Tools for Precision Jet Substructure Measurements Unfolding and Tracking

Vinicius Mikuni¹, Ian Moult², Ben Nachman¹, Jingjing (Jing) Pan²

- ¹ Lawrence Berkeley National Lab
- ² Yale University

Why precision JSS Merry monto? Why should L care about a precision m_t ?

Stability of the Standard Model vacuum!

Butazzo, Degrassi, Giardino, Giudice, Sala

Why should Leare about a precision m_t ?

Stability of the Standard Model vacuum!

Butazzo, Degrassi, Giardino, Giudice, Sala

Why chould L care about a precision m_t ?

Stability of the Standard Model vacuum!

Butazzo, Degrassi, Giardino, Giudice, Sala

SMEFI / future reinterpretation

Why chould L care about a precision m_t ?

Stability of the Standard Model vacuum!

Butazzo, Degrassi, Giardino, Giudice, Sala

SMEFI / future reinterpretation

How to Get There?

How to Get There?

But need observables at generation level (for comparison with theories, new calibration routines)

Unfolding: An Inverse Problem

Preserving New Physics while Simultaneously Unfolding All Observables (PRD, 2021)

Outline

 Seeing Higher-Order QCD Effects with OmniFold

All About Precision:
 Putting JSS on Track(s)

Truth

Simulation

Generation

Outline

Seeing Higher-Order QCD Effects with OmniFold

All About Precision:
 Putting JSS on Track(s)

Unfolding

Data inevitably comes with many stochastic defects:

- Acceptance & Efficiency: particles produced not measured
- Detector Noise ("fake"): particles measured not real
- Detector Bias & Resolution
- Combinatorics: detector can change the order of N particles
- Background

Unfolding

Data inevitably comes with many stochastic defects:

- Acceptance & Efficiency: particles produced not measured
- Detector Noise ("fake"): particles measured not real
- Detector Bias & Resolution
- Combinatorics: detector can change the order of N particles
- Background

Challenge: correct all the above accurately & precisely

- \rightarrow preserve higher order effects \rightarrow test improvements of jet modeling

A Timely Example: Testing Improvements of Jet Modeling $\alpha_{\rm c}$ extraction from EEC

DIRE: NLO DGLAP added in the parton shower

(Collinear) Energy Correlators: field-theoretic, broad appeal expect better modeling by DIRE

 $\langle \mathscr{E}\mathscr{E} \rangle = \sum_{ii} \int dx'_L \frac{p_{\mathrm{T,i}} p_{\mathrm{T,j}}}{p_{\mathrm{T,iet}}^2} \,\delta(x'_L - x_L)$

(~4.4% NLO effects in the slope proportional to $\alpha_{\rm s}$)

DIRE vs. Pythia at generation-level vs. after Delphes

Testing Improvements of Jet Modeling Setup DIRE vs. Pythia at get

Jet definition: AK4, Energy Flow algorithm from Delphes 3.5.0

Selection: $p_{\rm T,jet} \in [500, 550]$ GeV, $\eta < 2.5$, the leading jet from Z+jets 1

Input: 4-vectors ($p_{\rm T}$, η , ϕ , PID) of all the hadrons within the jet

Neural network architecture: PFN, Point Cloud Transformer (PCT) DIRE vs. Pythia at generation-level vs. after Delphes

Particle-level

ω_n

Detector-level

Detector-level

Particle-level

Now with data-shaped reco-level MC \rightarrow can pull back to gen level and obtain the truth distribution!

Detector-level

A. Andreassen et al., PRL 2020]

Particle-level

Not yet... **Need 1-to-1 mapping** of gen-level kinematics

Learn another likelihood ratio $W(gen) = \frac{p_{rw MC}(gen)}{(gen)}$ p_{MC}(gen) \rightarrow can then apply to genlevel sample

Detector-level

Iterate the prior dependence away

A. Andreassen et al., PRL 2020]

Particle-level

Not yet... **Need 1-to-1 mapping** of gen-level kinematics

Learn another likelihood ratio $W(gen) = \frac{p_{rw MC}(gen)}{(from MC)}$ p_{MC}(gen) \rightarrow can then apply to genlevel sample

$$\omega_n \qquad \nu_{n-1} \xrightarrow{\omega_n} \nu_n$$
(m,t)
Generation

Testing Improvements of Jet Modeling

[Toolkit for Multivariate Data Analysis, A. Hoecker et al.]

Testing Improvements of Jet Modeling

[Toolkit for Multivariate Data Analysis, A. Hoecker et al.]

Outline

 Seeing Higher-Order QCD effects with ML Unfolding

All About Precision:
 Putting JSS on Track(s)

Putting JSS on Track(s) All About Precision

Putting JSS on Track(s) All About Precision

Putting JSS on Track(s) All About Precision

Putting JSS on Track(s) Through the Magic of Track F

Momentum fraction of a hard parto

• Describes also correlations am

Fragmentation function only describes single identified hadron

Track Functions as a Probe of QCD

Track functions will play two key roles in Jet Substructure:

- Enable precision calculations of JSS observables on charged hadrons. Provide interesting probes of QCD RG flows

Progress towards experimental studies of a new class of JSS observables **Energy Correlators**

- Track functions are an important aspect of a precision program.
- We have shown that Omnifold can be sensitive to higher order QCD effects. Bright future for precision measurements!

Thanks!

Backup

OmniFold "Likelihood-ratio trick"

- likelihood function hard to approach in high dimensions

- the ratio of two likelihood functions can be approximated by the decision function of a binary classifier; make good use of MC

 - can process variable length, unordered input with proper neural network architecture

Neural Networks for Full Phase-space Reweighting and Parameter Tuning

Learning Likelihood Ratios with Neural Network Classifiers

$$\operatorname{argmin}_{f} L[f] = \frac{p(x \mid \theta_0)}{p(x \mid \theta_1)} = \mathcal{L}(x)$$

$$\frac{f(x)}{1-f(x)} = \frac{\frac{p(x|\theta_0)}{p(x|\theta_0)+p(x|\theta_1)}}{1-\frac{p(x|\theta_0)}{p(x|\theta_0)+p(x|\theta_1)}}$$
$$= \frac{p(x \mid \theta_0)}{\frac{p(x \mid \theta_0)}{p(x \mid \theta_0)} + p(x \mid \theta_1) - p(x \mid \theta_0)}$$
$$= \frac{p(x \mid \theta_0)}{p(x \mid \theta_1)} = \mathcal{L}(x)$$

OmniFold "Likelihood-ratio trick"

Admits multiple advantages:

- Naturally unbinned & high dimensional
- Variable length, unordered sets \rightarrow full phase space unfolding
- Converges to maximum likelihood estimate of the truth distribution
- Computationally efficient (by reweighting i.e. learning small correction)
- Beyond per-event observables, readily reinterpretable

Progress towards experimental studies of a new class of JSS observables **Energy Correlators**

 First measurement of track functions to come shortly from ATLAS! Stay Tuned!

 We have shown that Omnifold can be sensitive to higher order QCD effects. Bright future for precision measurements!

