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Motivation

@ We know that jet taggers based on low
level info usually can outperform high level
features, at least for W/Z /top jets

o But these low level taggers are hard to
calibrate and use in practice

@ Most large radius jet tagging studies have
focused on those with N = 2,3 hard
subjets (ie W/Z/H or top)

e are existing methods enough in extreme
(N > 3) conditions to do jet tagging?

e can we learn from the “low level” taggers,
which directly use jet constituents, some
“high level” features that we can use? I consider myself ing of a moral

@ We compare the performance of various taggers, using either using high level
observables or low level constituents, and then attempt to bridge the gap
between them

@ This work contributes to a growing body of work in HEP that uses ML to
teach ourselves something, instead of the more usual inverse
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Datasets

o We generate 7 classes of dataset that we classify by their ‘pronginess’ (how
many hard sub-jets there are) using AMC@QNLO+PYTHIA8+DELPHES
e We use a uniform granularity of 0.0125 in 7 and ¢ for the calorimeter
@ We have two classes for N=4, which we call N=4q and N=4b, to investigate
dependence on heavy flavor (more on this later)
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@ We require a high pr photon to recoil off the system to give it sufficient
boost to be fully captured by a single R=1.2 anti-kT jet

@ We also require that all quarks are AR matched to the jet

@ We use the first 230 input constituents, more than enough for all of the jets,
and zero-pad as necessary



Dataset Balancing

@ In order to keep performance ~flat against mass and pt, we selectively reject

events until we have ~flat distributions
This ensures that the ML methods do not learn residual effects due to these
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High Level Observables

@ We use N-subjettiness ' > Thaleretal
1 :
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k

as a basis of easily interpretable & familiar substructure variables that forms
our baseline

e We input a total of 135 of these variables, with N =1,...,45, § = {1/2,1,2},
as well as jet mass, into a fully connected dense NN, which we label DNN3¢
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Particle Flow Networks » xomise-ca

Particles Observable
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where ¢ is the latent space acting on the constituent 3-vectors and F the jet level
latent space
@ Based on DeepSets ( *zhereta ), PFNs operate directly on jet constituents

@ Naturally permutation invariant and capable of handling variable-length sets
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Attention Is All You Need »veswanicea

@ In NLP, “Attention” mechanisms are now dominant,
replacing RNNs / LSTMs in most applications
o Process sentences as a sequence of words to perform
translation, prediction, etc.
o Reordering the inputs results in the same reordering of the
attention matrices: permutation invariant
@ In our case; input the full sequence of jet constituents to
multiple self-attention heads in parallel
e In principle these networks can become large, but we focus

on architectures with similar numbers of free parameters
(O(1M)) as the other methods

@ Transformer based architectures are now state of the art on
many tasks in HEP, including event reconstruction ' > Fentonetal
top-tagging *uetal | and pileup mitigation > Maieretal

Michael Fenton (UCI) Resolving Extreme Jet Substructure August 2, 2023 7/19


https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2106.03898
https://arxiv.org/abs/2202.03772
https://arxiv.org/abs/2107.02779

mTransformer acc: 91.27+0.31% = PFN acc: 89.19+0.23% ™mDNN;36 acc: 86.90+0.20%
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@ We see good performance for all categories and a consistent story between
architectures

@ Transformer > PFN > DNN
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Initial Performance (3/3)
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@ Confusion matrices; ie which categories are mistaken for each other?

@ Perhaps surprisingly, 4b and 4q are confused less often than 4b and 3,
suggesting more is being learned than just "pronginess”, even for DNN that
takes 7 variables as input

@ Can we understand what information the networks are relying on?
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Energy Flow Polynomials » kemscea

@ A complete basis for jet substructure, easily represented by simple graphs
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We further introduce an angular weighting factor 8 = {1/2,1,2} which we attach
to the 6 terms for each graph with N=5 or fewer nodes, giving us a total of 162
observables

Michael Fenton (UCI) Resolving Extreme Jet Substructure August 2, 2023 11/19


https://arxiv.org/abs/1712.07124

Bridging the Gap with LASSO & rissin

@ We can then add these EFP observables to the
DNN to see if we can bridge the gap to the PFN
and Transformer models

@ But this blunt force approach isn’t that useful
practically; what we want is the minimal set of
observables that can match the performance

— LASSO: "least absolute shrinkage and selection
operator”

o Add a learnable parameter per input observable
that shrinks to zero if the observable is not useful
for classification

209
@ Loss L=—logf(Y, Ypred) + A7 |&il
e where —log f(Y, Yprea) is the negative log

likelihood and A is a hyperparameter of the
network (A = 5)

See also: Average Decision Ordering = * arXiv:2010.11998:
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Bridging the Gap Results

mTransformer acc: 91.27+0.31% = PFN acc: 89.19+0.23% mDNN;36 acc: 86.90+0.20%
mDNN,gg9 acc: 89.23+0.26% mDNN3; acc: 89.11+0.32%
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@ All 299 variables achieve the ~same performance as the PFN, but a gap to
the Transformer model remains

o We find that with just 31 LASSO-selected variables, we can achieve the same
overall performance as the larger model

@ Note though that performance is not identical in each class!
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mTransformer acc: 91.27+0.31% = PFN acc: 89.19+0.23% mDNN;36 acc: 86.90+0.20%
mDNN,qg acc: 89.23+0.26% mDNN3; acc: 89.11+0.32%
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Selected Observables
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@ Lots of N = 2 correlators
@ Many EFP’s do not, by themselves, show good separation between classes,
yet are ranked higher than 7’s which show more obvious differences

@ Most important 7 variable is 71, which is a direct measaure of collimation
@ Other highly ranked 7 variables are mostly the “usual suspects”, ie N < 4
@ Lots of high angular weighting exponents
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@ Ranking plot for specific classes (more in backup)
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Zooming in on 4b vs 4q
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@ To understand the 4b vs 4q performance, we generate alternative G — HH /
G — WW samples whereby the Higgs and W masses are swapped

@ We see that 4qMy is usually classified as 4b, indicating the importance of the
intermediate masses

o For 4bMyy, we find mixed results; the low-level networks often guess N=3, in
which there is both a W and a b

e Including b-tagging information directly in the networks may improve
performance
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Summary

@ We have investigated the 3 N=1 © N=2 £ N=3 3 Nedb C Nedq £ N=G — N8
performance of both low level and
high level jet taggers in extreme
conditions, with up to N = 8 hard
subjets

@ The low level taggers typically out
perform the “traditional” high level -
taggers i

@ Some of the gap can be filled by /ﬁﬁ“t o
cleverly selecting/adding new i %\ i
variables, but still Transformer "Erpos (32, 0) * 6P 4,5, 0) 73
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MC Details

N hard sub-jets | Process My M, M, Me¢ | requirements
1 q3 — q§ p+ > 1000
2 qGg— G — WTtW- 80.4 2200

264.5 2200
440.8 2500
617.1 2800
3 qG — G — tt 300 2200
500 2500
700 3000
4b qG — vG — vhh 400 | p7. > 1000
600 | p. > 1000
800 | p. > 1000
4q qG — G - yWTW~— 400 | pl > 1000
600 | p. > 1000
800 | py. > 1000
6 qq = vG — ~tt 400 | p7. > 1000
600 | p} > 1000
800 | pq. > 1000
8 qq — tth 100 125 p+ > 1000
125 175 p+ > 1000
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Network Details

Model Description No. of Params. Accuracy

Transformer |ransformer Network trained on 1,388,807  91.27 + 0.31 %
the jet constituents.
PEN Part.icle—FIow. Network trained on 1.205.895 89.10 -+ 023 %
the jet constituents.
Fully-connected neural network
DNN36 trained on the 135 N-subjettiness 2,732,519 86.90 + 0.20 %
observables and the norm. jet mass.
Fully-connected neural network
trained on the 135 N-subjettiness,
observables the normalized jet mass,
and the full set of EFP observables.
Fully-connected neural network
DNN3; trained on the 31 LASSO-selected 2,622,663 89.11 = 0.32 %

observables.

DNN2gg 2,862,919 89.23 £ 0.26 %
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Why does performance increase as mass increases?
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@ We inspect the correlations of

the highest ranked variables

against the mass to understand

why higher masses seem easier

to classify

71, which is a measure of

collimation along the jet axis,

gives us a clue; this variable,

ranked 4th, is highly correlated

to mass

— more collimated jets are

harder to classify, probably
due to merging constituents

Our results are consistent if we

only use half of the overall
(quite large) mass range
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Input class N=4q
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