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Introduction and Motivation
▸ The jet substructure studies allows to test fundamental

predictions of QCD.
▸ One of such predictions is a suppression of collinear radiation

around massive relativistic quarks (the dead-cone effect).
▸ Theoretical predictions were made in early 1990s but direct

observation was made by ALICE only in 2022 .
▸ The jet substructure observables are sensitive to collinear

radiation and hence can be used to explore the dead-cone effect.
▸ The resummed predictions for jet angularities λ1

α at
NLO +NLL′ accuracy level are available as a plugin to
SHERPA

▸ We aim to reach NLO +NLL′ accuracy in for the massive
quarks

The NLO +NLL′ predictios for jet angularities in the approximation of
massless partons were obtained in collaboration with S. Caletti, S. Marzani, D.
Reichelt, S. Schumann, G. Soyez, V. Theeuwes, see 2112.09545, 2104.06920
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Previous results for λα = ∑i zi (
∆i,jet

R )
α
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We study two-point energy correlation functions
The energy correlation function is defined as

e
(α)
2 ∣e+e− = ∑

i<j

Ei

EJ

Ej

EJ
(
θij

R
)
α

or e
(α)
2 ∣pp = ∑

i<j

pTi
pTJ

pTj

pTJ

(
∆Rij

R
)
α

SoftDrop groomer:

min(Ei ,Ej)
Ei + Ej

> zcut (
θij

R
)
β

or
min(pti ,ptj)
pti + ptj

> zcut (
∆Rij

R
)
β

▸ We are interested in the higher order large logarithmic
contributions coming from the soft and collinear regions of the
Q(q1) + Q̄(q2) production.

▸ The EFT (SCET+ and bHQET) results were obtained by Lee
et al in 1901.09095 for α < 1 and β = 0.

▸ We aim to obtain results for all IRC safe combinations of
α and β.
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Dead-cone effect:

Consider γ∗/Z∗(q) → q(q1) + q̄(q2) + g(k) process: if quarks are
relativistic and emitted gluon is soft and quasi collinear then

dσ ≈ CF
αS

π

(2 sin θ/2)2d(2 sin θ/2)2

[(2 sin θ/2)2 + θ2
D]

2
dz

z
≈ CF

αS

π

θ2dθ2

[θ2 + θ2
D]

2
dz

z

Dead-cone is defined as
θD = lim

Eg→0
(2mQ/

√
s) = mQ/EQ

If θ ≫ θD we have di-log enhancement
dσ ∼ d(log θ2)d(log z)

If θ ≪ θD we have no collinear enhancement
dσ ∼ ( θ

θD
)
2
d ( θ

θD
)
2
d(log z)

See Dokshitzer et all 91, Ellis et al 96 and recent ALICE measurements
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MC predictions for e1/2
2 at parton level (preliminary)
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masses in
PS-evolution
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▸ We observe strong
shape difference
between b-jets and
light-jets

▸ The difference
between c-jets and
light-jets is smaller

▸ If single hard
emmision dominates

z1 ≫
N

∑
i=2

zi then the

dead-cone boundary
is log10(θαD/Rα)
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MC predictions for e2
2 at parton level (preliminary)
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MC predictions for e1/2
2 at hadron level (preliminary)
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▸ B-hadron
reconstruction
techniques should be
applied
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Our workflow (general formalism)

We use Catani and Seymour approach
The squared amplitude factorization is given by

∣Mg,a1,...,an(k,q1, ...,qn)∣2 = −4παu
Sµ

2ϵ
0

n

∑
i,j=1

Ti ⋅Tj
qiqj

qik qjk
∣Ma1,...,an(q1, ...,qn)∣2 + ... ,

∣Ma1,...,am,...(q1, ...,qm, ...)∣2 = [
8παu

Sµ
2ϵ
0

(q1 + ... + qm)2
]
m−1
Iss

′

a,...(xp, ...)P̂ss′

a1,...,am + ...

where the spin-averaged splitting kernels are given by

P̂TL
QQ = CF

⎡⎢⎢⎢⎢⎣

1 + z2

1 − z
− ϵ(1 − z) −

m2
Q

pQpg

⎤⎥⎥⎥⎥⎦
, P̂TL

Qg = CF

⎡⎢⎢⎢⎢⎣

1 + (1 − z)2

z
− ϵz −

m2
Q

pQpg

⎤⎥⎥⎥⎥⎦
,

P̂TL
gQ = TR

⎡⎢⎢⎢⎢⎣
1 − 2

1 − ϵ

⎧⎪⎪⎨⎪⎪⎩
z(1 − z) −

m2
Q

(pQ + pQ̄)2
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
, P̂TL

gg = 2CA [
z

1 − z
+ 1 − z

z
+ z(1 − z)] .

See Catani and Seymour and Catani et al.
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Our workflow (simple case of massless partons)

We use the “method of regions” to explore the log-structure

dσR1

de
(α)
2

= 2 × (4π)ϵ

16π2Γ(1 − ϵ) ∫
smax
qg

smin
qg

dsqg s
−ϵ
qg ∫

zmax

zmin
dz z−ϵ(1 − z)−ϵ × [

8παu
Sµ

2ϵ
0

sqg
P̂TL
qq ]

× δ
⎛
⎝
e
(α)
2 − z(1 − z)( 2q1k

EqEg
)

α
2 ⎞
⎠
,

dσR2

de
(α)
2

=
αu

Sµ
2ϵ
0 (2π)2ϵ

π2 CF ∫
dd−1k⃗
∣k⃗ ∣

q1q2

q1k q2k
δ
⎛
⎝
e
(α)
2 − Eq ∣k⃗ ∣

E2
J

( 2q1k

Eq ∣k⃗ ∣
)

α
2 ⎞
⎠
,

dσR1

de
(α)
2

+ dσR2

de
(α)
2

+ dσV

de
(α)
2

= αSCF

π

⎧⎪⎪⎨⎪⎪⎩
− 4
α

⎛
⎝
ln e

(α)
2

e
(α)
2

⎞
⎠
+
+
⎛
⎝

1

e
(α)
2

⎞
⎠
+
[− 3

α
+ 4 ln2]

+ δ (eα2 ) [−
π2

3
+ 2

3
π2 − 9

α
+ α

12
(π2 − 24 ln2 2) + 1

2
(5 + 6 ln2)]

⎫⎪⎪⎬⎪⎪⎭
.
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Our workflow (massive partons and grooming)

We consider the most general SoftDrop case

R1 ∶ zQ ≡ z ≥ zcut
⎛
⎝
θ2
Qg

R2

⎞
⎠

β
2

, zg ≡ 1 − z ≥ zcut
⎛
⎝
θ2
Qg

R2

⎞
⎠

β
2

,

R2 ∶ zQ ≡ z ≥ zcut
⎛
⎝
θ2
Qg

R2

⎞
⎠

β
2

, zg ≡ 1 − z ≤ zcut
⎛
⎝
θ2
Qg

R2

⎞
⎠

β
2

with cosR ≤ cos θ ≤ 1 ,

R′2 ∶ zQ ≡ z ∈ [0,1], zg ≡ 1 − z ∈ [0,1], with0 ≤ cos θ ≤ cosR ,

R3 ∶ zQ ≡ z ≤ zcut
⎛
⎝
θ2
Qg

R2

⎞
⎠

β
2

, zg ≡ 1 − z ≥ zcut
⎛
⎝
θ2
Qg

R2

⎞
⎠

β
2

.

where R1 and R3 are collinear regions while R2 and R′2 are soft
regions.
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Our workflow (massive partons and grooming)
SoftDrop condition restrict the phase space

For example, for the soft region R2

dσR2

de
(α)
2

∼∫
ddk

(2π)d−1
δ+(k2)

⎧⎪⎪⎨⎪⎪⎩
... some eikonal terms ...

⎫⎪⎪⎬⎪⎪⎭
δ (e(α)2 )

×Θ
⎛
⎜⎜
⎝
z ≥ zcut

⎛
⎝
θ2
Qg

R2

⎞
⎠

β
2 ⎞
⎟⎟
⎠
Θ

⎛
⎜⎜
⎝
1 − z ≤ zcut

⎛
⎝
θ2
Qg

R2

⎞
⎠

β
2 ⎞
⎟⎟
⎠
Θ (cosR ≤ cos θ ≤ 1)

the result is given by

dσR2

de
(α)
2

= αSCF

π
δ (e(α)2 )

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎣
− 1

2ϵ
+ ln
⎛
⎝
zcut (

2
R2 )

β
2 ⎞
⎠

⎤⎥⎥⎥⎥⎦
[(1 + β2

m)(I1[ϵ0] + I2[ϵ0])

− m2

E2
J

(I3[ϵ0] + I4[ϵ0])] −
1
2
[(1 + β2

m)(I1[ϵ] + I2[ϵ]) −
m2

E2
J

(I3[ϵ] + I4[ϵ])]

− 2zcut (
2
R2 )

β
2
I5[ϵ0] +

z2
cut

2
( 2
R2 )

β

I6[ϵ0]
⎫⎪⎪⎬⎪⎪⎭
+O(ϵ) .
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Our workflow (massive partons and grooming)

dσR2

de
(α)
2

= αSCF

π
δ (e(α)2 )

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎣
− 1

2ϵ
+ ln
⎛
⎝
zcut (

2
R2 )

β
2 ⎞
⎠

⎤⎥⎥⎥⎥⎦
[(1 + β2

m)(I1[ϵ0] + I2[ϵ0])

− m2

E2
J

(I3[ϵ0] + I4[ϵ0])] −
1
2
[(1 + β2

m)(I1[ϵ] + I2[ϵ]) −
m2

E2
J

(I3[ϵ] + I4[ϵ])]

− 2zcut (
2
R2 )

β
2
I5[ϵ0] +

z2
cut

2
( 2
R2 )

β

I6[ϵ0]
⎫⎪⎪⎬⎪⎪⎭
+O(ϵ) .

The integrals Ii lead to log-structures proportional to

ln(1 ± βm

1 ∓ βm
) , ln(1 ± cosR), ln(1 ± βm cosR

1 ± βm
) , ln(1 − βm),

where βm =
√

1 − 4m2
Q2 .
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Summary and next steps:

Current results
▸ Preliminary MC simulations with PYTHIA8 show strong dependence on

the quark mass and non-perturbative effect (hadronization and decay of
B-hadrons).

▸ We have identified all regions corresponding to soft and collinear.
divergencies

▸ We have performed corresponding phase space integration and identified.
related logarithmic contributions

▸ We also take into account logs due to the running coupling.

It is work in progress, so our next steps would be:
▸ Analytical results should be merged together and turned into computer

program.
▸ Ideally, resummed predictions should be matched to fixed-order results to

reach NLO +NLL′ accuracy level.
▸ Similar computation can be made for primary Lund plane projection.
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Thank you for your attention!



Next steps: CAESAR formalism

The cumulative cross section for a generic observable v can be
written as a sum over partonic channels δ:

Σres(v) = ∑
δ

Σδ
res(v) , with

Σδ
res(v) = ∫ dBδ

dσδ
dBδ

exp [−∑
l∈δ

RBδl (L)]P
Bδ(L)SBδ(L)FBδ(L)Hδ(Bδ) ,

where L = − ln(v), dσδ

dBδ is the differential Born cross section, Rl is
the collinear radiator for the hard legs l , P is the ratio of PDFs, S is
the soft function, F is the multiple emission function and H stands
for the corresponding kinematic cuts on the Born process.

For CAESAR implementation of jet angularities for Z + jet and jet + jet
production see 2104.06920 and 2112.09545.
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Next steps: what about primary Lund plane?
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To build a Lund plane:
▸ Recluster your jet using CA

algorithm
▸ Then compute:

∆ab ≡
√
(ya − yb)2 + (ϕa − ϕb)2,

kt ≡ pTb ∆ab.

▸ Discard softest branch and repeat.
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Next steps: what about primary Lund plane? (preliminary)
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Parton to hadron level transition; credits G. Soyez
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1 ) for the jet-width angularity for central
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