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‣ Start-of-the-art: fixed-order NLO QCD.

‣ Top quark treated as on-shell particle.
‣ Factorization of top production and decay dynamics.

• Studies of top quark production and its decay commonly based on  
two approaches:

- QCD factorization theorem for off-shell boosted top quarks (         SCET, bHQET)
‣ Merge factorization approaches for boosted top production and semileptonic     decays.
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Motivation — Top Quark Physics

• The top quark is the heaviest known elementary particle.

• Due to its large mass the top quark plays a key role in consistency checks 
of the Standard Model and new-physics searches.

- Narrow-width (NW) limit:

- Off-shell fixed-order computation:
‣ Accounts for non-resonant, non-factorizable and finite lifetime effects.

• New approach: Combine properties of NW limit and off-shell computations.

- Incorporate resummed QCD corrections for differential top decay observables.
- Top quark state based on a measurement (and not on the concept of a “top particle”).

• Aim: Analytic control of top mass dependent decay observables.



‣ B meson decays to light particles in kinematic endpoint regions, e.g.                     .

• SCET: Used to describe energetic QCD processes where the final state particles have large energies  
compared to their invariant mass.

‣ …
‣ Jet production in       collisions and           collisions.
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Soft-Collinear Effective Theory (SCET)

- Momentum modes:

collinear splitting

soft gluon 
emission • Not described by SCET.          Hard modes integrated out.

hard gluon 
interaction

B̄ final state jet

soft radiation
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Soft-Collinear Effective Theory (SCET)

‣ B meson decays to light particles in kinematic endpoint regions, e.g.                     .

• SCET: Used to describe energetic QCD processes where the final state particles have large energies  
compared to their invariant mass.

‣ …
‣ Jet production in       collisions and           collisions.

collinear Wilson line

• Leading order collinear quark Lagrangian:

SCET.
..

n
n̄

+ perms

B̄ final state jet

soft radiation
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Soft-Collinear Effective Theory (SCET)

‣ B meson decays to light particles in kinematic endpoint regions, e.g.                     .

• SCET: Used to describe energetic QCD processes where the final state particles have large energies  
compared to their invariant mass.

‣ …
‣ Jet production in       collisions and           collisions.

• Leading order collinear quark Lagrangian:

collinear-soft coupling

B̄ final state jet

soft radiation



6

Recap: Semi-leptonic  decaysB
• Inclusive semi-leptonic decays                      and                      allow extraction of          and          from 

measurements of the decay spectra.

•                     :  can be studied by using a local OPE within HQET.Wμν

- Restriction to phase space region of energetic jets with small invariant mass          SCET
•                     : Cuts on      or      needed to eliminate             background events.

- OPE not applicable in this region         need to rely on factorization tools. 

- Non-pert. physics encoded in matrix elements of local operators.
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Factorization for Semi-leptonic  decaysB

hard function

jet function

soft function

• Factorized form of differential decay rate in the endpoint region:

B̄ final state jet

soft radiation

Korchemsky, Sterman ’94 
Bauer, Fleming, Pirjol, Stewart ’01 
Bosch, Lange, Neubert, Paz ’04
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Factorization for Semi-leptonic  decaysB

- Each sector depends only on a single physical scale               Large logarithms can be avoided.

- RGEs can be used to evolve the distinct sectors to a common scale.

hard function

jet function

soft function

• Factorized form of differential decay rate in the endpoint region: Korchemsky, Sterman ’94 
Bauer, Fleming, Pirjol, Stewart ’01 
Bosch, Lange, Neubert, Paz ’04
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Boosted top pair production in  collisionse+e−

• Factorization approach for boosted top jet production in                     at c.m. energies                . 

n n̄

- Dijet region for factorization characterized by                                            . 

[Fleming, Hoang, Mantry, Stewart: Phys.Rev.D77:074010 (2008)]

hemisphere a hemisphere b

- Top state defined by measurements of           . 
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- Examination of decay sensitive observables.
- Treatment of finite lifetime effects and of the dynamics of the top quark decay products.
- Study of effects at kinematic endpoint regions.

• Combination of factorization approaches for top quark production in            collision with factorization methods 
known from heavy quark decays.

• Important application: Gauge invariant off-shell top quark decay.

Boosted top pair production in  collisionse+e−

n n̄

inclusive

differential
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• Scrutiny of electroweak jet function describing the top quark decay.

• Underlying aspect of the collinear sector:

collinear Wilson line

SCET

n

chiral jet field 

Differential top jet function

isospin generators(isospin  for top quark)+1/2
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Differential top jet function

• Scrutiny of electroweak jet function describing the top quark decay.

chiral jet field 
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• Scrutiny of electroweak jet function describing the top quark decay.

chiral jet field 

DR

Differential top jet function
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• Scrutiny of electroweak jet function describing the top quark decay.

SR

chiral jet field 

Differential top jet function
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• Scrutiny of electroweak jet function describing the top quark decay.

NR

chiral jet field 

Differential top jet function
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chiral jet field 

• Scrutiny of electroweak jet function describing the top quark decay.

• Result: (valid for boosted top quarks)

Differential top jet function

- Universal, process independent and gauge invariant jet function.

- Generalization of the concept of an on-shell top including off-shell effects.

- Accounts for spin correlations.          
- Possible application: Top spin measurements for off-shell top decays.
- Excellent approximation for off-shell top production.
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•  distribution for differential top jet functions with :mℓb mt = 173 GeV

Differential top jet function

LH,RH: p2= (173 GeV)2

LH: p2= (175 GeV)2

LH: p2= (171 GeV)2

RH: p2= (175 GeV)2

RH: p2= (171 GeV)2
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Differential top jet function

Q = 3 TeV Q = 700 GeV
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• Comparison with MadGraph prediction for                            :
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Differential top jet function

Q = 3 TeV Q = 700 GeV
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Differential top jet function

Q = 3 TeV Q = 700 GeV
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Factorization approach for top jet function

Known from semi-leptonic B 
decays

• Use methodology known from semi-leptonic B decays to derive a novel factorization theorem describing 
differential top quark decays in the endpoint region.

Insert decay operator 
into top jet function.

Match QCD current onto 
heavy-to-light EFT current.

Factorize momentum modes 
into distinct sectors.

 (                                     )
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Factorization approach for top jet function
• Use methodology known from semi-leptonic B decays to derive a novel factorization theorem describing 

differential top quark decays in the endpoint region.

Insert decay operator 
into top jet function.

Match QCD current onto 
heavy-to-light EFT current.

Factorize momentum modes 
into distinct sectors.

 (                                     )

- New ingredient 
- Can be computed perturbatively. 
- Top width acts as infrared cut-off. 
- Describes Fermi motion of the 

decaying top in the measured 
state with mass . Ma

“bHQET ultracollinear-soft 
function”
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Summary & Outlook

Outlook:

• Comparison with predictions from Monte-Carlo event generators.

• Computation of             corrections to the factorization theorem for top jet production including top 
decay effects.            Work in progress.

- Sums large logarithms arising in perturbative calculations by means of RG equations.

• Factorization is an important theoretical tool for calculations of processes involving hadrons.
- Allows to factorize cross sections and decay rates into different parts that can either be calculated perturbatively or 

determined from data. 

Summary:

• We aim to combine properties of the NW limit and off-shell computations for decaying top quark studies.

- Allows to study decay sensitive observables beyond the commonly employed NW limit.

- Merge existing factorization theorems for off-shell top production in           collisions and for heavy quark decays.

- Leads to a gauge-invariant jet function for boosted top quarks including off-shell effects (up to leading order in ).mt /Q
- Top state defined by measurements (and not by NW limit).



24

Back-up Slides
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•  distribution for differential top jet functions with :mℓb mt = 173 GeV

Differential top jet function
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•  distribution for differential top jet functions with :Eℓ mt = 173 GeV

Differential top jet function
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