A Field Guide for Event Isotropy

Cari Cesarotti, MIT
2004.06125 CC + J Thaler
2305.16930 CC + ATLAS
2308.XXXX CC + MLB

What do we want to learn from event shape observables?

What do we want to learn from event shape observables?

\longrightarrow Study underlying dynamics

What do we want to learn from event shape observables?

\longrightarrow Study underlying dynamics

But in what regime?

Previous Observables

Near-dijet regime well explored

QCD at TeV scale is characterized by soft, collinear splittings

Novel Observables

There are many other features of radiation patterns that are interesting to study

- Quasi-isotropic regime
- Multijet events
- Other features of hard QCD

Event Isotropy \& More

We can design observables using the Earth Mover Distance (EMD)

Control the sensitivity by varying

- Reference geometry
- Distance metric

Defining EMD

Energy mover's distance (EMD):

P. Komiske, E. Metodiev, J. Thaler 2019 What is the minimum work to rearrange the energy distribution in an event P to look like event Q ?

$$
\begin{gathered}
\operatorname{EMD}(P, Q)=\min _{\left\{f_{i j}\right\}} \sum_{i j} f_{i j} d_{i j} \\
f_{i j}: \text { energy transported } \\
d_{i j}: \text { distance measure } \\
f_{i j} \geq 0 \quad \sum_{i j} f_{i j}=E_{P}^{\text {tot }}=E_{Q}^{\text {tot }}=1
\end{gathered}
$$

Defining EMD as Event Shape Observables

We can used the EMD as a well-defined distance between a reference topology and collider event
(This is what observables are secretly doing already)

Defining Event Isotropy

\rightarrow
Event Isotropy: EMD of an event \mathscr{E} to a uniform radiation pattern \mathscr{U}

$$
\mathscr{F}(\mathscr{E})=\operatorname{EMD}(\mathscr{U}, \mathscr{E})
$$

Defining Event Isotropy

Event Isotropy: EMD of an event \mathscr{E} to a uniform radiation pattern \mathscr{U}

$$
\mathscr{F}(\mathscr{E})=\operatorname{EMD}(\mathscr{U}, \mathscr{E})
$$

Geometries:

Distances:

$$
\left(1-\cos \theta_{i j}\right)^{\beta / 2}
$$

$$
\left(1-\cos \phi_{i j}\right)^{\beta / 2}
$$

Defining Event Isotropy

Event Isotropy: EMD of an event \mathscr{E} to a uniform radiation pattern \mathscr{U}

- IRC safe \& dimensionless
- Defined on sets $m=0, \Sigma \vec{p}=0$

$$
\mathcal{I}^{\mathrm{sph}}=0
$$

$$
\mathcal{I}^{\mathrm{sph}}=1
$$

Event Isotropy

Designed to study quasi-isotropic events

Originally motivated for BSM ...but can be used for SM purposes as well!

Event Isotropy \& ATLAS

Differential Cross Section Measurements with isotropy \& more EMD observables

What can we learn about QCD and how we model it?

Event Isotropy \& ATLAS

Differential Cross Section Measurements with isotropy \& more EMD observables

Distance to Dijet

Distance to Isotropic

Event Isotropy \& ATLAS (Simulation)

Event Isotropy \& ATLAS

EMD2 ~ Thrust

1-Isotropy

Event Isotropy \& ATLAS

EMD2 ~ Thrust

1-Isotropy

Event Isotropy \& ATLAS

With event isotropy we are more sensitive to rare events, even in QCD dynamics!

Event Isotropy \& Your Analysis

Let's consider more geometries \& distance metrics

Design the observable best for your analysis

Event Isotropy \& Your Analysis

Event Isotropy \& Your Analysis

Example: Hard QCD at 13 TeV

Distance to Dijet

$$
\left(1-\cos \phi_{i j}\right)^{\beta / 2}
$$

Distance to Isotropy

Example: Hard QCD at 13 TeV

Outlook

EMD-observables can reveal novel information in hard-toaccess kinematic regimes while still understanding analytics

Applicable for BSM event shapes \& QCD

The construction of the observable can determine what you are and are not sensitive to, depending on what your analysis or pheno study needs

