

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Jet performance and pileup mitigation in Run3 in CMS

Steffen Albrecht On behalf of the CMS Collaboration July 31st 2023 - BOOST conference

DFG Deutsche Forschungsgemeinschaft

Motivation Jets in pp collisions

- Jets are produced in abundance at LHC
- Jets are crucial signatures in SM measurements and BSM searches
 - precision physics need precision calibration
 - Event pileup introduces challenges along the way
 - Run 3 so far: average 50 interactions per bunch crossing

Jets and MET in CMS

- ParticleFlow
 - local reconstruction (PF clusters,...)
- q, g
- global event reconstruction (PF particles)
 → linking information of subdetectors
 - Relying on precise calibration of subdetectors
 - Identification of particles (charged hadrons (tracker), neutral hadrons (HCAL), photons (ECAL),...)
- Pileup mitigation (PUPPI) → Jet clustering using anti-k_T (R=0.4, 0.8)
 → Jet calibration in factorized approach
- Also: MET, JetMET in HLT trigger and Data certification
- Not covered in this talk:
 - heavy-flavour tagging in boosted regime (→ see talk by Congqiao)
 - boosted jet tagging (→ <u>see talk by Oz</u>)

Detector level jet

- Pileup interactions from same or other bunch crossing overlay the hard scattering
 - Charged and neutral hadrons originating from pileup vertices end up in jet
- Need to cope with a mean number of interactions per bunch crossing of $\mu=80$ in Run 3 so far
- Default in Run 2: charged hadron subtraction (CHS) + average pileup offset correction
- Default in Run 3: treatment of charged and neutral hadrons using pileup per particle identification (PUPPI)

- Pileup interactions from same or other bunch crossing overlay the hard scattering
 - Charged and neutral hadrons originating from pileup vertices end up in jet
- Need to cope with a mean number of interactions per bunch crossing of $\mu = 80$ in Run 3 so far
- **Default in Run 2:** charged hadron subtraction (CHS) + average pileup offset correction
- Default in Run 3: treatment of charged and neutral hadrons using pileup per particle identification (PUPPI)

- Pileup interactions from same or other bunch crossing overlay the hard scattering
 - Charged and neutral hadrons originating from pileup vertices end up in jet
- Need to cope with a mean number of interactions per bunch crossing of $\mu = 80$ in Run 3 so far
- Default in Run 2: charged hadron subtraction (CHS) + average pileup offset correction
- **Default in Run 3:** treatment of charged and neutral hadrons using pileup per particle identification (PUPPI)

- - Improved performance w.r.t. Run2 training (CHS in training)

- Jet calibration in factorized approach to correct jet energy scale JES (in data and simulation) and jet energy resolution JER (in simulation)
 - MC truth corrections: correct JES to level of particle level jets
 - Residual corrections: correct JES for residual differences between data and simulation
 - Smear jet energy resolution in simulation to match that in data

Jet calibration in CMS Remnant pileup in jets

- Average pileup offset / $p_{T,ptcl}$
- PUPPI jets enter JES/JER calibration workflow with minimal dependence on $<\!\mu\!>$
 - For $|\eta| < 2.5$ (barrel and endcap):
 - CHS jets have (without offset corrections) up to ~70% remnant pileup
 - PUPPI jets <4% for p_T>20 GeV
- No further pileup corrections applied to PUPPI jets

Jet calibration in CMS L2L3 Response corrections

- Correction in bins of jet η and p_T correcting jet response to unity
 - Response defined as median of $p_T^{\rm reco}/p_T^{\rm ptcl}$
- Stable in barrel $|\eta| < 1.3$
- stronger p_T dependence in endcaps and hadron forward
- Response of JES correction closure within 0.1% to 0.4% for $|\eta| < 2.5$ and 0.8% $|\eta| > 2.5$ and $p_T > 30$ GeV

Jet calibration in CMS L2L3 Response corrections

- Correction in bins of jet η and p_T correcting jet response to unity
 - Response defined as median of $p_T^{\text{reco}}/p_T^{\text{ptcl}}$
- Stable in barrel $|\eta| < 1.3$
- stronger p_T dependence in endcaps and hadron forward
- Response of JES correction closure within 0.1% to 0.4% for $|\eta| < 2.5$ and 0.8% $|\eta| > 2.5$ and $p_T > 30$ GeV

Jet calibration in CMS L2Res η_{jet} dependent

- Residual correction in bins of jet η_{jet} and p_T^{ave} , correcting the response **relative** to the response $\frac{1.5}{1.4}$ of central jets ($|\eta| < 1.3$)
 - Derived from dijet events using MPF (missing transverse momentum projection fraction) method
 - Correction < 2% in barrel
 - In high forward endcap transition region $(2.5 < |\eta| < 3)$ up to 50% and large p_T dependence
 - Likely due to missing calibration of HE

Jet calibration in CMS L3Res $p_{T,jet}$ dependent

- Residual correction as a function of $p_{T,jet}$
- Derived from $Z(\mu\mu)$ +jets **events** after calibrating Z mass
 - using MPF method $R_{jet,MPF} = 1 + \frac{\vec{p}_T^{miss} \cdot \vec{p}_{T,Z}}{(p_{T,Z})^2}$
 - and **Direct Balance (DB)** method $R_{jet,DB} =$
- Consistent with HCAL barrel scale shift due to miscalibration: 0.90 (Era C), 1.08 (Era F), and 1.10 (Era G)

11

Jet calibration in CMS

12

- JetMET related HLT triggers (single jet, HT, MET, soft drop mass) well behaved
- ParticleNet @ HLT
 - AK8 with $m_{SD} > 40$ GeV, $p_T > 250$ GeV and high H(bb) vs QCD. ParticleNet score
 - Reaches up to $\approx 85\%$ efficiency

HCAL calibration update: pre-update miscalibration corrected with residual JECs

ML for Data certification

AutoEncoders

CMS-DP-2023-032

- DQM and DC online using many monitoring elements
 - Time intensive and prone to human error
- AutoEncoders (AC) with JetMET monitoring elements as input
 - non-anomalous runs as input

10-2 10- 10^{-1}

 Threshold on reconstruction loss as metric for GOOD/BAD runs

2018 Era D CMS Preliminary Run 320712 (Reconstructed) 2018 (13 Te AC reconstruction (trained on Era A) -2

 For anomalous runs look at a per lumi section (LS) basis

 recover BAD runs partially by rejecting only anomalous LS

Multilayer perceptron trained with 2D histograms can **also** differentiate between data taking eras

ML for Data certification

AutoEncoders

CMS-DP-2023-010

- DQM and DC online using many monitoring elements
 - Time intensive and prone to human error
- AutoEncoders (AC) with JetMET monitoring elements as input
 - non-anomalous runs as input
 - Threshold on reconstruction loss as metric for GOOD/BAD runs
- For anomalous runs look at a per lumi section (LS) basis
 - recover BAD runs partially by rejecting only anomalous LS

Summary

- PUPPI performs well in Run 3
- Jet energy calibration corrects for miscalibration of detector
 - will improve as detector is calibrated further
- Jet&MET related trigger well behaved in Run 3
 - New ParticleNET H(bb) vs. QCD tagger
- Study of Autoencoders and other ML trained on Jet&MET monitoring elements for use in Data Certification

Additional Material

References

CMS-DP-2022-054

CMS-DP-2023-045

CMS-DP-2023-032

CMS-DP-2023-010

CMS-DP-2023-016

CMS-DP-2023-013

CMS-DP-2023-021

CMS-DP-2023-012

CMS-DP-2022-063

CMS-DP-2023-007

- Jet Energy Scale and Resolution Measurements Using Prompt Run 3 Data Collected by CMS in the First Months of 2022 at 13.6 TeV
- Jet Energy Scale and Resolution Measurements Using Prompt Run 3 Data Collected by CMS in the Last Months of 2022 at 13.6 TeV
 - Machine Learning Techniques for JetMET Data Certification of the CMS Detector
 - An AutoEncoder-based Anomaly Detection tool with a per-LS granularity
- Performance of jets and missing transverse momentum reconstruction at the High Level Trigger using Run 3 data from the CMS Experiment at CERN
- Performance of Soft Drop Mass Jet High Level Trigger at $\sqrt{s} = 13.6$ TeV in Run 3
- Performance of the ParticleNet tagger on small and large-radius jets at High Level Trigger in Run 3
- A first look at early 2022 proton-proton collisions at $\sqrt{s}=13.6$ TeV for heavy-flavor jet tagging
- Performance of JetMET high level trigger algorithms in the CMS experiment using proton-proton collisions data at $\sqrt{s}=13$ TeV during Run-2
 - Performances of Muons, Jets and MET Level 1 trigger algorithms in Run 3

Pileup interactions from same or other bunch crossing overlay the hard scattering

- Charged and neutral hadrons originating from pileup vertices end up in jet
- Need to cope with a mean number of interactions per bunch crossing of $\mu = 80$ in Run 3 so far

CHS

- Remove charged hadrons not originating from leading vertex
- Only in tracker coverage and only on charged component of pileup
 - Additional treatment on jets clustered from CHS particle collection needed: pileup jet ID and offset correction
- Used in Run 2

PUPPI

- Treating both charged and neutral particles
 - neutral particles get assigned a weight based on α_i \rightarrow scales four-momenta
 - how far is it from charged particle originating from LV \approx how likely is it they originate from LV or PV

$$\alpha_{i} = \sum_{j \neq i, \Delta R_{ij} < R_{0}} \left(\frac{p_{T,j}}{\Delta R_{ij}} \right)^{2} \qquad \qquad w_{i} = F_{\chi^{2}, \text{ndf}=1} \left(\frac{(\alpha_{i} - \bar{\alpha}_{\text{PU}}) |\alpha_{i} - \bar{\alpha}_{\text{PU}}|}{(\alpha_{\text{PU}}^{\text{RMS}})^{2}} \right)$$

Pileup interactions from same or other bunch crossing overlay the hard scattering

- Charged and neutral hadrons originating from pileup vertices end up in jet
- Need to cope with a mean number of interactions per bunch crossing of $\mu = 80$ in Run 3 so far

CHS

- Remove charged hadrons not originating from leading vertex
- Only in tracker coverage and only on charged component of pileup
 - Additional treatment on jets clustered from CHS particle collection needed: pileup jet ID and offset correction
- Used in Run 2

PUPPI

- Treating both charged and neutral particles
 - neutral particles get assigned a weight based on α_i \rightarrow scales four-momenta
 - how far is it from charged particle originating from LV \approx how likely is it they originate from LV or PV

$$\alpha_{i} = \sum_{j \neq i, \Delta R_{ij} < R_{0}} \left(\frac{p_{T,j}}{\Delta R_{ij}} \right)^{2} \qquad \qquad w_{i} = F_{\chi^{2}, \text{ndf}=1} \left(\frac{(\alpha_{i} - \bar{\alpha}_{\text{PU}}) |\alpha_{i} - \bar{\alpha}_{\text{PU}}|}{(\alpha_{\text{PU}}^{\text{RMS}})^{2}} \right)$$

Pileup interactions from same or other bunch crossing overlay the hard scattering

- Charged and neutral hadrons originating from pileup vertices end up in jet
- Need to cope with a mean number of interactions per bunch crossing of $\mu = 80$ in Run 3 so far

PUPPI

- Treating both charged and neutral particles
 - neutral particles get assigned a weight based on α_i \rightarrow scales four-momenta
 - how far is it from charged particle originating from LV \approx how likely is it they originate from LV or PV

JEC Uncertainty Run II

To be updated for Run 3

CMS-DP-2020-019

Jet variables

Feature reduction: Jet energy fractions among most important for DC

CMS-DP-2023-032

Single Jet L1 trigger

<u>CMS-DP-2023-007</u>

ML for Data certification Autoencoders

CMS-DP-2023-032

Original

Hadron occupancy

AC

2018 Era A

reconstruction Trained on good runs from Era A

Original

2018 Era D

AC reconstruction

0.14 0.12 0.1 0.08 0.06 0.04 0.02 0.14 0.12 0.1 0.08 0.02