Elucidating QCD using charm-tagged jet substructure with ALICE Preeti Dhankher On behalf of the ALICE collaboration University of California, Berkeley 3 August, 2023

Flavour dependence in the QCD shower

Casimir color factors

Gluon-initiated showers are expected to have a broader and softer fragmentation profile than quarkinitiated showers

Flavour dependence in the QCD shower

Casimir color factors

<u>~</u>A =

Gluon-initiated showers are expected to have a broader and softer fragmentation profile than quarkinitiated showers

Mass effects

A harder fragmentation is expected in low energy heavy-quark initiated showers due to the presence of a dead cone which suppresses radiation close to the heavy-quark

Flavour dependence in the QCD shower

Casimir color factors

<u>~</u>A =

Gluon-initiated showers are expected to have a broader and softer fragmentation profile than guarkinitiated showers

Mass effects

A harder fragmentation is expected in low energy heavy-quark initiated showers due to the presence of a dead cone which suppresses radiation close to the heavy-quark

Mass effects are dominant at low p_T

 $_4 \rightarrow$ ALICE has excellent capabilities of heavy-flavor physics down at low p_T

First direct observation of the dead-cone effect

$$0 = \frac{1}{N^{D^{0}jets}} \frac{dn^{D^{0}jets}}{d\ln(1/\theta)} / \frac{1}{N^{\text{inclusive jets}}} \frac{dn^{\text{inclusive jets}}}{d\ln(1/\theta)} \Big|_{k_{\text{T}}, E_{\text{Radiator}}}$$

ALICE, <u>Nature 605 (2022) 440–446</u> First direct observation of the dead-cone effect

$$0 = \frac{1}{N^{D^0 \text{jets}}} \frac{\mathrm{d}n^{D^0 \text{jets}}}{\mathrm{d}\ln(1/\theta)} / \frac{1}{N^{\text{inclusive jets}}} \frac{\mathrm{d}n^{\text{inclusive jets}}}{\mathrm{d}\ln(1/\theta)} \Big|_{k_{\mathrm{T}}, E_{\mathrm{Radiator}}}$$

Charm quark

Heavy-flavor jet tagging with ALICE

$2 \le p_{\mathrm{T},\mathrm{D}^0} \le 36 \mathrm{~GeV}/c$

D⁰-meson selection: Fully reconstructing hadronic decay

- topological cuts on the D⁰ decay
- particle ID on decay daughters

Heavy-flavor jet tagging with ALICE

$2 \le p_{T D^0} \le 36 \text{ GeV/}c$

D⁰-meson selection: Fully reconstructing hadronic decay

- topological cuts on the D⁰ decay
- particle ID on decay daughters

$K^{\mp}\pi^{\pm}$ pairs replaced by D⁰ candidate

• Full D⁰ momentum always inside the jet cone

Heavy-flavor jet tagging with ALICE

 $2 \le p_{\mathrm{T,D}^0} \le 36 \mathrm{GeV/c}$ $5 \le p_{\mathrm{T,ch. jet}} \le 50 \mathrm{GeV/c}$ **D**⁰-meson selection: Fully reconstructing hadronic decay

- topological cuts on the D⁰ decay
- particle ID on decay daughters

$K^{\mp}\pi^{\pm}$ pairs replaced by D⁰ candidate

• Full D⁰ momentum always inside the jet cone

Jet finding:

• anti- k_{T} algorithm

→ D⁰-tagged charged jets

Fraction of jet momentum carried by the D0 meson

$$z_{||}^{ch} = \frac{\overrightarrow{p}_{ch jet} \cdot \overrightarrow{p}_{D^0}}{\overrightarrow{p}_{ch jet} \cdot \overrightarrow{p}_{ch jet}}$$

 \overrightarrow{p}_{D^0} is the total D⁰-meson momentum

 $\vec{p}_{ch jet}$ is the total jet momentum

$$z_{\parallel}^{ch} = \frac{\overrightarrow{p}_{ch jet} \cdot \overrightarrow{p}_{D^0}}{\overrightarrow{p}_{ch jet} \cdot \overrightarrow{p}_{ch jet}}$$

\overrightarrow{p}_{D^0} is the total D⁰-meson momentum

• Hint of a softer fragmentation in data with respect to model predictions for low $p_{T,ch jet}$ and larger R.

20

- Hint of a softer fragmentation in data with respect to model predictions for low $p_{T,ch iet}$ and larger R.
- For R = 0.2 and low $p_{T,ch jet}$, D⁰ carries a large fraction of $\overrightarrow{p}_{ch jet}$ \rightarrow the core of the jet is dominated $\frac{2}{2}$ by the HF hadron.

20

1/N_{jets}dN/dz^{ch}

MC/data

3.5

2.5

1.5E

1.0E

0.5

≥ 0.5

/N_{jets}dN/dz^{ch}

- Hint of a softer fragmentation in data with respect to model predictions for low $p_{T,ch jet}$ and larger R.
- For R = 0.2 and low $p_{T,ch jet}$, D⁰ carries a large fraction of $\overrightarrow{p}_{ch jet}$ \rightarrow the core of the jet is dominated $\frac{2}{2}$ by the HF hadron.
- At large angles (R > 0.2) the charm quark emissions are recovered

What are the jet angularities?

distribution of tracks within jets:

$$\lambda_{\alpha}^{\kappa} = \sum_{i \in jet} \left(\frac{p_{\mathrm{T,i}}}{p_{\mathrm{T,jet}}} \right)^{\kappa} \left(\frac{\Delta R_{\mathrm{jet,i}}}{R} \right)^{\alpha}$$

Jet p_T fraction carried by constituent i $\Delta R_{\text{iet,i}}$ distance of constituent *i* to the jet axis

Ezra Lesser Thursday 11 am

• A set of substructure observables which are dependent on the p_{T} and angular

What are the jet angularities?

distribution of tracks within jets:

$$\lambda_{\alpha}^{\kappa} = \sum_{i \in jet} \left(\frac{p_{\mathrm{T,i}}}{p_{\mathrm{T,jet}}} \right)^{\kappa} \left(\frac{\Delta R_{\mathrm{jet,i}}}{R} \right)^{\alpha}$$

- Jet p_T fraction carried by constituent i $\Delta R_{\text{iet,i}}$ distance of constituent *i* to the jet axis
- Infra-Red and Collinear (IRC) safe observable for $\kappa = 1, \alpha > 0 \rightarrow calculable from pQCD.$

Ezra Lesser Thursday 11 am

• A set of substructure observables which are dependent on the p_{T} and angular

What are the jet angularities?

distribution of tracks within jets:

$$\lambda_{\alpha}^{\kappa} = \sum_{i \in jet} \left(\frac{p_{\mathrm{T,i}}}{p_{\mathrm{T,jet}}} \right)^{\kappa} \left(\frac{\Delta R_{\mathrm{jet,i}}}{R} \right)^{\alpha}$$

- Jet p_T fraction carried by constituent i $\Delta R_{\text{iet,i}}$ distance of constituent *i* to the jet axis
- Infra-Red and Collinear (IRC) safe observable for $\kappa = 1, \alpha > 0 \rightarrow$ calculable from pQCD.
- Each α defines a different observable

• A set of substructure observables which are dependent on the p_T and angular

JHEP05 (2022) 061

 \rightarrow varying α systematically characterizes the radiation pattern inside of jets

D⁰-tagged vs. semi-inclusive jet angularity

- o Fully unfolded measurement
- o Semi-inclusive baseline requires $p_T > 5.33$ GeV/c for the leading track o Corresponds to transverse mass of a D⁰ meson with $p_T = 5$ GeV/c

$$\lambda_{\alpha}^{\kappa=1} = \sum_{i \in jet} z_i \theta_i^{\alpha}$$

D⁰-tagged vs. semi-inclusive jet angularity

- o Fully unfolded measurement
- o Semi-inclusive baseline requires $p_T > 5.33$ GeV/c for the leading track • Corresponds to transverse mass of a D⁰ meson with $p_T = 5$ GeV/c

D⁰-tagged jets have lower angularities than semiinclusive jets

- o HF jets more 'collimated' than semi-inclusive jets
- Collimation due to: 0
 - o The smaller color charge of quarks compared to gluons
 - The dead cone around the charm quark: charm quark fragments less

<u>D⁰-tagged vs. semi-inclusive jet angularity</u>

D⁰-tagged jets have lower angularities than semiinclusive jets

- o HF jets more 'collimated' than semi-inclusive jets
- Collimation due to: Ο
 - o The smaller color charge of quarks compared to gluons
 - o The dead cone around the charm quark: charm quark fragments less

Do PYTHIA simulations do a better job of describing charm-tagged jet angularities compared to semi-inclusive?

Tuning the flavor dependence by varying alpha $\lambda_{\alpha}^{\kappa=1} = \sum_{i} z_{i} \theta_{i}^{\alpha}$

• How much of this modification is due to the D0 jet being a quark jet versus being a HF jet?

- become more similar \rightarrow cleaner sensitivity to Casimir colour effects
- mass effects are more prominent

With increasing α the impact of mass effects is reduced : D0-tagged and quark-initiated distributions

^o At lower α where the core of the jet has a higher weight \rightarrow large angle radiation has a lower weight,

Scanning the angular profile of jets

to converge

Higher $\alpha \rightarrow$ more weight on wide angle emissions

i∈jet

Scanning the angular profile of jets

Higher $\alpha \rightarrow$ more weight on wide angle emissions

25

i∈jet

• The in-jet fragmentation of D mesons in pp was investigated

o provide more insight into the hadronization mechanisms.

ons in pp was investigated ronization mechanisms.

- The in-jet fragmentation of D mesons in pp was investigated
 - o provide more insight into the hadronization mechanisms.
- both mass and Casimir color effects in the shower.

Comparisons of D⁰-tagged and semi-inclusive jets angularities is sensitive to

- The in-jet fragmentation of D mesons in pp was investigated o provide more insight into the hadronization mechanisms.
- Comparisons of D⁰-tagged and semi-inclusive jets angularities is sensitive to both mass and Casimir color effects in the shower.
 - Scanning through different α parameters can control the impact of 0 each of the flavor effects
 - **D**⁰-tagged jets have narrower angularities than semi-inclusive jets, with 0 the distribution shapes becoming more similar at large values of α .

- The in-jet fragmentation of D mesons in pp was investigated provide more insight into the hadronization mechanisms. 0
- Comparisons of D⁰-tagged and semi-inclusive jets angularities is sensitive to both mass and Casimir color effects in the shower.
 - ^o Scanning through different α parameters can control the impact of each of the flavor effects
 - **D**⁰-tagged jets have narrower angularities than semi-inclusive jets, with Ο the distribution shapes becoming more similar at large values of α .
- These measurement are good baseline for p-Pb and Pb-Pb. Ο

Backup slides

Time-Of-Flight (TOF): PID via time of flight

Inner Tracking System (ITS): tracking and vertexing

Time Projection Chamber (TPC): tracking and PID via dE/dx

Data-driven signal extraction

Some combinatorial $K\pi$ pairs pass the D⁰ selections Removed via a sideband subtraction method

Data-driven signal extraction

Some combinatorial $K\pi$ pairs pass the D⁰ selections Removed via a sideband subtraction method

Data-driven signal extraction

- Some combinatorial $K\pi$ pairs pass the D⁰ selections Removed via a sideband subtraction method
- Extraction performed in D⁰-meson p_T intervals

D⁰ reconstruction efficiency correction

ALI-PUB-521159

Prompt efficiency ($c \rightarrow D^{0}$) correction

- Efficiency of the D⁰ cut selections is strongly dependent on D⁰-meson Pт
- sideband-subtracted distributions are corrected by the D⁰ reconstruction and selection efficiency in narrow $D^0 p_T$ intervals
- Efficiency-corrected angularity distributions are integrated over D⁰ p_{T} intervals

35

<u>Correcting angularities for $B \rightarrow D^0$ decays</u>

ALI-PREL-540860

Feed-down subtraction (b \rightarrow D0)

- Beauty feed-down contribution
 estimated using POWHEG + PYTHIA 8.
- Simulation distribution corrected for non-prompt D⁰ reconstruction efficiency and folded to detector level
- The presence of additional track from $B \rightarrow D^0$ decays pushes the angularity to larger values for non prompt D0-tagged jet.

 $\Lambda_{\alpha=1}$

ALICE, <u>Nature 605 (2022) 440–446</u> First direct observation of the dead-cone effect

