EAST BAY BOOST 23 31 JUL - 4 AUG LAWRENCE BERKELEY NATIONAL LAB

New techniques for reconstructing and calibrating hadronic objects with ATLAS

> Margherita Spalla, on behalf of the ATLAS Collaboration

(*) Max Planck Institut für Physik, München

MAX-PLANCK-INSTITUT FÜR PHYSIK

Overview

- Developments in the reconstruction and calibration of hadronic signals and missing transverse momentum
 - ✓ legacy p_T^{miss} performance
 - ✓ testing response to b-jets
 - improvements in reconstruction of calorimeter signals...
 - …and in their calibration
- Boosted object identification and other ML-based results: see talk by Jad!

ATLAS public plots

A complete list of new ATLAS results for BOOST23 is available <u>here</u>

The legacy of Run 2

Missing transverse momentum (p_T^{miss})

- Estimate p_T of invisible particle through momentum conservation in *x*-*y* plane
- Negative sum of reconstructed and calibrated physics objects plus unassociated tracks (soft term)
 - ► Using tracks was new to Run 2
 - Ambiguity resolution procedure to avoid double counting

JETM-2023-002

p_T^{miss} performance in Run 2

- Legacy performance studies
- $Z \rightarrow ee/\mu\mu$ final state: investigate fake p_T^{miss} background from e.g. detector acceptance of pile-up
- p_T^{miss} significance
 - Discriminant between fake p_T^{miss} and that from real invisible particles
 - In Run 2, object oriented version was used
 - likelihood-based significance built from resolution of physics objects in p_T^{miss} definition
 - ► First introduced in <u>ATLAS-CONF-2018-038</u>
 - Separation power improved by about 25% with respect to previous definition
- Both p_T^{miss} and its significance are well described

Hadronic signal reconstruction

Topo-clusters:

cluster connected calorimeter cells around cells with high signal-to-noise ratio

Particle-flow objects

 More recent approach also exploits tracks' angular resolution in dense environment: Unified Flow Objects Jets build with anti-k_t algorithm. R=0.4 or 1.0

- \checkmark In this talk, focus on
 - R=0.4

The jet calibration chain

- Many new techniques developed building on Run 2 expertise [arXiv:2303.17312]
 - e.g. improved pile-up correction, Neural-Network based Global Calibration (GNNC), in-situ correction for b-jets
 - Very important input to Run 3 calibration

b-jet calibration using Run 2 data

inclusive

- Dedicated in-situ correction for b-tagged jets
 - Direct balance method used: jets tested against well measured γ
- b-jets correction found to differ from the one for inclusive jets
- Very interesting area worth exploring in more depth

Residual *in situ*

calibration

31/07/23

 $\tilde{R}_{b\text{JES}}$

New for Run 3

Calorimeter topo-clusters

- \circ Building method based on cell energy significance E/ $\sigma_{\rm E}$
 - Topo-cluster seed: cell passing $|E|/\sigma_E>4$
 - Neighbouring cells iteratively collected
- Improvement: further suppress *out-of-time pile-up* using calorimeter time measurement
 <u>ATLAS-CONF-2023-042</u>

The cell 'time cut'

Requirement for seeding a cluster modified to:

 $\begin{cases} |E_{\text{cell}}|/\sigma_E > 4\\ |t_{\text{cell}}| \le 12.5 \text{ ns} \end{cases} \quad \text{OR} \quad |E_{\text{cell}}|/\sigma_E > X_{\text{UL}} \end{cases}$

► Cells passing $|E_{cell}|/\sigma_E$ >4 but failing $|t_{cell}|$ <12.5 ns are also vetoed from being collected as neighbouring cells

- Cut switched off for E significance greater than x_{UL} to avoid rejecting phase space potentially sensitive to Long-Lived-Particles signals with higher significance
 <u>ATLAS-CONF-2023-042</u>
 - Multiple *x*_{UL} tested:

 $X_{\rm UL} = 10, 20 \text{ and } 40$

- Multiple cuts compared on both data and MC
- \circ X_{UL} = 20 ultimately preferred

31/07/23

The time cut: an example

LAr Endcap C

Event 426221175

0 , ×0.025_∲ [MeV]

0.025 >

Energy

10²

0.6

One event from Run 2

Calorimeter cells

ATLAS Preliminary

-0.2

-0.4

Run 325713

All Cells

0.6

0.4

0.2

-0.2

-0.4

-0.6

sin¢ × Itan0I

cosφ × Itanθl

0.2

0.4

 $\cos\phi \times \operatorname{Itan}\theta$

' 10²

0.6

 \circ $\,$ Spurious contributions are removed

0.4

 $\cos\phi \times \text{Itan}\theta$

Signal cluster becomes cleaner

0.2

0

topo-clustering

with time cut

0.6

0.4

0.2

C

-0.2

-0.4

-0.6

6

-0.2

0

sin¢ × Itan0I

Moving towards the future

Topo-cluster calibration

- Calibrating cluster: correct for energy losses and calorimeter noncompensation
- Current version (Local hadronic Cell Weighting or LCW)
 - has been used widely for boosted analysis, e.g. jet sub-structure
 - LCW: identification of EM vs HAD clusters and calibration based on look-up table
- Wide interest in ML-based alternatives
 - Earlier results have looked at pointcloud + GNN approaches using cells and tracks

(e.g. ATL-PHYS-PUB-2022-040)

Topo-cluster calibration with Neural-Network

Summary

- Multiple improvements building on Run 2 acquired knowledge
 - To be applied during Run 3
 - As well as moving towards HL-LHC
- Reconstruction and calibration of low-level objects getting increasing interest
 - Thanks to ML developments as well as never-before used information
- Stay tuned for more developments to come!

Backup

ML scheme

