposes very strict requirements on the materials used and the overall geometry. E.g <u>ZEUS</u> Uranium/Sc calorimeter

Software compensation ("offline")

- Assigning weights to EM and HAD energy deposits event by event
- As argued in the YR report, the potential of software compensation motivates longitudinal segmentation in calorimeters

"a fine granularity of a non-compensating calorimeter allows to improve the resolution by assigning weights to the detector signals ("off-line compensation)...at EIC such methods can be considered where a longitudinal segmentation of the ECAL and HCAL readout appears practical".

Deep Sets

JHEP 01 (2019) 121

- Deep sets are designed to operate on sets for permutation-invariant and variable length data
- Set collection of object without any order
- Each particle is mapped by Φ to an internal particle representation (latent space)

Fig. ATLAS PUB Note

Case Study: Optimization of forward HCAL in ePIC detector

- Proton/ion beam has significantly larger kinetic energy compared to e⁻ beam
- Most of the hadrons are emitted in the same direction as the hadron beam ("forward direction")
- Granularity is key component to measure jets

HCAL and Insert:

Optimization Possibility in ePIC

- Technology in ePIC HCAL and Insert uses SiPM-on-tile approach.
- Number of longitudinal sections and their position can be easily changed in practice (summing SiPM pulses) before readout.
- Default is 7 equidistant z-sections regardless of radius.
- Energy density varies with radius, so this is likely non-optimal

Detector Simulation and reconstruction

- Using standalone DD4HEP with simplified geometry similar to ePIC HCAL / insert
 - Single particle Geant4 Simulation
 - Particle: π^+ , Polar angle: $10 < \theta < 30$ deg, Azimuthal angle: $0 < \phi < 360$
 - Calorimeter Configuration: ECAL in front of HCAL
 - Segmentation: Longitudinal segmentation: 55 z-sections

Transverse segmentation: $10 \times 10 \text{ cm}^2$ (55 cells)

- Point cloud representations of calorimeter showers
- Established models to predict the generated energy from given cell information
 - With different number of Z- sections
 - With given transverse and longitudinal cell hits (Z, XY)

Varying longitudinal segmentation Regrouping illustration with 5 z sections

2-	3821.5 4046.1		4270.8		4495.4		4720.1		49	944.7 Z e	edges	
[3933.8	4158.5	5	4383.1		4607.7		4832.4		Z centers		
			Е	z	Y	x						
/-			[[0.028	3821.500	300.000	-1100.000]						
(+			[0.058	3844.900	300.000	-1100.000]			_		v	Y
	+ + + + + +		[0.092	3938.500	300.000	-1100.000]			Esum	Z centers	Ŷ	X
			[0.070 [0.109	3961.900 3868.300	300.000	-1100.000] -1100.000]	Re-grouping	[[0.656	3933.820	300.000	-1100.000]	
			[0.132	3891.700	300.000	-1100.000]			[0.016	4158.460	300.000	-1100.000]
x			[0.116	3915.100	300.000	-1100.000]			0.003	4383.100	300.000	-1100.000]
Źý		/	[0.001	4429.900	300.000	-1100.000]			0.001	4607,740	300.000	-1100.0001
	Z		[0.001	4359.700	300.000	-1100.000]			_0.001			
			[0.003	4055.500	300.000	-1100.000]						
Я			[0.016	4008.700	300.000	-1100.000]	Regrou	ping in	real world	l is just sum	ming SiPl	VIs outputs
			[0.032	3905.300 4022 400	300.000	-1100.000]	16mm steel	plates 4 m	im scintillator tiles	transfer PCB	1	
			[0.003	4032.100	300.000	-1100.000]	HGCROC read-out	HGCROC read-out				
			[0.000 [0.001	4172,500	300.000	-1100.000]			TATAL CONTRACTOR OF TAXABLE		10 cm	
			[0.003	4078.900	300.000	-1100.0001			120 cm	8M tower module - 2	0 cm x 10 cm x 140 cm	
			[0.001	4149.100	300.000	-1100.000]		-		- 8 5 cm x 5 cm LFHCal	towers	
x			[0.001	4640.500	300.000	-1100.000]	0 0	· · ·	- in the	LFHCal	LFHCal Option 1b	
			[0.001	4242.700	300.000	-1100.000]		0	o O	0.1 mm kapt	35.2 m	0.25mm air gap
	z 🔸		[0.002	4102.300	300.000	-1100.000]				63	mm reflective foil 4 mm	Scintillator
			[0.001	4195.900	300.000	-1100.000]		thes PCB for meanting and signal to	ansker of 4 SPM	PCB for signal transfer 0.1 from single layer 0.1 mm kapt	mm reflective foil	fes pcb 0.2mm 0.25mm air gap
			[0.001	4336.300	300.000	-1100.000]				F	15.2 m	un absorber
			[0.001	4289.500	300.000	-1100.000]]			convertor			

Performance with Z- sections

- Baseline is sum of cell hit energy corrected by sampling fraction
- Resolution improves with larger number of Z-section (default configuration 7 section)

Performance longitudinal, transverse cell information

- 1D: cell hits E
- 2D: cell hits E, Z
- 4D: cell hits E, Z, X, Y

Resolution improves most given longitudinal cell information. Transverse cell information improves model performance at high energy

Comparison of performance with existing result

CALICE arXiv:1207.4210v2,2012

- CALICE Fe-Sc calorimeter similar in design
- Our baseline, CALICE uncorrected are sum of cell energy corrected by sampling fraction
- Al based methods yields better performance compared to traditional reconstruction methods

Conclusion:

- Established a deepset model trained on point cloud to predict the generated energy
 - Given different number of longitudinal segments
 - Given Transverse and longitudinal cell information (Z, XY)
- Resolution improves most given longitudinal cell information
- Transverse cell information improves model performance
- Al based reconstruction performs better than traditional reconstruction methods
 Outlook
- Manuscript in preparation
- Develop a model condition on Z-sections

Backup

Typical Gaussian Fit

Training input and tuned hyperparameters and architecture

- Used simulated data, 2 M π^+ events, Data splitted: Training, Validation, and Test
- Batch size =2048, number of layers=4, latent size = 64
- Each dense layer uses <u>Rectified Linear Unit (ReLu)</u> activation functions
- Adam optimizer, Mean Squared Error (MSE) for loss
- Trained until converges (approximately 100 Epochs)

Software compensation has been around since at least 1980!

- CERN study of a longitudinally segmented Fe/Sc scintillator [H. Abramowicz et al., NIM 180 (1981) 429]
- Simple adjustment of cell event energy:

Modern software compensation with imaging calorimetry (CALICE Collaboration)

- Human-made algorithm, culmination of many decades of study
- Improves resolution by up to 30-40%

- Typically neither of components are optimized using the automated tools
- Traditionally only small number of detector configurations are considered as consequence reconstructions algorithm not optimized for a given detector condition
- This challenges can be addressed by deep learning,
- Allows to have high-fidelity fast simulation and optimized reconstruction algorithms