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Introduction

* |dentifying heavy particles is crucial for the LHC physics program

* Hadronic decays identified from “jets”

e 2 or 3 (or more) quark final-states




Resolved vs. Boosted

* Angular separation of partons, AR~ pﬂ
T

~ 300 GeV p'IIL'I




Resolved vs. Boosted

* Tagging strategy:

» Two thin-radius (AK4) jets » One large-radius (AK8/AK10/AK15) jet

» Flavour tag them individually » Tag full jet as bb/cc

» Use events where both jets tagged » Use jets that pass

~ 300 GeV p¥




Resolved vs. Boosted

e Advantages:
& Caters to a large part (~95%) of the signal () Exploits correlations between decay
phase space products of two quarks: More information

for jet tagging

& Lower background at high boosts —
cleaner signal selection

~ 300 GeV p¥




Resolved vs. Boosted

100

* Several approaches to optimize large-radius jet tagging e
* Jet substructure methods (physics motivated) “
* ML-based discrimination (leverage low-level information) :
. . . o H. Qu, L. Gouskos,
* Combination (smaller number of inputs) Phys. Rev. D 101,
056019 (2020)
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* Massive improvements in last decade True positve rate (2

* ParticleNet, ABCNet, ParticleTransformer... g
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Problem statement

* Same novel algorithms used for thin jets

* Improves per-jet tagging performance

Jet tagging algorithm

Event Selection
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Problem statement

* Same novel algorithms used for thin jets
* Improves per-jet tagging performance

e Algorithm has no information about the other thin jet!
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Problem statement

* Same novel algorithms used for thin jets

No matter how good the
algorithm is, there is
inevitable loss of
information!

* Improves per-jet tagging performance

e Algorithm has no information about the other thin jet!

A fundamental limitation of
the strategy!

——— ( Event Selection

Jet tagging algorithm




Proposed strategy

* Traditional resolved-jet approach:

Event Selection

Event Selection




Proposed strategy

* Construct every pair of jets possible from all reconstructed AK4 jets in an event

* Train algorithms with low-level features of two jets simultaneously

* Access to information from both jets: particle kinematics, trajectory displacements, pair-wise features...

* Not limited to narrow range of particle boosts

Jet tagging algorithm Event Selection




Proposed strategy

* Construct every pair of jets possible from all reconstructed AK4 jets in an event

* Train algorithms with low-level features of two jets simultaneously
* Access to information from both jets: particle kinematics, trajectory displacements, pair-wise features...

* Not limited to narrow range of particle boosts

* Second variant: PAIReDEllipse jet

* Define an ellipse in n—¢ plane encompassing two AK4 jets

» AK4 jets used as
“seeds” to define
Jet tagging algorithm Event Selection elliptical area

» No reclustering




Proposed strategy

* Compare strategies

» Use simulated ZH(H — cc) events (as example)
» MadGraph5 + Pythia8

» Delphes with CMS configuration

» Plot particles generated from Higgs in n—¢ plane

» Translate and rotate the plane such that higher-py cis at
(0,0), second c on n-axis, for each event

» Overlay events with similar angular separations, AR ¢

Each plot shows 800 ZH(H — cc) events (with
similar AR :z) superimposed on top of one another
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Proposed strategy

¢

* AK15 limited to small range of AR ¢

* AK4, PAIReD and PAIReDEllipse can reconstruct

LA B e
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the decay at all AR values

* PAIReDEllipse encompasses full decay

* Not IRC safe

* More pileup particles 1
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Neural network training

* We use ParticleTransformer [x.au, c. Li, s. Qian, PMLR 162:18281-18292, 2022]

 State of the art

* Evaluate different strategies against fixed choice of architecture
* Signal

* Simulated ZH(H — bb) and ZH(H — cc) events (~15M each)

* Mass of generated Higgs varied between 10 and 500 GeV to achieve mass decorrelation
* Background

* Simulated Z+jets samples (¥~30M)

Inputs: Particle kinematics and trajectory displacement



Performance metrics

 Difficult to make apple-to-apple comparison across strategies with just ROC curves

() High background rejection where it
reconstructs events

& Reconstructs large number of events

() Background rejection varies at different

boosts &) Reconstructs only small part of signal

~ 300 GeV p¥




Performance metrics

 Difficult to make apple-to-apple comparison across strategies with just ROC curves

* Propose end-to-end event signal efficiency and end-to-end background rejection rates

End-to-end efficiency = Efficiency factor from correct event reconstruction
X Efficiency after cutting on tagger score

e Can be applied to any reconstruction strategy

* Can be plotted as function of pt

e Each component can also be studied independently




Performance metrics

 Difficult to make apple-to-apple comparison across strategies with just ROC curves

* Propose end-to-end event signal efficiency and end-to-end background rejection rates

Depends on how many events can be reconstructed

End-to-end efficiency = Efficiency factor from correct event reconstruction

X Efficiency after cutting on tagger score

Depends on classifier performance

e Can be applied to any reconstruction strategy

* Can be plotted as function of pt

e Each component can also be studied independently




Neural network training: Classification

e Classifier trained such that mass metric has a flat distribution
* Three classes: bb, cc, £¢
 Validate using my = 125 GeV samples

* Performance evaluated as end-to-end background rejection at a given end-to-end signal
efficiency

* as a function of generated Higgs pr (for signal) or proxy diparton pt (for background)

* Apply event selections (2 AK4 jets/1 fat jet, my cut) and apply cut on jet tagger score to
achieve target end-to-end signal efficiency



Neural network validation: Classification
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Calibratibility

* Energy calibration:
* PAIReD and PAIReDEllipse jet energies can be calibrated using AK8/AK15 energy calibration methods

* E.g., balance momentum of Z(#£)+qq system

* Flavour tagger calibration:
* Use proxy jet methods, similar to AK8/AK15 flavour tagging calibration methods

* E.g., soft-muon tagged jets, calibration using Z(bb), etc.

* Unlike full event taggers, PAIReD(Ellipse) jets are fully calibratable while leveraging larger
fractions of detector volume than traditional object-based approaches



* We propose a new reconstruction strategy for hadronic decays of heavy particles
* PAIReD treats two-small radius jets as a single entity and performs tagging

* PAIReDEllipse forms a large unconventional jet using AK4 jet seeds to perform tagging

Both methods can be used at all Lorentz-boosts of parent heavy particle

Both PAIReD and PAIReDEllipse outperform standard methods at low boosts

* 2to 4 times better background rejection

PAIReDEllipse has similar performance as fatjet tagging at high boosts

* The approach is fully calibratable using real collision data



* H - cCis only one example. Can be extended to H — bb, Z > bb/cc, HH - 4b, ...

Can be trained for any flavour pair (e.g., HE — c5).

Can be extended to 3-pronged decays.

Also suitable for 4-pronged decays (e.g., H—=ZZ—qqqq) which have very low reconstruction
efficiencies in fatjets; or event can be factorized to two pairs of PAIReD jets.

* Regression methods can be used to predict parent particle mass

* New method expected to improve sensitivity at low boosts and make previously-

inaccessible kinematic regions accessible and competitive.



Backup




Neural network validation: Regression

* Regression validated with my = 125 GeV samples
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Neural network validation: Regression

* Regression validated with my = 125 GeV samples
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Event Reconstruction

End-to-end efficiency =

Efficiency factor from correct event reconstruction

& Efficiency after cutting on tagger score

Reconstructed signal events / 10 GeV
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Neural network validation: Classification

End-to-end efficiency = Efficiency factor from correct event reconstruction
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Bkg rejection @ 0.40 signal eff

Bkg rejection @ 0.20 signal eff
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