PAIReD jet:

A calibratable, Lorentz-boost independent, multi-pronged resonance tagging strategy

Spandan Mondal¹, Gaetano Barone¹, Alexander Schmidt²

BOOST 2023, Berkeley,

August 03, 2023

Introduction

- Identifying heavy particles is crucial for the LHC physics program
- Hadronic decays identified from "jets"

• 2 or 3 (or more) quark final-states

• Angular separation of partons, $\Delta R \sim \frac{m}{p_{\rm T}}$

- Tagging strategy:
 - Two thin-radius (AK4) jets
 - Flavour tag them individually
 - Use events where both jets tagged

- One large-radius (AK8/AK10/AK15) jet
- > Tag full jet as bb/cc
- Use jets that pass

• Advantages:

- Several approaches to optimize large-radius jet tagging
 - Jet substructure methods (physics motivated)
 - ML-based discrimination (leverage low-level information)
 - Combination (smaller number of inputs)
- Massive improvements in last decade
- ParticleNet, ABCNet, ParticleTransformer...

Problem statement

- Same novel algorithms used for thin jets
- Improves per-jet tagging performance

Problem statement

- Same novel algorithms used for thin jets
- Improves per-jet tagging performance
- Algorithm has no information about the other thin jet!

Problem statement

• Traditional resolved-jet approach:

• The *first variant* of the PAIReD approach to event reconstruction:

- Construct every pair of jets possible from all reconstructed AK4 jets in an event
- Train algorithms with low-level features of two jets simultaneously
 - Access to information from both jets: particle kinematics, trajectory displacements, pair-wise features...
 - Not limited to narrow range of particle boosts

- Construct every pair of jets possible from all reconstructed AK4 jets in an event
- Train algorithms with low-level features of two jets simultaneously
 - Access to information from both jets: particle kinematics, trajectory displacements, pair-wise features...
 - Not limited to narrow range of particle boosts
- Second variant: PAIReDEllipse jet
 - Define an ellipse in $\eta \phi$ plane encompassing two AK4 jets

- Compare strategies
- > Use simulated ZH(H \rightarrow cc) events (as example)
- MadGraph5 + Pythia8
- Delphes with CMS configuration
- > Plot particles generated from Higgs in $\eta \phi$ plane
- Translate and rotate the plane such that higher- $p_{\rm T}$ c is at (0,0), second c on η -axis, for each event
- \succ Overlay events with similar angular separations, $\Delta R_{c\bar{c}}$

Each plot shows 800 ZH($H \rightarrow c\bar{c}$) events (with similar $\Delta R_{c\bar{c}}$) superimposed on top of one another

• AK15 limited to small range of $\Delta R_{c\overline{c}}$

• AK4, PAIReD and PAIReDEllipse can reconstruct the decay at all $\Delta R_{c\overline{c}}$ values

- PAIReDEllipse encompasses full decay
 - Not IRC safe
 - More pileup particles

Neural network training

- We use ParticleTransformer [H. Qu, C. Li, S. Qian, PMLR 162:18281-18292, 2022]
 - State of the art
 - Evaluate different strategies against fixed choice of architecture
- Signal
 - Simulated ZH(H \rightarrow bb) and ZH(H \rightarrow cc) events (~15M each)
 - Mass of generated Higgs varied between 10 and 500 GeV to achieve mass decorrelation
- Background
 - Simulated Z+jets samples (~30M)
- Inputs: Particle kinematics and trajectory displacement

Performance metrics

• Difficult to make apple-to-apple comparison across strategies with just ROC curves

Performance metrics

- Difficult to make apple-to-apple comparison across strategies with just ROC curves
- Propose end-to-end event signal efficiency and end-to-end background rejection rates

- Can be applied to any reconstruction strategy
- Can be plotted as function of $p_{\rm T}$
- Each component can also be studied independently

Performance metrics

- Difficult to make apple-to-apple comparison across strategies with just ROC curves
- Propose end-to-end event signal efficiency and end-to-end background rejection rates

Depends on how many events *can* be reconstructed

End-to-end efficiency = Efficiency factor from correct event reconstruction © Efficiency after cutting on tagger score

Depends on classifier performance

- Can be applied to any reconstruction strategy
- Can be plotted as function of $p_{\rm T}$
- Each component can also be studied independently

Neural network training: Classification

- Classifier trained such that mass metric has a flat distribution
- Three classes: bb, cc, $\ell\ell$
- Validate using $m_H = 125$ GeV samples
- Performance evaluated as end-to-end background rejection at a given end-to-end signal efficiency
 - as a function of generated Higgs $p_{\rm T}$ (for signal) or proxy diparton $p_{\rm T}$ (for background)
- Apply event selections (2 AK4 jets/1 fat jet, m_H cut) and apply cut on jet tagger score to achieve target end-to-end signal efficiency

Neural network validation: Classification

- Low boosts:
 - PAIReDEllipse outperforms AK4-based approach by a factor of 2–4.
 - AK8/AK15 have no role.
- High boosts:
 - PAIReDEllipse performs similar to AK8 and AK15 based approach.
 - AK4 worse.
- PAIReDEllipse outperforms PAIReD despite potentially containing more pileup particles and soft radiations

Calibratibility

- Energy calibration:
 - PAIReD and PAIReDEllipse jet energies can be calibrated using AK8/AK15 energy calibration methods
 - E.g., balance momentum of $Z(\ell \ell)$ +qq system
- Flavour tagger calibration:
 - Use proxy jet methods, similar to AK8/AK15 flavour tagging calibration methods
 - E.g., soft-muon tagged jets, calibration using Z(bb), etc.
- Unlike full event taggers, PAIReD(Ellipse) jets are fully calibratable while leveraging larger fractions of detector volume than traditional object-based approaches

Summary

- We propose a new reconstruction strategy for hadronic decays of heavy particles
 - PAIReD treats two-small radius jets as a single entity and performs tagging
 - PAIReDEllipse forms a large unconventional jet using AK4 jet seeds to perform tagging
- Both methods can be used at all Lorentz-boosts of parent heavy particle
- Both PAIReD and PAIReDEllipse outperform standard methods at low boosts
 - 2 to 4 times better background rejection
- PAIReDEllipse has similar performance as fatjet tagging at high boosts
- The approach is fully calibratable using real collision data

Outlook

- $H \rightarrow c\overline{c}$ is only one example. Can be extended to $H \rightarrow b\overline{b}$, $Z \rightarrow b\overline{b}/c\overline{c}$, $HH \rightarrow 4b$, ...
- Can be trained for any flavour pair (e.g., $H^{\pm} \rightarrow c\overline{s}$).
- Can be extended to 3-pronged decays.
- Also suitable for 4-pronged decays (e.g., $H \rightarrow ZZ \rightarrow qqqq$) which have very low reconstruction efficiencies in fatjets; or event can be factorized to two pairs of PAIReD jets.
- Regression methods can be used to predict parent particle mass
- New method expected to improve sensitivity at low boosts and make previouslyinaccessible kinematic regions accessible and competitive.

Backup

Neural network validation: Regression

• Regression validated with $m_H = 125$ GeV samples

Neural network validation: Regression

• Regression validated with $m_H = 125$ GeV samples

Event Reconstruction

End-to-end efficiency = Efficiency factor from correct event reconstruction

 \otimes Efficiency after cutting on tagger score

Neural network validation: Classification

End-to-end efficiency = Efficiency factor from correct event reconstruction

Efficiency after cutting on tagger score

$ZZ(Z \rightarrow c\overline{c})$

