East Bay BOOST 2023

The application of neural networks for the calibration of topological cell clusters in the **ATLAS calorimeters**

Principal ATLAS calorimeter signal: topological cell clusters Eur.Phys.J.C 77 (2017) 490

Topo-clusters – 3-dimensional clusters of topologically connected cell signals collected by following spatial signal significance patterns Massless pseudo-particle representation with basic signal E_{clus}^{EM} , rapidity y_{clus}^{EM} and azimuth φ_{clus}^{EM} at electromagnetic (EM) energy scale Cluster moments comprise shapes, signal-to-noise, compactness, location, internal time structures – sensitive to signal source

Local topo-cluster calibration with Monte Carlo simulations

- **1. Classification** look up likelihood for cluster being of EM nature $0 \leq \mathcal{P}_{clus}^{EM} \leq 1$
- **2. Hadronic calibration** apply cell signal weights to correct hadronic signals to EM scale ($e/h > 1 \xrightarrow{\text{calibrate to}} e/h = 1$)

Out-of-cluster corrections – correct for energy lost due to cells missed in cluster formation

(2nd pass):

- 4. Dead material corrections correct for energy losses in inactive material in the proximity of the topo-cluster
- **1. No explicit classification** variables used to determine \mathcal{P}_{clus}^{EM} added to feature set \mathfrak{D}_{clus}^{ML}
- **2. Hadronic calibration** apply scale factor to cluster signal E_{clus}^{EM} to measure $E_{\rm clus}^{\rm dep}$

Calibration from response predictions $\mathcal{R}_{clus}^{ML}(\mathfrak{D}_{clus}^{ML})$ obtained by regression fits $\mathcal{R}_{clus}^{ML}(\mathfrak{D}_{clus}^{ML}) \mapsto \mathcal{R}_{clus}^{EM}$ employing feature set \mathfrak{D}_{clus}^{ML}

Common Network Feature Set \mathfrak{D}_{clus}^{ML}

 $\mathfrak{D}_{clus}^{ML} = \left\{ E_{clus}^{EM}, y_{clus}^{EM}, t_{clus}, Var_{clus}(t_{cell}), \zeta_{clus}^{EM}, f_{emc}, |\vec{c}_{clus}|, \lambda_{clus}, \langle \mathfrak{m}_{long}^2 \rangle, \langle \mathfrak{m}_{lat}^2 \rangle, \rho_{clus}, p_T D, f_{iso}, \mu, N_{PV} \right\}$

Eur.Phys.J.C 77 (2017) 490

- Regional <u>signal characteristics</u>: E_{clus}^{EM} , y_{clus}^{EM} at EM scale
- Cluster <u>signal time</u> t_{clus} ; <u>internal time structure</u> $Var_{clus}(t_{cell}) = \langle t_{cell}^2 \rangle t_{clus}^2$
- <u>Significance</u> $\zeta_{clus}^{EM} = E_{clus}^{EM} / \sigma_{clus}^{EM}$ (noise σ_{clus}^{EM} includes pile-up fluctuations for LHC Run 2)

Negative log-likelihood loss function with

Shower development

- Sharing, location EM calorimeter signal fraction f_{emc} , distance to vertex $|\vec{c}_{clus}|$, depth in calorimeter λ_{clus}
- <u>Compactness</u> spatial energy dispersion along $\langle \mathfrak{m}_{long}^2 \rangle$, perpendicular $\langle \mathfrak{m}_{lat}^2 \rangle$ to shower

axis; signal density $\rho_{\text{clus}} = \langle \rho_{\text{cell}} \rangle$; core density measure $p_{\text{T}}D = \sqrt{\sum_{E_{\text{cell}}>0} E_{\text{cell}}^2 / \sum_{E_{\text{cell}}>0} E_{\text{cell}}^2 / \sum_{E_{\text{cell}}>0}$

Event environment

- Topology/neighboring signals <u>cluster isolation</u> f_{iso}
- Pile-up <u>out-of-time</u> \mapsto number of pile-up interactions/bunch crossing μ ; <u>in-time</u> \mapsto
- number of reconstructed primary vertices N_{PV}

Performance Comparisons

Signal linearity

Peter Loch, for the ATLAS collaboration

ATL-PHYS-PUB-2023-019

