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Driving Questions

/1) Why do we care about millicharged particles? \
2) How can we search for millicharged particles?

3) What's the sensitivity for a detector in the
forward region?

/
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Why do we care about
millicharged particles?

(millicharged particle = mCP) @
3
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Dark EM as a portal into the dark sector

\
Standard A V\/O“fv A Dark sector
model dark

SM x~ 1073 =102 (What may solve SM anomalies)

sector

(What we know) (naturally ~ 1/16x?%)

This mixing provides a portal to the dark sector
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Production of millicharged candidates
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For more on meson production
in the LHC forward region:
arXiv:1811.12522v3
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Drell-Yan

Processes are model independent!
Depend only on the mass and charge of the mCP
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Current phase space need

* There are many ways to search for 0 = ee ArXiv:1511.01122
mCPs CMS

0

* There’s a gap in the sensitivity ~1GeV

 mCPs could be produced copiously at the
LHC in this region

* General purpose detectors don’t have
the sensitivity for e<1/3
« dE/dx goes as Q2
* E.g. CMS

Log1o(€)
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e We need dedicated detectors!

* This is where FORMOSA and MilliQan |
come in! L N

2 = 6 8 10 12 14

—12L

Log1o(mysleV)

7/31/23 Jacob Steenis 6



NILIGAN UCDAVIS

How can we search for
millicharged particles?
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LHC

— P —

The MilliQan detector, a starting point!

Located in the central region

* Separated with 17m of rock

* Angled downward towards the CMS
interaction point

Currently operational!

* Has been taking stable data for physics
and commissioning this LHC run

«milliQan

Run 3 milliQan o
detector

| 9
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L - [ surface
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Signal of only a few photons per layer
* Need sensitivity in low-energy region
* Long scintillator bars help provide that!

A hit in all 4 layers indicates a potential
candidate!

* Eliminates the uncorrelated background
events

* E.g. dark rate = spontaneous thermal
emission of an electron from the
photocathode

* Such backgrounds would otherwise dominate
our signal
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Moving forward

Forward Physics Facility is proposed to provide comprehensive
coverage of the forward BSM and SM phenomena at the LHC
* 600m from ATLAS interaction point
* |deal location for forward mCP detector, FORMOSA
e Greater mCP sensitivity in the forward region
e ~250x higher mCP production cross section
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Building out of MilliQan...FORMOQOSA

10x10x4 array of Eljen EJ-200 plastic
scintillator bars

* Bars mounted to Hamamatsu R7725
PMTs

* Segmented beam-muon panels on the
front and back

e Similarly for quadruple coincidence
for signal

* A hitin each layer

e Can incorporate high-performance
scintillator

* CeBr3 has a factor of ~30 higher
photon yield/cm

» Allows for lower charge sensitivity FORMOSA Detector
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Challenge of being in the forward region
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* Through-going beam muons deposit much energy in the scintillators.

* Causes “afterpulsing”

* |.e. ionization of the gas in the PMT > ions drift towards dynodes

e Thisis our primary background

* Can veto these by cutting on time relative to initial pulse
* We will study this with the FORMOSA demonstrator!

Jacob Steenis
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-FORMOSA Demonstrator in FASER cavern

2x2x4 array of Eljen EJ-200 plastic
N scintillator bars

/ * Mounted to Hamamatsu R7725 PMTs

* Scintillator panels on front and back to
brackets identify beam muons

To be proof of concept

e Better understand backgrounds: beam muons,
cosmic muons, dark rate, etc.

» Determine feasibility of searching for
millicharged particles in forward region

* Determine if any design changes need to be
made

* Currently under construction and will be
installed early 2024

FORMOSA Demonstrator
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The structural design

patch panel

brackets
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To be deployed in the FASER cavern

FASER

Demonstrator
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An extension of the demonstrator...

e Can be implemented after proof of concept
is established

 Makes search feasible with demonstrator!

e Can study having a segmented muon veto
panel

* Only a smallincrease in footprint

Same size as MilliQan
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Current status

* We have all the scintillator bars and
PMTs necessary for construction of the
demonstrator

* Wrapping of scintillator bars underway

* Currently assessing the dark rate of the
new PMTs and performing source
calibrations

* FORMOSA has many potential
opportunities along the whole process

e Construction, analysis, testing, triggers,
hardware, etc.
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For undergrads too!
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What’s the sensitivity for a
detector in the forward region?

7/3y/23  Jacob Steen is



'he advantage of being in the forward region!

Colliders -~ CMS

el

milliQan

10-1 prototype

10-2 rgoNeuT expanded
- p— FORMOSA

Q | / SuperK demonstrator
O ——

milliQan Run 3

10-3 4 SLAC MilliQ

L = FORMOSA+CeBr3
10 o - FORMOSA

10t 100 10t 102
MCP mass/GeV

Charge range: ~(10~* to 0.1)e Mass range: ~(0.01-100)GeV
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Progress Summary

* Timeline
e Construction of demonstrator is ongoing!
* Beginning of 2024: Demonstrator installation

* End of 2024-Early 2025: Expanded demonstrator
e 2028-2032: Full FORMOSA

* Phenomenology paper to be published within two months
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Lagrangians/Gauge Transformation

* Add details about the gauge transformation that
gets the Lagrangian we care about.

L= Lsm = A, AW — SA, A
L= Lom = AL AM = AL AW + (@ +ie'A' + iMmcp)y
A= A" — kKA

L=Lsyu— 74, A" + (P + ike' A +ie' A + iMpymcp)y
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Theoretical Motivation

* Propose another electromagnetism in the dark
sector
* Suppose it’s governed by a U(1) group, call it U’(1)
* U(1) will have the standard charge (e)
* U’(1) will have some other fundamental charge (e’)
* Fermions in this theory could have te, + €’, both, or neither

* This gives a coupling between our photon (A) and a new, dark

photon (A’) via virtual pairs of fermions with both charges

e The Lagrangian:

A A
SM dark
I sector

SM or dark fermions

L=Lgpy — A JAMY b (P 4 ike! A+ i€’ A+ iMy,op )Y

Millicharged coupling to the photon
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Millicharged coupling to the dark photon

[Source: B. Holdom 1986]
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The Sensitivity of MilliQan Detectors
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milliQan

SLAC MilliQ

tector (200 fb™?)
tector (200 fb™1)
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Charge range: ~(0.001-0.1)e

Mass range: ~(0.1-100)GeV

Bar Detector sensitive to a
larger charge range.

Slab Detector sensitive to a
larger mass range.
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By what processes can we detect these?

e Standard electromagnetic interactions!

* Millicharged particles couple electromagnetically
to the standard model photon
* Charge of ke

* kshould be in the range of 0.1 — 0.001 otherwise current Quarks mCPs
colliders would have found something (e.g. 0.5¢e)

e https://cds.cern.ch/record/2841994/files/EXO-19-006-

pas.pdf
* Thus, we can use standard charged-particle
techniques!
dE - : :
.~ Q? for millicharged candidates with a mass

greater than 100MeV

* lonization is the primary energy loss mechanism
* Given by the Bethe-Bloch equation

[Source: A. Haas et al. 2015]
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CeBr3 Scintillator Added

7/31/23 Jacob Steenis



