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Introduction and Motivation
▸ The jet substructure studies allows to test fundamental

predictions of QCD.
▸ Recently, CMS measured jet substructure for Z + jet and

jet + jet final states at
√
S = 13 TeV

▸ The resummed predictions for jet angularities λ1
α at

NLO +NLL′ accuracy level are available as a plugin to
SHERPA

▸ The RHIC experiment is now now taking data at
√
S = 200 GeV

▸ What is the difference between LHC and RHIC physics and how
it will affect the jet substructure?

▸ We aim to use available NLO +NLL′ implementation to make
pheomenological predictions for future RHIC measurements as
well as impement some additional observables like angular
decorrelation δϕ.

The NLO +NLL′ predictios for jet angularities in the approximation of
massless partons were obtained in collaboration with S. Caletti, S. Marzani, D.
Reichelt, S. Schumann, G. Soyez, V. Theeuwes, see 2112.09545, 2104.06920
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Introduction: CAESAR formalism

The cumulative cross section for a generic observable v can be
written as a sum over partonic channels δ:

Σres(v) =∑
δ

Σδ
res(v) , with

Σδ
res(v) = ∫ dBδ

dσδ
dBδ

exp [−∑
l∈δ

RBδl (L)]P
Bδ(L)SBδ(L)FBδ(L)Hδ(Bδ) ,

where L = − ln(v), dσδ

dBδ is the differential Born cross section, Rl is
the collinear radiator for the hard legs l , P is the ratio of PDFs, S is
the soft function, F is the multiple emission function and H stands
for the corresponding kinematic cuts on the Born process. For more
details on CAESAR approach, see hep-ph/0407286

For CAESAR implementation of jet angularities for Z + jet and jet + jet
production see 2104.06920 and 2112.09545.
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Observable definition
The jet angularity is defined as

λα = ∑
i∈jet

pt,i

pt,jet
(
∆Rij

R
)
α

, α > 0

The angular decorrelation is defined as

∆ϕp1,p2 = arccos(
p⃗1 ⋅ p⃗2

∣p⃗1∣∣p⃗2∣
)

SoftDrop grooming condition:

min(pti ,ptj)
pti + ptj

> zcut (
∆Rij

R
)
β

▸ The LHC measurements LHA (λ1/2), Jet Width (λ1), Jet
Thrust (λ2), see, for example, 2109.03340

▸ The theoretical predictions, see, for example 2112.09545,
2104.06920 and 2005.12279

▸ RHIC measurements?
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Previous results for λα = ∑i zi (∆i,jet

R )
α
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Comparison against recent CMS data for the Jet Thrust angularity,
pT ,jet ∈ [120,150] GeV. Magenta band correspond to transfer matrix
approach.

Theory: 2112.09545, 2104.06920 (in collaboration with S. Caletti, S.
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Parton to hadron level transition; credits G. Soyez
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dijet events with R = 0.8 and pT ,jet ∈ [120,150] GeV.
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Previous results for λα = ∑i zi (∆i,jet

R )
α
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λα = ∑i zi (∆i,jet

R )
α

at RHIC energy, SHERPA Res. + MC
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SHERPA: comparison bettween LO +NLL′ predictions, LO and NLO MC
simulations. Mathcing to fixed order results and higher order corrections
change cross section but do not affect shape of λα (preliminary).
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λα = ∑i zi (∆i,jet

R )
α

at RHIC energy, Res. vs. MC
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Comparison between resummed predictions matched to fixed order results
(SHERPA LO +NLL′ accuracy level) against MC simulations (preliminary)
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λα = ∑i zi (∆i,jet

R )
α

at RHIC energy, Detroit PYTHIA tune
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Shall one make new tunes?
▸ There is a Detroit

PYTHIA tune 2110.09447
for RHIC, but it mostly
affect MPI

▸ However, MPI are almost
absent at RHIC energies

▸ Main contribution comes
from hadronization
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λα = ∑i zi (∆i,jet

R )
α

at RHIC energy, hadronisation and dacays
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Angularities at RHIC energies are strongly affected by hadronization and
decay of produced hadrons in case of jets containing a single hadron, see
also Lee et al in 1901.09095. (preliminary)
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Hadronization and Lund string model
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New tunes?
▸ There is a Detroit

PYTHIA tune 2110.09447
designed to describe
RHIC data, but it mostly
affect MPI

▸ However, MPI are almost
absent at RHIC energies√
S is too small.

▸ Lund symmetric
fragmentation function

f (z) ∼ (1 − z)
a

z
exp (−bm2/z)

▸ Hadron formation time

⟨τ2⟩ = 1 + a
bκ2 ≈ 2 fm
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Hadronization and Lund string model
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Hadronization and Lund string model
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Is δϕ affected by NP-corrections?
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Angular decorrelation
▸ ∆ϕ is an azimthal angle

between two most
energetic jets (or between
a leading jet and a
leading photon)

▸ Unlike λα is more
sensetive to radiation
pattern

▸ Which PS-model would
work better?
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What about JEWEL and Q-PYTHIA without medium effects?
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Angular decorrelation
▸ Before studying medium

effects better
understanding of vaccum
is needed

▸ Both Q-PYTHIA and
JEWEL are based upon
PYTHIA6 (officialy not
supported any more)

▸ However, there is a huge
distance between
PYTHIA8 and PYTHIA6
(MPI, interleaved
evolution, PS-model etc).
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What is the role of medium effects?
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What is the role of medium effects?
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Summary and next steps:

Current results
▸ Resummed predictions for both groomed and ungroomed angularities λα

(α ∈ [1/2,1,2]) at LO +NLL′ are ready, the NLO +NLL′ requires some
more running

▸ We found that angularities λα at RHIC energies can be used to study
hadronization and produce new MC tunes

▸ On the other hand, angular decorrelation δϕ, can be used to test various
parton shower models

▸ JEWEL and Q-PYTHIA with default parameter strongly differ from LHC
MC applied to RHIC setup

▸ δϕ simulated with JEWEL shows strong dependence on the medium
temperature

▸ Correct the resummed predictions for non-perturbative effects using
corresponding parton-to-hadron transition matrices

▸ What is the main source of the differences between Q-PYTHIA, JEWEL
and LHC MC tools? What about Jetscape?

▸ RHIC data is needed!
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Thank you for your attention!
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