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What is Flavor Tagging?

Jet Flavor Heavy Flavor Tagging
e QCD jets originated from quark or gluon decay products. e Rely on secondary vertex from B-meson or D-meson decay
e Tagging jet flavor is an important technology to improve o b-quark:b—+B - D — K
analysis sensitivity o c-quark:c —+D — K
e Quark and Gluon classification e Machine Learning : BDT, CNN, RNN, DeepSets, Graph NN

e W/Zboson, Higgs, Top tagging : .
o Using a large R-jet can identify the jet if a particle is boosted Quark/Gluon Taggmg
o Only higher pr e The separation between light flavor and gluon
e Rely on #of tracks or similar variables
e ML : Graph or similar specialized model(ParticleNet,
Lorentz Group NN)

light-jet gluon-jet
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https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/2006.04780

Strategy

Problem
e Models that are too specialized for HEP are hard to use in implementation and application.
e Standard models (ResNet, Transformer, etc.) are easy to implement and apply.

e Flavortagging, such as b-tagging, uses only track information, but essentially clusters are also considered to have useful
information

e Flavortaggingand H /Z /W /top-tagging are often constructed separately.

Aim of this study

e Use models widely used in the ML community — Transformer
e Create an all-in-one tagger that includes all flavors.

o Classify light-flavor, gluon-jet, c-jet, b-jet simultaniously

o Same model can be applied for the large-R jet (gq)
e Adding cluster information

© Expect better performance at higher pt by using calorimeter information
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Model Architechtvre : Transformer

Multihead Self-
Attention Block

FFN Block

Class Balanced Loss
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Transformer

Simple Transformer encoder
Taking input sequences into a tokenizer
Repeat two residual blocks L times:

o Multihead self-attention:

o Feed Forward Network:
Pool by Global Average Pooling

o Thereis a Linear layer after the pooling layer as a head
No jets physics acknowledgments
No Lorentz summation



Model Architechitvre : Tokenizer

Tokenizer
Position e Tokenizer make tokens from track inputs

o Feature : 4-vector or other features for each tracks
o Position : Relative position difference to parent jet, A¢, An

e Sum up X and position, not concat!

Linear(feature) Linear(pos)

X + position

& D L5 Macahiro Morinaga



Jraining Setup

Training Sample
e top-data: Open access data with Top and QCD dijet
samples

© 14 TeV, Delphes ATLAS detector card with Pythia8

o Clustering of particle-flow with anti-kT 0.8 jets in the pT
range [550,650] GeV

© 1.2M for training, 0.4M for test/validation samples

Model Setup
e Total #of Parameters: 101,794
© Depth: 4
o Latent dimension: 32 ,factor x4 forinternal
Attention head : 4
Dropout: 0.1
Stochastic path: 0.1

(0]

o

o
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Training setup

Trained by JAX/Haiku
Optimizer: Adam with wieght decay 1.0e-4

Learningrate: CosineAnnealingWarmupRestart

© 1.0e-4 to 1.0e-7,

o Wramup: 10% of total update steps
Using NVidia A160 GPU x 8

o data/model/operator parallel by alpa
Using mixed precision bfloat16
Batch size : defaultis 4096 = 4k .

o Gradient accumulation : #of micro batch 8

Target loss: Class Balanced Loss

o The number of each signal is not equal in size
© To correct the imbalance in training


https://github.com/google/jax
https://github.com/deepmind/dm-haiku
https://github.com/alpa-projects/alpa
https://arxiv.org/abs/1901.05555
https://zenodo.org/record/2603256

Locs Curve

10000 20000 30000 40000 50000
steps

e training loss curve and top-1 accuracy

© 60000 steps, roughly ~200 epochs
O Total training time ~2.5h
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Performance : Transformer
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e ROC curve
e Confusion matrix:

o 91% of the true top can be labeled as the predicted top.
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Comparicon : Partic lef\let

position features
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EdgeConv Block
k=16, C=(64,64,64)

EdgeConv Block
k=16, C=(128,128,128)

EdgeConv Block
k=16, C=(256,256,256)

Global Avg. Pooling

Fully Connected
256, ReLU, dropout=0.1

Fully Connected
N(=#of label)

position features

edge features

Lienar

BatchNorm

RelLU
X 3

Aggregation

e ParticleNet is a good candidate to compare with this work.

o Graph Neural Network like style
o Edge convolution with k-NN

o Total # of paramters: 365,162

© Three times larger than Transformer in this study.


https://arxiv.org/abs/1902.08570

Performance : Partic /e/Vet
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e Slightly worse than Transformer
e Note that: difference from the paper

© We used a bigger batch size and a different learning rate scheduler. The original learning scheduler cannot handle training
© The number of total steps is much more significant due to different batch size compared with Transformer training
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https://arxiv.org/abs/1902.08570

Performance : Comparicon
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e Slightly worse(roughly 1%) than Transformer, both results are worse than the paper!!
e Even if my implementation/training of the ParticleNet is wrong, the Transformer performs similarly.
e At least the Transformer has good ability for the top tagger?
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Cample with Clusters

Original sample
e To test model performance with more realistic situations, add cluster information
e Making new samples by Delphes with more labels:
o Lables: total 8 labels, [, s, ¢, b, g, ll, 55, c¢, bb where [ is u or d
o 7 — qq, H — s5/cc/bb, g — uii/dd/s5/cc/bb,other
o Label composition:

Label [uu/dd | ss | cc ] bb | wd | s | c | b_lguon

2.9% 9.0% 8.8% 8.0% 24.3% 8.24% 9.3% 15.4% 14.1%

e Using Delphes with ATLAS geometry

o MG5_aMC of v3.2.0 w/ Pythia8
© Delphes with ATLAS no pileup card using a partcle flow based jets

e Generate pp

o Selection: pr > 250 GeV and |n| <2
o At least one jet constituent(track or cluster)
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https://arxiv.org/abs/1307.6346
https://arxiv.org/abs/1410.3012

Model Architechitore : Tokenizer with Cluvsters

Tokenizer
(trgclljc?r DL(J)SI-er) Position e Tokenize tracks and clusters as tokens
e Absorb the feature differences between tracks and
clusters
Linear(feature) Linear(one hot) (ELIEET{(sfey e one hot vector are additionally taken as input

e Affine transformation is applied

affine(x*alpha+gamma) Feature
e input feature
o Tracks: pr, An, A, d
o Cluster: pt, An, Ad, Egm/ Eiotaly EHad / Etotal
e Position : An, A¢ for both tracks and clusters
e Tracks and clusters are input into the same linear layer

X + position
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Orignal Samples
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e Transformer with 4M samples for 200 epochs.

o Difference between train/test comes from difference of sample composition between train/test samples.
e ParticleNet cannot be converged, or poor separation power
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Orignal Samples

Efficiency
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e Transformer with 4M samples for 200 epochs.
e The most difficult pair is strange and up/down separation.
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Origunal Samples : More Samples

e Transformer with 256M samples for 64 epochs.
e Compared with 4M results, better loss values.

© Training time about 1 week
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Orignal Samples : Comparicon
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e Training with 256M samples improved most of the values.
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Conclucion

Conclusion
e Aflavor tagger with all-in-one labels seems to be working.
e Transformer would be a good candidate as a jet flavor tagger.

e Tracks and clusters can be used simultaneously as inputs to the Transformer.
e Again, the amount of data is totally justice.

Plans
e Check the scaling law for our data

© More data
© Bigger model
O More training epochs

e The ultimate goal : Supervised training with real data
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https://arxiv.org/pdf/2001.08361.pdf
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Original Samples with Particle/\et

50000 100000 150000 200000 250000
step

e ParticleNet with original samples
e No hyperparameter optimization
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Orignal Samples : Comparicon

Efficiency
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e Training with 256M samples improved most of the values.
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