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• Improve tagging for boosted objects
• Many successful observable measurements

• Gain insight into QCD

⇢ Done through NN jet taggers

To take full advantage of jet substructure measurements we must 
have a good handle on the uncertainties 

Jets Substructure

charm or 
bottom jet 

top jetup, down, or 
strange jet

pileupHiggs jetW or Z jet

Higher jet detail Higher sensitivity to    
theoretical uncertainties *

✽ Rooted in modeling of non-perturbative 
processes: hadronization
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• Introduced by Komiske, Metodiev, Thaler
⇢ To control non-perturbative corrections

• IRC safe

⇢ Observable is unchanged under soft emissions and 
collinear splittings
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• Introduced by Komiske, Metodiev, Thaler
⇢ To control non-perturbative corrections

• IRC safe

⇢ Observable is unchanged under soft emissions and 
collinear splittings

✻ Introducing better 
performing IRC safe NN

✻ Quantifying benefits IRC 
safety

Energy Flow Networks (EFNs)

• Comparatively poor 
performance

• IRC benefits?



Outline
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Beyond 
the EFN

Quantifying 
perturbative 

regularization

A Toy Study

• EFN and IRC safety

• E2FN architecture and features

• Performance Studies

• Introduction to perturbative 
regularization

• Overview of study

• Pareto Front

• NNs significance comparison on 
toy boosted Z boson search

• Effects of theoretical uncertainties 
on significance
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• EFN and IRC safety

• E2FN architecture and features

• Performance Studies

Outline
Beyond 
the EFN
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• Comparatively 
poor performance
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Inspiration:

• Tkachov’s work on C-continuous observables
⇢ Energy Correlator (n=1) is analogous to an EFN

⇢ Set n=2 (EEC) and make F a NN         E2FN

• Comparatively 
poor performance

Introducing Energy-Energy Flow Networks (E2FNs)
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• Comparatively 
poor performance

Introducing Energy-Energy Flow Networks (E2FNs)
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IRC Safety in E2FNs
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• IRC safety conditions:
1.      network is continuous
2.              as the two studied particles become collinear 
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IRC Safety in E2FNs
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• IRC safety conditions:
1.      network is continuous
2.              as the two studied particles become collinear 

Non-perturbative corrections of an IRC safe 
object can be arbitrarily large!

Quantitative measurement of robustness 
of NN to hadronization effects

✽ IRC safety is a good first step but not enough!



• Introduction to perturbative 
regularization

• Overview of study

• Pareto Plots
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Quantifying 
perturbative 

regularization
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Perturbatively Regularized NNs

• Quantify the robustness of a NN to non-
perturbative information:
⇢ How much NN’s output changes when 

non-perturbative info is present in the input
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Perturbatively Regularized NNs

• Quantify the robustness of a NN to non-
perturbative information:
⇢ How much NN’s output changes when 

non-perturbative info is present in the input

Control the type of  information the NNs are 
sensitive to & 

restrict their access to non-perturbative 
information
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Test Data
• PYTHIA data 

⇢ Each event generated once 
⇢ Data collected twice per event:

⇢ Parton-level
⇢ Hadron-level
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Test Data
• PYTHIA data 

⇢ Each event generated once 
⇢ Data collected twice per event:

⇢ Parton-level
⇢ Hadron-level

• Data pre-processing:
⇢ Eta, phi coordinates centered to jet’s eta, phi
⇢ Constituent’s       normalized to jet

⇢ Exclusive kt reclustering by momentum splitting
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Regularization Metric & Pareto Plots
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• Train on hadron-level data, test on parton-level data

• RMS as regularization metric:

Objective 1

O
bj

ec
tiv

e 
2

Pare
to 

Fro
nt

Infeasible point

Utopia point

Feasible point

Pareto point



Regularization Metric & Pareto Plots

11

• Train on hadron-level data, test on parton-level data

• RMS as regularization metric:

• Objectives:
⇢ Better performance: higher rejection

⇢ Better regularization: lower RMS Objective 1

O
bj

ec
tiv

e 
2

Pare
to 

Fro
nt

Infeasible point

Utopia point

Feasible point

Pareto point



Regularization Metric & Pareto Plots
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• Train on hadron-level data, test on parton-level data

• RMS as regularization metric:

• Objectives:
⇢ Better performance: higher rejection

⇢ Better regularization: lower RMS RMS
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Rejection at 50% eff vs RMS kT
 

0.6 GeV reclustering

Regularization vs. Performance

• Pareto Front is dominated by EFN, E2FN 
at low RMS and high rejection

• P2FN contribution at higher RMS and 
rejection

To understand the effect of 
non-perturbative uncertainties on 

searches we want to relate RMS metric 

back to a physical quantity
Parton-Hadron Residual (RMS)
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• NNs significance comparison on 
toy boosted Z boson search

• Effects of theoretical uncertainties 
on significance

A Toy Study



Raw Discovery Significance in Toy Search 
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• Tagging boosted Z Bosons in QCD 
background

• NN represents the entire analysis work 
flow
• Cut on NN signal score  
• Single bin counting experiment

Optimize analysis for best discovery 
significance
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Significance with Theoretical Uncertainties

• Background Uncertainties:
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Significance with Theoretical Uncertainties

• Background Uncertainties: ✻ There might be other non-IRC safe 
NNs that might be well-behaved 
and outperform IRC safe nets!

✻ IRC safety can help protect 
our measurements from 
theoretical systematics 



• Extended the notion of EFNs to the more generalized E2FNs which allow for particle 
correlation and improve the NN performance while ensuring IRC safety

• Understanding the regularization of a NN plays an important role in jet substructure 
measurements.  Especially as we move towards measuring more complicated and high-detail 
jet observables

• Theoretical uncertainties from non-perturbative processes can have a measurable impact on 
actual searches and should be further studied

Summary
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Thank You!
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Regularization vs. Performance
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EFNE2FN P2FN

PFN

Rejection at 50% eff vs RMS
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RMS

PFN

KT values for 
reculstering

0.3 GeV
0.6 GeV
1.3 GeV
2.5 GeV



Damping
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EFN P2FN



Undamped E2FN RMS vs Performance
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Damped E2FN RMS vs Performance
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P2FN RMS vrs Performance
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• Energy-Energy Correlators (EEC)
⇢ Transition between perturbative and non-perturbative 

physics at a visible angular scale  between particles 

Energy-Energy Flow Networks (E2FNs)
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Hyperparameters & Trainable Parameters
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• 2 layers in phi

• 3 layers in F

• Relu activation

• Latent Dim: 32

• Learning rate: 1e-4

• Damping: 


