Beyond the Narrow-Width Limit for Off-Shell and Boosted Top Quark Decays

Christoph Regner

with André H. Hoang, Simon Plätzer and Ines Ruffa

 $\int\! dk \mathbf{\Pi}$ Doktoratskolleg Particles and Interactions

Boost 23, August 03 2023, Lawrence Berkeley National Lab

universität wien

Motivation — Top Quark Physics

- The top quark is the heaviest known elementary particle.
- Due to its large mass the top quark plays a key role in consistency checks of the Standard Model and new-physics searches.
- Studies of top quark production and its decay commonly based on two approaches:
 - Narrow-width (NW) limit:
 - Top quark treated as on-shell particle.
 - Factorization of top production and decay dynamics.
 - Off-shell fixed-order computation:
 - Accounts for non-resonant, non-factorizable and finite lifetime effects.
 - Start-of-the-art: fixed-order NLO QCD.
- New approach: Combine properties of NW limit and off-shell computations.
 - QCD factorization theorem for off-shell boosted top quarks (----> SCET, bHQET)
 - ${\scriptstyle \bullet}$ Merge factorization approaches for boosted top production and semileptonic B decays.
 - Top quark state based on a measurement (and not on the concept of a "top particle").
 - Incorporate resummed QCD corrections for differential top decay observables.
- Aim: Analytic control of top mass dependent decay observables.

 $\rightarrow \overline{n}$

Soft-Collinear Effective Theory (SCET)

- SCET: Used to describe energetic QCD processes where the final state particles have large energies compared to their invariant mass.

• ...

- Momentum modes:

collinear dofs :	$p_n \sim Q(\lambda^2, 1, \lambda)$
	$p_{ar{n}} \sim Q(1,\lambda^2,\lambda)$
soft dofs :	$p_s \sim Q(\lambda^2, \lambda^2, \lambda^2)$
hard dofs :	$p_h \sim Q(1, 1, 1)$

$$p^{\mu} = p^{+} \frac{\bar{n}^{\mu}}{2} + p^{-} \frac{n^{\mu}}{2} + p^{\mu}_{\perp} \equiv (p^{+}, p^{-}, p_{\perp})$$
$$p^{2} = p^{+} p^{-} + p^{2}_{\perp}$$

Not described by SCET. — Hard modes integrated out.

З

Soft-Collinear Effective Theory (SCET)

- SCET: Used to describe energetic QCD processes where the final state particles have large energies compared to their invariant mass.

 - Jet production in pp collisions and e^+e^- collisions. $(m_J \ll E_J)$

• Leading order collinear quark Lagrangian:

•

$$\mathcal{L}_{n} = \bar{\xi}_{n} \left[in \cdot D_{s} + gn \cdot A_{n} + gn \cdot A_{s} + i \not{\!\!D}_{n}^{\perp} W_{n}^{\dagger} \frac{1}{\bar{n} \cdot \mathcal{P}} W_{n} i \not{\!\!D}_{n}^{\perp} \right] \frac{\not{\!\!n}}{2} \xi_{n}$$

collinear Wilson line

$$W_n(x) = P \exp\left(-ig_s \int_{-\infty}^0 \mathrm{d}s \ \bar{n} \cdot A_n(s\bar{n}+x)\right)$$

Soft-Collinear Effective Theory (SCET)

- SCET: Used to describe energetic QCD processes where the final state particles have large energies compared to their invariant mass.

• Leading order collinear quark Lagrangian:

•

$$\mathcal{L}_{n} = \bar{\xi}_{n} \left[\overbrace{i n \cdot D_{s}}^{n} + gn \cdot A_{n} + gn \cdot A_{s} + i \not{D}_{n}^{\perp} W_{n}^{\dagger} \frac{1}{\bar{n} \cdot \mathcal{P}} W_{n} i \not{D}_{n}^{\perp} \right] \frac{\not{n}}{2} \xi_{n}$$
collinear-soft coupling $i D_{s}^{\mu} = i \partial^{\mu} + g A_{s}^{\mu}$

$$\begin{cases} \xi_{n} \to Y_{n} \xi_{n}, & W_{n} \to Y_{n} W_{n} Y_{n}^{\dagger} \\ Y_{n}(x) = \overline{P} \exp\left(-i g_{s} \int_{0}^{\infty} \mathrm{d} s \ n \cdot A_{s}(ns+x)\right) \end{cases}$$

$$\mathcal{L}_{n} = \bar{\xi}_{n} in \cdot \partial_{s} \frac{\not{n}}{2} \xi_{n} + \dots$$

Recap: Semi-leptonic B decays

• Inclusive semi-leptonic decays $B \to X_c \, l \, \bar{\nu}$ and $\bar{B} \to X_u \, l \, \bar{\nu}$ allow extraction of $|V_{cb}|$ and $|V_{ub}|$ from measurements of the decay spectra.

- $\bar{B} \to X_c \, l \, \bar{\nu}$: $W^{\mu\nu}$ can be studied by using a local OPE within HQET. Non-pert. physics encoded in matrix elements of local operators.
- $\overline{B} \to X_u \, l \, \overline{\nu}$: Cuts on E_ℓ or h^2 needed to eliminate $b \to c$ background events.
 - Restriction to phase space region of energetic jets with small invariant mass ---- SCET
 - OPE not applicable in this region \longrightarrow need to rely on factorization tools.

$$\overline{h^2} \sim G_F^2 L_{\mu\nu} W^{\mu\nu}$$

 $T \{ J^{\dagger\mu}(0) J^{\nu}(x) \} \left| \bar{B} \right\rangle \Big], \qquad J^{\nu} = (\bar{c} \gamma^{\nu} P_L b)$

Factorization for Semi-leptonic *B* decays

• Factorized form of differential decay rate in the endpoint region:

Korchemsky, Sterman '94 Bauer, Fleming, Pirjol, Stewart '01 Rocch Lange Nouhert Daz '01

final state jet

Factorization for Semi-leptonic *B* decays

Factorized form of differential decay rate in the endpoint region:

- Each sector depends only on a single physical scale Large logarithms can be avoided.
- RGEs can be used to evolve the distinct sectors to a common scale.

Korchemsky, Sterman '94 Bauer, Fleming, Pirjol, Stewart '01 Rosch Lango Nouhart Daz '01

Boosted top pair production in e^+e^- collisions

- Factorization approach for boosted top jet production in $e^+e^- \to t\bar{t}$ at c.m. energies $Q \gg m_t$.
 - Dijet region for factorization characterized by $s_{a,b} = M_{a,b}^2 m_t^2 \ll m_t^2$.
 - Top state defined by measurements of $M_{a,b}$.

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}M_a^2\,\mathrm{d}M_b^2}\sim\sigma_0\,\frac{H_Q(Q,\mu)}{\int\mathrm{d}l\,\mathrm{d}l}\,\mathrm{d}l$$

[Fleming, Hoang, Mantry, Stewart: Phys.Rev.D77:074010 (2008)]

n in $e^+e^-
ightarrow tar{t}$ at c.m. energies $Q \gg m_t$. $= M_{a,b}^2 - m_t^2 \ll m_t^2$.

 $Il' J_t(s_a - Ql, \mu) J_{\overline{t}}(s_b - Ql', \mu) S(l, l', \mu)$

Boosted top pair production in e^+e^- collisions

- known from heavy quark decays.
 - Examination of decay sensitive observables.
 - Treatment of finite lifetime effects and of the dynamics of the top quark decay products.
 - Study of effects at kinematic endpoint regions.

Important application: Gauge invariant off-shell top quark decay.

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} M_a^2 \, \mathrm{d} M_b^2} \sim \sigma_0 \, H_Q \begin{bmatrix} J_t \otimes J_{\bar{t}} \otimes S \end{bmatrix} \quad \begin{array}{c} \text{inclusive} \\ \\ J_t \sim H_m \begin{bmatrix} J_b \otimes S_{ucs} \end{bmatrix} & \text{differential} \end{array}$$

• Combination of factorization approaches for top quark production in e^+e^- collision with factorization methods

Scrutiny of electroweak jet function describing the top quark decay.

$$J_n^{L/R}(p^2) = \frac{1}{N_c \left(\bar{n} \cdot p\right)} \sum_X (2\pi)^3 \,\delta^{(4)}(p - P_X) \operatorname{Tr}\left[\begin{array}{c} \langle 0 | \, \frac{\not{n}}{4} \, \chi_n^{L/R}(0) \, | X \rangle \, \langle X | \, \overline{\chi_n^{L/R}}(0) \, | 0 \rangle \\ \not{\uparrow} \\ \text{chiral jet field } \chi_n^{L/R} = W_n^{\dagger} \, P_{L/R} \xi_n \end{array} \right]$$

• Underlying aspect of the collinear sector:

(isospin +1/2 for top quark)

isospin generators

• Scrutiny of electroweak jet function describing the top quark decay.

$$J_n^{L/R}(p^2) = \frac{1}{N_c \left(\bar{n} \cdot p\right)} \sum_X (2\pi)^3 \,\delta^{(4)}(p - P_X) \operatorname{Tr} \left[\begin{array}{c} \langle 0 | \, \frac{\not{n}}{4} \, \chi_n^{L/R}(0) \, | X \rangle \, \langle X | \, \overline{\chi_n^{L/R}}(0) \, | 0 \rangle \\ \uparrow \\ \text{chiral jet field } \chi_n^{L/R} = W_n^{\dagger} \, P_{L/R} \, \xi_n \end{array} \right]$$

• Scrutiny of electroweak jet function describing the top quark decay.

$$J_n^{L/R}(p^2) = \frac{1}{N_c \left(\bar{n} \cdot p\right)} \sum_X (2\pi)^3 \,\delta^{(4)}(p - P_X) \operatorname{Tr} \left[\begin{array}{l} \langle 0 | \, \frac{\not{n}}{4} \, \chi_n^{L/R}(0) \, | X \rangle \, \langle X | \, \overline{\chi_n^{L/R}}(0) \, | 0 \rangle \\ \uparrow \\ \text{chiral jet field } \chi_n^{L/R} = W_n^{\dagger} \, P_{L/R} \, \xi_n \end{array} \right]$$

DR

• Scrutiny of electroweak jet function describing the top quark decay.

$$J_n^{L/R}(p^2) = \frac{1}{N_c \left(\bar{n} \cdot p\right)} \sum_X (2\pi)^3 \,\delta^{(4)}(p - P_X) \operatorname{Tr}\left[\begin{array}{c} \langle 0 | \, \frac{\not{n}}{4} \, \chi_n^{L/R}(0) \, | X \rangle \, \langle X | \, \overline{\chi_n^{L/R}}(0) \, | 0 \rangle \\ \uparrow \\ \text{chiral jet field } \chi_n^{L/R} = W_n^{\dagger} \, P_{L/R} \, \xi_n \end{array} \right]$$

SR

• Scrutiny of electroweak jet function describing the top quark decay.

$$J_n^{L/R}(p^2) = \frac{1}{N_c \left(\bar{n} \cdot p\right)} \sum_X (2\pi)^3 \,\delta^{(4)}(p - P_X) \operatorname{Tr} \left[\begin{array}{l} \langle 0 | \, \frac{\not{n}}{4} \, \chi_n^{L/R}(0) \, | X \rangle \, \langle X | \, \overline{\chi_n^{L/R}}(0) \, | 0 \rangle \\ \uparrow \\ \text{chiral jet field } \chi_n^{L/R} = W_n^{\dagger} \, P_{L/R} \, \xi_n \end{array} \right]$$

NR

Scrutiny of electroweak jet function describing the top quark decay.

$$J_n^{L/R}(p^2) = \frac{1}{N_c \left(\bar{n} \cdot p\right)} \sum_X (2\pi)^3 \,\delta^{(4)}(p - P_X) \operatorname{Tr}\left[\left\langle 0 \middle| \frac{\not{n}}{4} \chi_n^{L/R}(0) \left| X \right\rangle \left\langle X \middle| \frac{\chi_n^{L/R}}{\chi_n^{L/R}}(0) \left| 0 \right\rangle \right]$$

chiral jet field $\chi_n^{L/R} = W_n^{\dagger} P_{L/R} \xi_n$

Result: (valid for **boosted** top quarks)

- Universal, process independent and gauge invariant jet function.
- Accounts for spin correlations.
- Excellent approximation for off-shell top production.

- Generalization of the concept of an on-shell top including off-shell effects.

- Possible application: Top spin measurements for off-shell top decays.

• $m_{\ell b}$ distribution for differential top jet functions with $m_t = 173 \, GeV$:

• Comparison with MadGraph prediction for $e^+e^- \rightarrow \bar{t} \, b \, W^+$:

• Comparison with MadGraph prediction for $e^+e^- \rightarrow \bar{t} \, b \, W^+$:

19

• Comparison with MadGraph prediction for $e^+e^- \rightarrow \bar{t} \, b \, W^+$:

Factorization approach for top jet function

 Use methodology known from semi-leptonic B decays to derive a novel factorization theorem describing differential top quark decays in the endpoint region.

CD current onto ght EFT current.

Factorize momentum modes into distinct sectors.

 $C_i \left(\bar{\chi}_{n'} \Gamma^{\mu}_i Y^{\dagger}_{n'} h_v \right)$

 $\int \mathrm{d}r^+ J_b(r^+,\mu) S_{ucs}(\hat{s}_a - r^+,\mu)$ m semi-leptonic B

decays

Factorization approach for top jet function

 Use methodology known from semi-leptonic B decays to derive a novel factorization theorem describing differential top quark decays in the endpoint region.

Factorize momentum modes into distinct sectors.

"bHQET ultracollinear-soft function"

- New ingredient
- Can be computed perturbatively.
- Top width acts as infrared cut-off.
- Describes Fermi motion of the decaying top in the measured state with mass M_a .

Summary & Outlook

Summary:

Factorization is an important theoretical tool for calculations of processes involving hadrons.

- determined from data.
- Sums large logarithms arising in perturbative calculations by means of RG equations.
- - Top state defined by measurements (and not by NW limit).

 - Allows to study decay sensitive observables beyond the commonly employed NW limit.

Outlook:

- Computation of $\mathcal{O}(\alpha_s)$ corrections to the factorization theorem for top jet production including top decay effects. → Work in progress.
- Comparison with predictions from Monte-Carlo event generators.

- Allows to factorize cross sections and decay rates into different parts that can either be calculated perturbatively or

 We aim to combine properties of the NW limit and off-shell computations for decaying top quark studies. - Merge existing factorization theorems for off-shell top production in e^+e^- collisions and for heavy quark decays.

- Leads to a gauge-invariant jet function for boosted top quarks including off-shell effects (up to leading order in m_t/Q).

• $m_{\ell b}$ distribution for differential top jet functions with $m_t = 173 \, GeV$:

off-shell W

• E_{ℓ} distribution for differential top jet functions with $m_t = 173 \ GeV$:

off-shell W

