

Measurement of groomed event shape observables in electron-proton collisions

Peter Jacobs Lawrence Berkeley National Laboratory for the H1 Collaboration

Event shapes

Prototypical event shape: Thrust

$$T = \max_{|n|=1} \left[\frac{\Sigma_i |p_i \cdot n|}{\Sigma_i |p_i|} \right]$$

2 jets: Thrust~1

3 jets: Thrust~2/3

Global event observable: all particles contribute

Theory: fixed-order perturbation theory, all-order resummation, MC event generators

Extensive measurements in e⁺e⁻, e⁺p DIS, hadronic collisions

Testbed for precision QCD: α_s , color factors, analytic/modeling of hadronization, MC tuning,...

This talk: groomed event shapes in e+p DIS collisions

HERA and H1

HERA: e+p collider operated 1992-2007 Electrons: 27.6 GeV, protons: 920 GeV $\rightarrow \sqrt{s} = 319$ GeV

Hera-II 2003-2007: 352 pb⁻¹

H1 Experiment

- Hermetic detector with asymmetric design
- Drift chamber + silicon tracking
- High-resolution LAr calorimeter
- Trigger: energetic hadronic or EM LAr cluster
 - > 99% efficient for inelasticity y < 0.7

H1+Zeus: extensive data preservation effort

- collaborations still very active
- modern software for MC and analysis

Unique opportunity to explore QCD with new tools and concepts that were developed after HERA turned off

Breit Frame in DIS

Center-of-momentum frame of virtual photon and struck quark:

$$2x_{\rm Bj} \cdot P + q = 0$$

Measure *x*, $q \rightarrow$ boost to Breit frame

Breit Frame in DIS

Center-of-momentum frame of virtual photon and struck quark:

 $2x_{\rm Bj} \cdot P + q = 0$

Measure *x*, $q \rightarrow$ boost to Breit frame

Divides event into two hemispheres:

Current ($p_z < 0$): contains mainly radiation associated with struck parton Beam ($p_z > 0$): contains mainly radiation associated with proton remnant

Breit Frame in DIS

Center-of-momentum frame of virtual photon and struck quark:

 $2x_{\rm Bj} \cdot P + q = 0$

Measure *x*, $q \rightarrow$ boost to Breit frame

Divides event into two hemispheres:

Current ($p_z < 0$): contains mainly radiation associated with struck parton Beam ($p_z > 0$): contains mainly radiation associated with proton remnant

Struck parton fragmentation: Lorentz Inv. momentum fraction

$$z_{i} = \frac{P \cdot p_{i}}{P \cdot q} \xrightarrow{\text{Breit}} z_{i} = \frac{n \cdot p_{i}}{Q} = \frac{p_{i}^{+}}{Q}; \sum_{\substack{i \\ \text{Groomed evt shapes in DIS}}} z_{i} = 1$$

High z: fragments aligned with virtual photon

Why groom DIS events?

UE is negligible; background suppression not needed...?

Revisiting the role of grooming in DIS

Y. Makris^{1, *}

¹INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy (Dated: February 16, 2021) *Phys.Rev.D* 103 (2021), 054005 arXiv:2101.02708

- Construct observables that are free from non-global logarithms
- Suppress soft radiation
- Suppress beam remnants and initial state radiation (significant uncertainty source)
- Mitigate hadronization corrections; vary NP contributions in a controllable way

Jet clustering in DIS: Centauro algorithm

Asymmetric jet clustering in deep-inelastic scattering

M. Arratia,^{1,2,*} Y. Makris,^{3,†} D. Neill,^{4,‡} F. Ringer,^{5,6,§} and N. Sato^{7,¶}

e+p DIS closely resembles single-jet production

8/3/23

Highly asymmetric: needs asymmetric clustering algorithm that is longitudinally invar. in the Breit frame and that captures the struck-quark jet \rightarrow Centauro

Phys.Rev.D 104 (2021), 034005

arXiv:2006.10751

Clustering of an e+p DIS event

Longitudinally invariant anti-k_T vs. Centauro

Each color tags a different reconstructed jet

DIS event grooming using Centauro

Y. Makris, *Phys.Rev.D* 103 (2021), 054005 arXiv:2101.02708

Analogous to SoftDrop: iteratively decluster until grooming condition is passed

$$z_i = \frac{P \cdot p_i}{P \cdot q} \xrightarrow{\text{Breit}} z_i = \frac{n \cdot p_i}{Q} = \frac{p_i^+}{Q}$$

Grooming condition:

$$\frac{\min(z_i, z_j)}{z_i + z_j} > z_{\rm cut}$$

DIS event grooming using Centauro

Y. Makris, *Phys.Rev.D* 103 (2021), 054005 arXiv:2101.02708

 $z_{cut}=0.1$ green=pass grey = fail

Figure 2. Visualization of three PYTHIA 8 events at $\sqrt{s} = 63$ GeV and $Q \sim 10$ GeV before and after grooming. The particles in this events are represented by disks on the unfolded sphere. Green disks represent particles that pass grooming where grayed-out particles are removed from the event by the grooming procedure. For the grooming parameter we use here $z_{\text{cut}} = 0.1$

Application of grooming to H1 archived data

Analysis Note: H1prelim-22-033 https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-22-033.long.html

Henry Klest (Stony Brook→ Argonne), Ph.D Thesis

H1 paper in preparation

Measure global event shape observables using all particles that survive grooming:

- Groomed Invariant Mass (GIM)
- 1-jettiness (τ_1^{b})

Observable I: Groomed Invariant Mass

Observable II: 1-jettiness

Corrected data

Preliminary: bin-wise correction Corrected for real QED ISR and FSR

Uncertainty:

- statistical + systematic
- dominated by model uncertainty

Final data will be corrected by unfoldingprojected uncertainty <10%

Grooming: theoretical effects

(N)NLO + NLL' accurate predictions for plain and groomed 1-jettiness in neutral current DIS

arXiv:2306.17736

Max Knobbe^{*1}, Daniel Reichelt^{†2}, and Steffen Schumann^{¶1}

w/wo NP

Better agreement MC/analytic

Theory comparisons: GIM

- PYTHIA Version 8.3
 - VINCIA Antenna Shower
 - DIRE Dipole shower + multijet merging
- Herwig Version 7.2 (Angular-ordered)
 - NLO \bigoplus PS AO Shower, subtractive matching
 - Merging Dipole shower + multijet merging
- SHERPA Version 2.2.12 (MEPS@NLO)
 - AHADIC++ Cluster Fragmentation
 - Lund String Fragmentation

 $Q^{2}_{Min.} = 150 \text{ GeV}^{2}$

Best high mass region from SHERPA Fixed-order, multijets, hard splittings Best low mass region from Herwig, DIRE Resummation, parton shower, hadronization

Take-home message: rich dataset for precision MC tuning → impact on LHC and EIC

Theory comparisons: 1-jettiness

- PYTHIA Version 8.3
 - VINCIA Antenna Shower
 - DIRE Dipole shower + multijet merging
- Herwig Version 7.2 (Angular-ordered)
 - NLO \bigoplus PS AO Shower, subtractive matching
 - Merging Dipole shower + multijet merging
- SHERPA Version 2.2.12 (MEPS@NLO)
 - AHADIC++ Cluster Fragmentation
 - Lund String Fragmentation

- Best tail region from SHERPA, RAPGAP
 - Fixed-order, multijets, hard splittings
- Best peak region from DIRE, Herwig Merging
 - Resummation, parton shower, hadronization

Take-home message: rich dataset for precision MC tuning → impact on LHC and EIC

Groomed evt snapes in DIS

Theory comparison: SCET

Y. Makris, *Phys.Rev.D* 103 (2021), 054005 arXiv:2101.02708

SCET calculation: shape of Groomed Invariant Mass distribution at small GIM is determined by jet and soft-collinear functions, which do not depend on x and Q^2

Prediction: low-GIM distribution is independent of Q²

GIM: SCET vs data

$$\begin{array}{ll} \text{NP factor } \Omega_{\text{NP}} & \quad \frac{d\sigma_{\text{had.}}}{dx dQ^2 dm_{\text{gr.}}^2} = \int d\epsilon \frac{d\sigma}{dx dQ^2 dm_{\text{gr.}}^2} \Big(m_{\text{gr.}}^2 - \frac{\epsilon^2}{z_{\text{cut}}} \Big) f_{\text{mod.}}(\epsilon) \ , \\ f_{\text{mod.}}(\epsilon) = N_{\text{mod.}} \frac{4\epsilon}{\Omega^2} \exp\left(\frac{2\epsilon}{\Omega}\right) \end{array}$$

Evaluated at two values of $\Omega_{\rm NP}$

Calculation normalized to data at low GIM

• only compare shapes

Better agreement for increasing z_{cut} , Ω_{NP}

Non-perturbative effects are significant

Validity of factorization improves at higher z_{cut}

Ungroomed 1-jettiness

Also in preparation: measurement of triple differential cross section of τ_1^{b}

Analysis note: H1prelim-21-032

https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-21-032.long.html

Summary

New analysis of groomed event shapes in e+p DIS collisions using archived H1 data

- grooming \rightarrow improved experimental and theoretical precision
- triggered new theory efforts for high-order and resummed calculations

Precise data for MC tuning \rightarrow impact on LHC and EIC

H1 data are immensely rich: many novel QCD analyses possible New ideas are welcome!

Backup

Grooming: experimental effects

2

2

 $\eta_{_{Lab}}$

4

 η_{Lab}

RAPGAP and **DJANGOH** Standard H1 MCs matrix elements $O(\alpha_s)$ from LEPTO **DJANGOH:** Color dipole model PS + string fragmentation **RAPGAP:** DGLAP PS + string fragmentation

Ungroomed: large differences between part and det-level Groomed: part and det-level similar

- Soft NP radiation outside acceptance would be groomed away
 - Small corrections \rightarrow high precision measurement

25