# Determination of Higgs boson properties and searches for new resonance using highly boosted objects with the ATLAS experiment

On behalf of the ATLAS Collaboration



### Prajita Bhattarai

- **BOOST 2023**
- Lawrence Berkeley National Laboratory
  - 08|01|2023







### BSM narrow resonance search in the $Z(\ell^+\ell^-)\gamma$ final state

Probing CP nature of the top-Higgs Yukawa coupling in  $t\bar{t}H \& tH$  events with  $H \rightarrow bb$  decays

### Study of $t\bar{t}bb \& t\bar{t}W$ background modeling for $t\bar{t}H$ analyses

### Outline

ANA-HIGG-2018-44

arXiv:2303.05974 Submitted to PLB

ATL-PHYS-PUB-2022-026

- BSM narrow resonance  $(m_x) \rightarrow Z(\ell^+ \ell^-)\gamma$  spin-0 and spin-2 high mass resonance predicted by Higgs-like model
- Old searches
  - ATLAS leptonic with 36.1 fb-1 13TeV data 250 GeV to 24 TeV constraints
  - <u>ATLAS leptonic</u> 139 fb-1 from 1.0 to 6.8 TeV constraints
  - <u>CMS hadronic</u> hadronic 35.9fb-1 from 1.0 to 6.8 TeV and combined from 0.35 to 4.0 TeV
- This result for 220 GeV to 3.4 TeV resonance with special treatment for boosted electrons/photons
- **Dataset**: Full Run-2 dataset (2015-2018): 139 fb-1
- **Signal MC:** +
  - **Spin o resonance ggF** simulated at LO with PowhegBox v1
    - mx = [200, 300, 500, 1000, 1500, 2000, 2500, 3000, 3500]GeV and width 4 MeV -
  - **Spin 2 resonance ggF and qqba**r states generated at LO with FxFx MadGraph/Pythia8
    - mx = [200, 250, 300, 500, 750, 1000, 1500, 2000, 2500, 3000, 3500] GeV and width 4 MeV -
- **Background :** relatively small
  - Dominant SM Z+ gamma simulated with Sherpa 2.2.2. at LO
  - Sub dominant Z+jets: data driven modeling with control region enhanced by jets misidentified as photons







ENERGY

Stanford

University





## **BSM High-mass resonance** $[Z\gamma]$

- + Leptonic & photonic triggers
- ✦ Two effects at high mass region
  - Merged electrons
  - Sub-leading electron often reconstructed as photon
- Dedicated MVA method based on a Gradient Boosting Decision Tree (GBDT) with track-based and shower shape variables as input
  - Additional new variables # of TRT hits and  $\Delta \phi$ between the cluster energy & associated track in presamples
- ✦ Signal efficiency (reco events after selection/expected) events)
  - Efficiency evaluated at different mass points & extrapolated using

 $\epsilon = a + b \cdot m_X + c \cdot \ln(m_X + d)$ 



| Selection                            | Muon                                                                                   | Electron               | Electron as photon                                                            | Photon           |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------|------------------|--|--|
| $p_{\mathrm{T}}$                     | $> 10 { m GeV}$                                                                        | $> 10 { m GeV}$        | $> 50 { m GeV}$                                                               | > 15 Ge          |  |  |
|                                      | < 9.7                                                                                  | < 2.47                 | < 2.47                                                                        | < 2.37           |  |  |
| 77                                   | < 2.1                                                                                  | Exclude $[1.37, 1.52]$ | Exclude $[1.37, 1.52]$                                                        | Exclude $[1.37]$ |  |  |
| $ d_0 /\sigma_{d_0}$                 | < 3                                                                                    | < 5                    |                                                                               |                  |  |  |
| $ \Delta z_0 \sin \theta $           | < 0.5  mm                                                                              | < 0.5  mm              |                                                                               |                  |  |  |
| Identification                       | Medium                                                                                 | Mixed                  | MVA                                                                           | Tight            |  |  |
| Isolation                            | Track-based Tight                                                                      | Track-based Tight      |                                                                               | Loose            |  |  |
| $\Delta R(\mathrm{track},\gamma)$    |                                                                                        |                        | < 0.1                                                                         |                  |  |  |
| $ee \text{ or } \mu\mu \text{ pair}$ | $\geq 2, \text{ oppo}$                                                                 | site charge            |                                                                               |                  |  |  |
| ex pair                              |                                                                                        |                        | $\Delta R(e,\gamma) < 1$                                                      |                  |  |  |
| e y pan                              |                                                                                        |                        | $ p_{\rm T}^e - p_{\rm T}^{\gamma}  / p_{\rm T}^{e \text{ or } \gamma} > 5\%$ |                  |  |  |
| Categorization                       | lepton pair closest to $m_Z = 91.2$ GeV, decide electron or muon channel               |                        |                                                                               |                  |  |  |
|                                      | $ m_{\ell\ell}^{\rm corrected} - m_Z  < 15 { m ~GeV}, m_Z = 91.2 { m ~GeV}$            |                        |                                                                               |                  |  |  |
| Event selections                     | Trigger match, overlap removal                                                         |                        |                                                                               |                  |  |  |
|                                      | $p_{\rm T}^{\gamma}/m_{Z\gamma} > 0.2,  { m SR:}  200 < m_{Z\gamma} < 3500   { m GeV}$ |                        |                                                                               |                  |  |  |





University

U.S. DEPARTMENT OF





## **BSM High-mass resonance** $[Z\gamma]$

- Analytical models to extract the signal and background yields from the  $m_{Z\gamma}$ distribution of the data.
- Signal Modelling
- $m_{Z\gamma}$  modeled by a Double-Sided Crystal Ball (DSCB) function
- Signal shape interpolated by simultaneously fitting all signal samples at different  $m_{Z\gamma}$
- Background : smooth falling distribution as a function of  $m_{Z_{\gamma}}$
- Total background distribution product of Z+gamma distribution in MC with exponential func for Z+jets/Z+ $\gamma$  obtained from data
- Analytical background function determined by reducing the bias (estimated using spurious signal) on the extracted signal yield
  - Dijet function used for both *ee* and  $\mu\mu$  channels

- 
$$f_{bkg}(x; b, a_0) = N(1 - x)^b x^{a_o}$$
, where  $x = m_{Z\gamma}/\sqrt{N}$ 





is normalization factor





Stanford

University



✦ Results

- An unbinned profile-likelihood-ratio fit
  - Both channels fitted simultaneously with the signal plus background models

| 95% CL upper limits of $\sigma(pp \to X) \cdot \mathcal{B}(X \to Z\gamma)$ | Observed                       | Ε    |
|----------------------------------------------------------------------------|--------------------------------|------|
| ggX spin-0                                                                 | $65.5 { m ~fb} - 0.6 { m ~fb}$ | 43.3 |
| ggX spin-2                                                                 | $77.4 { m ~fb} - 0.6 { m ~fb}$ | 50.8 |
| q ar q X spin-2                                                            | $76.1 { m ~fb} - 0.5 { m ~fb}$ | 50.3 |



Expected

- 3 fb 0.6 fb
- 8 fb 0.6 fb
- 3 fb 0.5 fb

### Upper L **ANA-HIGG-2018-44**



Lawrence Berkeley National Laboratory

 $(X) \times B(X)$ 

mit on  $\sigma(pp$ 

10

10-1

500

Stanford University

1500

1000

gg Spin 2



2500

2000



# **CP** Nature of top-Higgs Coupling

- Probe CP nature of top-Higgs Yukawa Coupling
- Recent full Run-2 results from <u>ATLAS</u> & <u>CMS</u> in  $t\bar{t}H$  events with  $H \rightarrow \gamma\gamma$  decays
  - Excludes pure CP-odd top-Higgs couplings at more than  $3\sigma$  significance
- + Admixture of CP-odd and CP-even could still be probed, any non-zero CP-odd coupling implies new physics

$$\mathscr{L}_{t\bar{t}H} = -\kappa_t y_t \phi \bar{\psi}(\cos\alpha + i\gamma_5 \sin\alpha) \psi_t, \qquad \text{to extract } \kappa_t' \& \alpha \text{ from data}$$

- For SM  $\kappa_{t} = 1 \& \alpha = 0$ ,
- For BSM anomalous value of  $\alpha$  changes diff-xs and  $\kappa_t$  changes the total cross-section + This measurement with Full Run-2 ATLAS dataset in tH small contribution &  $t\bar{t}H$  production mode with  $H \rightarrow b\bar{b}$  decays and final state where at least one quark decays semi leptonically to electrons or muons



### arXiv:2303.05974 Submitted to PLB

Stanford

University

ENERGY





- Signal Modelling
  - $t\bar{t}H$ 
    - SM samples generated with MadGraph at fixed order NLO QCD+EWk
    - samples with varying  $\kappa_{t}$  and  $\alpha$  generated using NLO Higgs Characterization model implemented in MadGraph5
  - tH : two subprocess (tWH & tHjb) generated with MadGraph
- ✦ Background
  - $t\bar{t} + b$  jets (or jets or light flavor jets)
    - Dominant
    - Simulated at NLO QCD with PowhegBox
    - ttbar+ bjets background normalization based on analyses data
  - Others <10% of background [W + jets, Z + jets,  $t\bar{t}W$ ,  $t\bar{t}Z$ , tZq, tWZ,  $t\bar{t}t\bar{t}$ , & VV] events All of these modeled with state-of-the-art MC simulations







Stanford

University

ENERGY



Lawrence Berkeley National Laboratory



8

# **CP** Nature of top-Higgs Coupling

### Event Preselection

- Two channels
  - Lepton + jets
    - At least 5 (4) jets (b-jets)
  - Dilepton
    - At least 3 (3) jets (b-jets)
    - $m_{\ell\ell} > 15$  GeV if SFOS outside Z mass window
- Jets
  - 70% b-tagging efficiency
  - For events with high p<sub>T</sub> Higgs boson
    - Large-R jets (R = 1.0) with

 $m_{iet}$ GeV > 50,  $p_T$  > 200 GeV & at least two

constituent jets with R = 0.4



✤ Two step event categorization

First based on jet multiplicity, b-tagging & large-R jets identify training &

### control regions

|                          | Dilepton                        |                        | ℓ+ jets                |                   |                                 |                                          |                                             |
|--------------------------|---------------------------------|------------------------|------------------------|-------------------|---------------------------------|------------------------------------------|---------------------------------------------|
| Region                   | $\mathrm{TR}^{\geq 4j,\geq 4b}$ | $CR_{hi}^{\geq 4j,3b}$ | $CR_{lo}^{\geq 4j,3b}$ | $CR_{hi}^{3j,3b}$ | $\mathrm{TR}^{\geq 6j,\geq 4b}$ | $CR_{hi}^{5j,\geq 4b} CR_{lo}^{5j,\geq}$ | <sup>4</sup> <i>b</i> TR <sub>boosted</sub> |
| N <sub>jets</sub>        |                                 | ≥ 4                    |                        | = 3               | ≥ 6                             | = 5                                      | ≥ 4                                         |
| @85%                     |                                 |                        |                        | ≥ 4               |                                 |                                          |                                             |
| @77%                     |                                 | _                      | -                      |                   |                                 | _                                        | $\geq 2^{\dagger}$                          |
| <sup>IV</sup> b-tag @70% | ≥ 4                             |                        | = 3                    |                   |                                 | ≥ 4                                      | -                                           |
| @60%                     | _                               | = 3                    | < 3                    | = 3               | _                               | ≥ 4 < 4                                  | _                                           |
| Nboosted cand.           |                                 | _                      | -                      |                   |                                 | 0                                        | ≥ 1                                         |
| Fit observable           | _                               |                        | Yield                  |                   | _                               | $\Delta R_{bb}^{\mathrm{avg}}$           | _                                           |
|                          |                                 |                        |                        |                   |                                 |                                          |                                             |

### **Boosted identified** with DNN

- In TR, two sets of BDT ٠
  - One to identify jets from top vs Higgs decay
  - Two for signal/bkg classification trained on SM  $t\bar{t}H$  samples with inputs as

BDT1 output, DNN output, b-tagging score and kinematic features

| Channel (TR)                                                         | Final SRs and CRs                                                                                                 | Classification BDT selection                                                                                                       | Fitted observable                                                      |  |  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| Dilepton (TR <sup><math>\geq 4j</math>, <math>\geq 4b</math></sup> ) | $CR_{no-reco}^{\geq 4j, \geq 4b}$ $CR^{\geq 4j, \geq 4b}$ $SR_{1}^{\geq 4j, \geq 4b}$ $SR_{2}^{\geq 4j, \geq 4b}$ | $-$ $BDT^{\geq 4j, \geq 4b} \in [-1, -0.086)$ $BDT^{\geq 4j, \geq 4b} \in [-0.086, 0.186)$ $BDT^{\geq 4j, \geq 4b} \in [0.186, 1]$ | $egin{array}{c} \Delta\eta_{\ell\ell}\ b_4\ b_4\ b_4\ b_4 \end{array}$ |  |  |
| $\ell$ +jets (TR <sup><math>\geq 6j, \geq 4b</math></sup> )          | $CR_{1}^{\geq 6j, \geq 4b}$ $CR_{2}^{\geq 6j, \geq 4b}$ $SR^{\geq 6j, \geq 4b}$                                   | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                            | $egin{array}{c} b_2 \ b_2 \ b_2 \ b_2 \end{array}$                     |  |  |
| $\ell$ +jets (TR <sub>boosted</sub> )                                | SR <sub>boosted</sub>                                                                                             | BDT <sup>boosted</sup> $\in [-0.05, 1]$                                                                                            | BDT <sup>boosted</sup>                                                 |  |  |
|                                                                      |                                                                                                                   |                                                                                                                                    |                                                                        |  |  |

arXiv:2303.05974 Submitted to PLB









### **CP Nature of top-Higgs Coupling** Large separation power

- Probing CP Nature
  - Dedicated CP-sensitive observables in various SR

lepton+jets SR & CRs

**Dilepton** SRs & CRs

$$b_2 = \frac{(\vec{p}_1 \times \hat{z}) \cdot (\vec{p}_2 \times \hat{z})}{|\vec{p}_1||\vec{p}_2|}, \text{ and } b_4 = \frac{(\vec{p}_1 \cdot \hat{z})(\vec{p}_2 \cdot \hat{z})}{|\vec{p}_1||\vec{p}_2|}$$

- Binned profile likelihood fit  $\mathscr{L}(\alpha, \kappa_{t}, \theta)$ with simultaneous fit of the all regions to determine  $\kappa_t \& \alpha$ 
  - Free floating  $t\bar{t} + \geq 1b$  background NF
- Measured parameters agree with **SM predictions**

$$\alpha = 11^{\circ+52^{\circ}}_{-73^{\circ}} \& \kappa_{t}' = 0.84^{+0.30}_{-0.46}$$





BOOST 08 01 2023

### Lepton + jets





Lawrence Berkeley National Laboratory

Stanford University

# tībb & tīW Background Modelling

### $+ t\bar{t}b\bar{b}$

- Important background for  $t\bar{t}H$  measurements in the multi-lepton final states and  $H \rightarrow b\bar{b}$  decay channel
- Understand these dominant backgrounds essential for SM (BSM) measurements in both regular and boosted regimes
- Also treatment of associated theory uncertainties for full Run-2  $t\bar{t}H$  ATLAS & CMS results combination





BOOST 08 01 2023

 $\bullet t\bar{t}W$ 

• Important background for  $t\bar{t}H$  measurements in the multi-lepton final states sensitive to  $H \rightarrow WW^*$  ( $\tau\tau$ , & ZZ\*) decays



### **ATL-PHYS-PUB-2022-026**

ENERGY



Lawrence Berkeley National Laboratory

Stanford University





# ttbb & ttW Background Modelling

- + *tībb* Comparison
  - 3 Samples
    - ▶ Powheg *ttbb* 
      - Nominal with 4 flavor scheme NLO and  $h_{bzd} = 5$  [variations set to 2]

Renormalization scale  $m_{T,i} = \sqrt{(m_i^2 + p_{T,i}^2)}$ , i is t or b quark

- Factorization scale depends on average transverse mass of outgoing partons
- Sherpa  $t\bar{t}b\bar{b}$ 
  - Same factorization and renormalization scale
- Inclusive  $t\bar{t}$ 
  - Generated using Powheg v2NLO and Madgraph+Pythia using 5 flavor scheme
  - Renormalization & factorization scale set to average  $m_T$ *t* & *t*



- Object/Fiducial Volume Selection: particle level comparisons
  - Truth jets using anti-kt4
  - **b**-jets contains at least 1 B-hadron with  $p_T > 5$  GeV
  - ▶ leptons/jets with  $|\eta| \le 2.5 \& p_{T,leptons (jets)} > 27(25) \text{ GeV}$
  - Two channels
    - Single lepton: exactly 1 lepton & at least 6 jets
    - Dilepton: exactly 2 leptons & at least 4 jets
- Comparison as a function of following observables

|                 | Variable                                                              | Description                                                                                                                                        | Cł         |
|-----------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                 | $\frac{\Delta R_{bb}^{\min\Delta R}}{m^{\min\Delta R}}$               | $\Delta R$ of the two <i>b</i> -jets in the event which are closest in $\Delta R$<br>Invariant mass of the two <i>b</i> jets closest in $\Delta R$ | dil        |
| a               | $N_{ m jets}$<br>Light jet $p_{ m T}$                                 | Number of jets in the event (all jet flavours)<br>Transverse momentum of the light jets in the event                                               | dil<br>dil |
|                 | $N_{b	ext{-jets}}\ H_{	ext{T}}^{	ext{jets}}$                          | Number of <i>b</i> -jets in the event<br>Scalar sum of $p_{\rm T}$ of jets in the event (all jet flavours)                                         | sir<br>sir |
| <sub>7</sub> of | Leading <i>b</i> -jet $p_{\rm T}$<br>Fourth <i>b</i> -jet $p_{\rm T}$ | $p_{\rm T}$ of <i>b</i> -jet with largest $p_{\rm T}$ in the event $p_{\rm T}$ of <i>b</i> -jet with fourth largest $p_{\rm T}$ in the event       | sir<br>sir |

### ATL-PHYS-PUB-2022-026















### + $t\bar{t}b\bar{b}$ Comparison





BOOST 08 01 2023

## ttbb & ttW Background Modelling

- Difference between predictions exceed uncertainties
- For combination with CMS the latest ones with smaller uncertainties to be used



U.S. DEPARTMENT OF

Stanford

University











- $\bullet t\bar{t}W$ 
  - 4 Samples
    - Nominal Inclusive Sherpa 2.2.10 with NNPDF3.0 NLO PDF
      - NLO ME up to one additional Parton & LO up to 2 additional pistons with Comix and OpenLoops
      - Renormalization & factorization scale at

 $\mu_R = \mu_F = H_T/2$ 

- Additional Sherpa 2.2.10 sample with EW corrections
- Alternative MadGraph5\_aMC@NLO 2.3.3 at NLO up to 1 additional parton emission
  - Same  $\mu_R/\mu_F$  scale and PDF set as nominal
- Additional FxFx MadGraph5\_aMC@NLO 2.3.3 sample



## ttbb & ttW Background Modelling

### • Object/Event Selection

### **Object** reconstruction and selection

Jets: build from stable final state particles with anti- $k_t$  algorithm with radius R = 0.4the prompt "dressed" leptons and neutrinos are vetoed from jet *b*-jets: Jets ghost matched to *B*-hadrons with  $p_{\rm T} > 5 {
m GeV}$ Jets and b-Jets:  $p_{\rm T} > 25$  GeV and  $|\eta| < 2.5$ light leptons (electrons and muons) dressed with photons within  $\Delta R < 0.1$ Overlap removal: remove light lepton if  $\Delta R(jet, lepton) < 0.4$ leptons:  $|\eta| < 2.5$  and  $p_{\rm T} > 25(20)$  GeV for leading (subleading) lepton hadronically decaying  $\tau$  leptons (before decay):  $p_{\rm T} > 25$  GeV and  $|\eta| < 2.5$ 

| Event selection for $2\ell SS$     | Region | Selection                                                  |
|------------------------------------|--------|------------------------------------------------------------|
| exactly 2 leptons with same charge | 1      | $N_{b-\text{jets}} = 1, N_{\text{jets}} \geq 4$            |
| $N_{ m jets} \ge 3$                | 2      | $\mid N_{b-\text{jets}} \geq 2, N_{\text{jets}} \geq 4, 0$ |
| $N_{b-\text{jets}} \ge 1$          | 3      | $ \mid N_{b-\text{jets}} = 1, N_{\text{jets}} = 3, 0 $     |
| ~                                  | 4      | $\mid N_{b-\text{jets}} \geq 2, N_{\text{jets}} = 3, 0$ -  |
| <ul> <li>Comparison</li> </ul>     | 5      | $\mid N_{b-\text{jets}} \geq 1, N_{\text{jets}} \geq 3, 1$ |

| Variable                          | Description                                                               | Re |
|-----------------------------------|---------------------------------------------------------------------------|----|
| $\overline{N_{jets}}$             | Jet multiplicity                                                          | 1  |
| $N_{b-jets}$                      | Number of $b$ -jets                                                       | 1  |
| $H_{ m T}^{ m jets}$              | Scalar sum of transverse momentum of all jets in the event                | 1, |
| $p_{\mathrm{T}}^{b0}$             | Leading $b$ -jet transverse momentum                                      |    |
| $p_T^{\ell 0}$                    | Leading lepton transverse momentum                                        | 1  |
| $\Delta R_{\ell 0 \mathrm{jets}}$ | Minimum angular separation between the leading lepton and the nearest jet |    |
| $\Delta R_{\ell 0 \ell 1}$        | Angular distance between the two leptons                                  | 1  |
| $max \eta_\ell $                  | Value of the highest lepton's pseudorapidity in the event                 |    |

### ATL-PHYS-PUB-2022-026

Stanford

University









# ttbb & ttW Background Modelling

### $\bullet t\bar{t}W$

- Generally, differences between different model predictions mostly within the scale uncertainty band
- Inclusion of tree-level EW effects only causes minor shape effects but can lead to up to 20% difference in cross section at high jet multiplicity.
- Including the FxFx algorithm into the MG5\_aMC@NLO+Pythia8 prediction leads to significant effects in all regions, especially at low HT.
- Comparison to be used for future comparisons with CMS to derive a theory uncertainty model for a combination measurement

### <u>ATL-PHYS-PUB-2022-026</u>





University







- Presented three results from ATLAS related to measuring Higgs properties with boosted objects
- + BSM narrow resonance search in the  $Z(\ell^+\ell^-)\gamma$  final state
  - Uses special boosted electron identification technique to place limits form 0.35 to 4.0 TeV
- Probing CP nature of the top-Higgs Yukawa coupling in  $t\bar{t}H \& tH$  events with  $H \to b\bar{b}$  decays
  - Uses boosted + regular signal regions to extract CP odd parameters
- + Study of  $t\bar{t}b\bar{b}$  &  $t\bar{t}W$  background modeling for  $t\bar{t}H$  analyses
  - Comparison of different generators and uncertainties useful for future measurements and combination



### Conclusion





Lawrence Berkeley National Laboratory

Stanford University







Back up

## **BSM High-mass resonance** [Z<sub>\gamma</sub>]

- + Dedicated MVA method based on a Gradient Boosting Decision Tree (GBDT) with track-based and shower shape variables as input
  - Additional new variables # of TRT hits and  $\Delta \phi$  between the cluster energy & associated track in presamples Input variables optimized based on separation power compared at  $m_X = 5$  TeV mass peak and background -
  - sideband
  - 99% signal efficiency & 76% background rejection
- Signal efficiency (reco events after selection/expected events)
  - Efficiency evaluated at different mass points & extrapolated using

 $\epsilon = a + b \cdot m_{x} + c \cdot \ln(m_{x} + d)$ 

Differences in different model related to the different distributions of the transverse momentum and pseudorapidity of the *Z* boson and photon.





Stanford

University





### Overlap Removal

- For electrons,
  - If leading object has pT < 500 GeV, electron clusters closer than  $|\Delta \eta| < 0.075$  and  $|\Delta \phi| < 0.125$  are removed.
  - If leading electron has pT > 500 GeV, electron clusters closer than  $|\Delta \eta| < 0.05$  and  $|\Delta \phi| < 0.05$  are removed.
  - If the track of the electron candidate is within a distance  $\Delta R < 0.02$  of the track of a muon candidate, the electron is rejected.
- Photon candidates are rejected within  $\Delta R < 0.3$  of the selected lepton pair to suppresses the FSR  $Z + \gamma$ events and additional possible contributions from photons mis-identified as electrons.
- There is no overlap removal applied between the ordinary electron and the electron mis-reconstructed as a photon because of their closeness to each other.





### **ANA-HIGG-2018-44**









## **BSM High-mass resonance** $[Z\gamma]$

Events / 10 GeV

Significance

✦ Systematic Uncertainty

Dominant from background modeling in both channels 

| Category                              | $\mu\mu\gamma$ | $ee\gamma$   |  |  |
|---------------------------------------|----------------|--------------|--|--|
| Luminosity                            | 0.83%          |              |  |  |
| Signal Efficiency                     |                |              |  |  |
| Photon ID/ISO/TRIG efficiency         | 1.0-1.5%       | 1.0-1.7%     |  |  |
| Muon ISO efficiency                   | 1.0-1.2%       | _            |  |  |
| Muon RECO efficiency                  | 0.22-6%        | _            |  |  |
| Muon TTVA efficiency                  | 0.14 - 0.23%   | —            |  |  |
| Muon TRIG efficiency                  | 0.6-1.0%       | _            |  |  |
| Electron ID/ISO/RECO/TRIG efficiency  | —              | 2.9-4%       |  |  |
| Customized electron ID efficiency     | —              | 1.0-1.1%     |  |  |
| Pile-up                               | < 0.016%       | _            |  |  |
| Signal modelling on $\mu_{CB}$        |                |              |  |  |
| Electron and photon energy scale      | 0.33 - 0.4%    | 0.15 - 0.7%  |  |  |
| Muon momentum scale/sagitta bias      | < 0.023%       | _            |  |  |
| Signal modelling or                   | $\sigma_{CB}$  |              |  |  |
| Electron and photon energy resolution | 2.5-10%        | 7-60%        |  |  |
| Muon ID resolution                    | 0.4-1.8%       | _            |  |  |
| Muon MS resolution                    | 0.6-1.9%       | _            |  |  |
| Extra Smearing on muon $p_T$          | 2.4%           |              |  |  |
| Background mode                       | lling          |              |  |  |
| Spurious signal                       | 0.01 - 10.00   | 0.003 - 9.44 |  |  |

SLAC NATIONAL ACCELERATOR LABORATORY

### BOOST 08 01 2023

✦ An unbinned profile-likelihood-ratio fit

Both channels fitted simultaneously with the signal plus background models •







Lawrence Berkeley National Laboratory

Stanford University





# **CP** Nature of top-Higgs Coupling

### Signal Modelling

- $t\bar{t}H$ 
  - SM samples generated with MadGraph5\_aMC@NLO at fixed order NLO QCD+EWk
    - Renormalization and factorization scale set to  $\sqrt[3]{m_T(t)} \cdot m_T(\bar{t} \cdot m_T(H))$
  - with FeynRules
  - K-factor of 1.1 derived from fixed order calculation applied to all ttH samples
- tH : two subprocess generated with MadGraph5\_aMC@NLO.
  - ▶ tWH
  - ▶ tHjb

✦ Background

- $t\bar{t} + b$  jets (or jets or light flavor jets)
  - Dominant
  - Simulated at NLO QCD with PowhegBoxRes (PowhegBox v2)
  - ttbar+ bjets background normalization based on analyses data
  - 100% uncertainty included on ttbar+c (or light flavor) normalization
- Others <10% of background [W + jets, Z + jets,  $t\bar{t}W$ ,  $t\bar{t}Z$ , tZq, tWZ,  $t\bar{t}t\bar{t}$ , & VV] events
  - All of these modeled with state-of-the-art MC simulations



• samples with varying  $\kappa_t$  and  $\alpha$  generated using NLO Higgs Characterization model implemented in MadGraph5\_aMC@NLO



arXiv:2303.05974 Submitted to PLB

Stanford

University

Lawrence Berkeley National Laboratory



ENERGY



# **CP Nature of top-Higgs Coupling**

- Event Preselection
  - Two channels
    - Lepton + jets
    - Dilepton
  - Electron:
    - ▶  $p_T > 10$  GeV,  $|\eta| < 2.47$  excluding transition region
    - "Tight" ID
  - Muon
    - $p_T > 10$  GeV,  $|\eta| < 2.5$
    - Medium" ID
  - For Dilepton channel
    - $m_{\ell\ell} > 15 \text{ GeV}$
    - ▶ If SFOS outside Z mass window
  - Jets
    - Lepton + jet
      - At least 5 (4) jets (b-jets)
    - Dilepton
      - At least 3 (3) jets (b-jets)
    - ▶ 70% b-tagging efficiency
    - ▶ For events with high p<sub>T</sub> Higgs boson
      - Large-R jets (R = 1.0) with  $m_{jet}$ GeV >  $50p_T > 200$

GeV & at least two constituent jets with R = 0.4



| Uncertainty source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Delta \alpha$ [°] | Uncertainty source                                                                                                                       | $\Delta \kappa'_t$ |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|
| Process modelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | Process modelling                                                                                                                        |                    |       |
| Signal modelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +8.8 -14            | Signal modelling                                                                                                                         | +0.10              | -0.10 |
| $t\bar{t} + \ge 1b$ modelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | $t\overline{t} + \ge 1b$ modelling                                                                                                       |                    |       |
| $t\bar{t} + \ge 1b \text{ 4V5 FS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +23 -37             | $t\overline{t} + \ge 1b \text{ 4V5 FS}$                                                                                                  | +0.08              | -0.23 |
| $t\bar{t} + \geq 1b$ NLO matching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +22 -33             | $t\overline{t} + \ge 1b$ NLO matching                                                                                                    | +0.15              | -0.30 |
| $t\bar{t} + \ge 1b$ fractions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +14 -21             | $t\overline{t} + \ge 1b$ fractions                                                                                                       | +0.09              | -0.21 |
| $t\bar{t} + \geq 1b$ FSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +5.2 -9.9           | $t\overline{t} + \ge 1b$ FSR                                                                                                             | +0.01              | -0.02 |
| $t\overline{t} + \ge 1b$ PS & hadronisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +16 -24             | $t\overline{t} + \ge 1b \text{ PS } \&$ hadronisation                                                                                    | +0.09              | -0.20 |
| $t\bar{t} + \geq 1b p_{T}^{b\bar{b}}$ shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +5.4 -4.6           | $t\overline{t} + \ge 1b p_{\rm T}^{bb}$ shape                                                                                            | +0.07              | -0.11 |
| $t\overline{t} + \ge 1b$ ISR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +14 -24             | $t\overline{t} + \ge 1b$ ISR                                                                                                             | +0.07              | -0.17 |
| $t\bar{t} + \geq 1c$ modelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +6.6 -11            | $t\overline{t} + \ge 1c$ modelling                                                                                                       | +0.04              | -0.10 |
| $t\bar{t} + light modelling$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +2.5 -4.7           | $t\bar{t}$ + light modelling                                                                                                             | +0.00              | -0.01 |
| <i>b</i> -tagging efficiency and mis-tag rates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | <i>b</i> -tagging efficiency and mis-tag rates                                                                                           |                    |       |
| <i>b</i> -tagging efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +8.7 -15            | <i>b</i> -tagging efficiency                                                                                                             | +0.06              | -0.12 |
| <i>c</i> -mis-tag rates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +6.7 -11            | <i>c</i> -mis-tag rates                                                                                                                  | +0.03              | -0.07 |
| <i>l</i> -mis-tag rates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +2.3 -2.7           | <i>l</i> -mis-tag rates                                                                                                                  | +0.01              | -0.03 |
| Jet energy scale and resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | Jet energy scale and resolution                                                                                                          |                    |       |
| <i>b</i> -iet energy scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +1.6 -3.8           | <i>b</i> -jet energy scale                                                                                                               | +0.02              | -0.02 |
| Jet energy scale (flavour)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +7.8 -11            | Jet energy scale (flavour)                                                                                                               | +0.01              | -0.05 |
| Jet energy scale (pileup)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +5.2 -7.9           | Jet energy scale (pileup)                                                                                                                | +0.02              | -0.05 |
| Jet energy scale (remaining)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +8.1 -13            | Jet energy scale (remaining)                                                                                                             | +0.04              | -0.08 |
| Jet energy resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +5.7 -9.3           | Jet energy resolution                                                                                                                    | +0.03              | -0.09 |
| Luminosity <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | Luminosity                                                                                                                               | $\leq \pm 0$       | .01   |
| Other sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +4.9 -8             | Other sources                                                                                                                            | +0.03              | -0.07 |
| Total systematic uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +41 -54             | Total systematic uncertainty                                                                                                             | +0.29              | -0.45 |
| $\frac{1}{\sqrt{2}} + \sum \frac{1}{\sqrt{2}} + \sum \frac{1}$ | .0.0 12             | $= t\overline{t} + \ge 1b \text{ normalisation}$                                                                                         | +0.05              | -0.15 |
| $ii + \geq 10$ normalisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +0.2 -13            | lpha                                                                                                                                     | +0.08              | -0.07 |
| K <sub>t</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +17 -33             | - Total statistical uncertainty                                                                                                          | +0.09              | -0.10 |
| Total statistical uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +32 -49             |                                                                                                                                          |                    |       |
| Total uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +52 -73             | - Total uncertainty<br>- arXiv:2202.0507/ Submitt                                                                                        | +0.30              | -0.46 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | $- \alpha \alpha$ |                    |       |

Stanford

University



Lawrence Berkeley National Laboratory



22