Dark Sector Showers and the Lund Jet Plane

Tim Cohen, Jennifer Roloff, Christiane Scherb

https://arxiv.org/abs/2301.07732

August 1, 2023

a brief reminder: the lund plane

- A jet may be approximated as soft emissions around a hard core which represents the originating quark or gluon
- Emissions may be characterized by
 - k_t = transverse momentum of emission relative to the jet core
 - (Or alternatively, z = relative momentum of emission relative to the jet core)
 - ΔR = angle of emission relative to the jet core

Leeee

zE

 ΔR

The Lund Plane is the phase space of these emissions: it naturally factorises perturbative and non-perturbative effects, UE/MPI, etc.

(1-z)E

a brief reminder: the lund plane

- A jet may be approximated as soft emissions around a hard core which represents the originating quark or gluon
- Emissions may be characterized by
 - k_t = transverse momentum of emission relative to the jet core
 - (Or alternatively, z = relative momentum of emission relative to the jet core)
 - ΔR = angle of emission relative to the jet core

- Jet formation is complex, predictions rely heavily on tuned parameters
- Models of perturbative effects (i.e. parton showers) can be systematically improved
 - Comparison to measurements useful as tests of the underlying theory, and in practice have some tunable parameters
 - See PanScales, ALARIC, etc.
- Many ongoing developments for non-perturbative effects (i.e. hadronization)
 - Rely heavily on comparisons to measurements
- No single model completely describes the structure of our jets!

4

- Imagine a strongly interacting dark sector
 - Similar to QCD, but with different color/flavor factors, coupling constant, etc.
 - Same principles of QCD showers will also apply here

- Imagine a strongly interacting dark sector
 - Similar to QCD, but with different color/flavor factors, coupling constant, etc.
 - Same principles of QCD showers will also apply here
 - These partons can then hadronize into dark hadrons

- Imagine a strongly interacting dark sector
 - Similar to QCD, but with different color/flavor factors, coupling constant, etc.
 - Same principles of QCD showers will also apply here
 - These partons can then hadronize into dark hadrons
 - Depending on the model, some or all of these can decay into Standard Model particles (quarks and gluons)

- Imagine a strongly interacting dark sector
 - Similar to QCD, but with different color/flavor factors, coupling constant, etc.
 - Same principles of QCD showers will also apply here
 - These partons can then hadronize into dark hadrons
 - Depending on the model, some or all of these can decay into Standard Model particles (quarks and gluons)
 - These will then shower and hadronize, leaving a very complicated system
 - Much like the SM, can reconstruct into jets

- Imagine a strongly interacting dark sector
 - Similar to QCD, but with different color/flavor factors, coupling constant, etc.
 - Same principles of QCD showers will also apply here
 - These partons can then hadronize into dark hadrons
 - Depending on the model, some or all of these can decay into Standard Model particles (quarks and gluons)
 - These will then shower and hadronize, leaving a very complicated system
 - Much like the SM, can reconstruct into jets

Both ATLAS and CMS have performed searches for these types of models!

<u>2112.11125, 2305.18037</u>

- Rich phenomenology of models, but not enough time to cover this in detail!
 - Focusing on the case where dark sector hadronizes before decay to SM, and all dark hadrons decay to SM particles promptly
- Many challenges in constraining models involving dark showers

 - Unlike a boosted resonance, cannot tag N-prong structure (more akin to quark/gluon tagging) Hard to write a robust model of their behavior
 - Dark hadronization cannot be constrained with Standard model measurements
 - Many physical parameters which significantly change the properties of the reconstructed jets
 - When looking at the jet structure, no single parameter (like mass) which can be used for limits
- Exploring two questions today:
 - Can we apply our knowledge of SM jet substructure to improve our understanding of dark sector jets?
 - Can we design robust searches which are not overly dependent on parts of the model that we don't know how to constrain (like hadronization)?

dark showers and the lund plane

- As a first check, can see if the Monte Carlo predictions reproduce the expected behavior
 - Only using the dark partons, no hadronization or decays to SM particles
- Can compare to a leading-logarithmic prediction of the expected density
 - Ratio is close to 1, demonstrating a basic validation of the simulation

П

- Can look at Lund jet plane for jets at different stages of the event generation
 - Dark hadronization tends to have the largest impact on low-kt emissions, though some changes throughout the plane

- Can look at Lund jet plane for jets at different stages of the event generation
 - The dark hadron decays to Standard Model particles results in brighter band in the part of the plane affected by non-perturbative effects

- Can look at Lund jet plane for jets at different stages of the event generation
 - Very little impact from the Standard Model QCD shower The dark hadrons are relatively low-mass, so very little showering happens for this choice of parameters

- Can look at Lund jet plane for jets at different stages of the event generation
 - confined to low-k_t region

Some changes from the Standard Model hadronization, but mostly

using lund jet planes for searches

- Different hadronization choices produce very different Lund jet planes
 - Translates into large differences in observables like the number of tracks
 - These hadronization choices are unconstrained by Standard Model measurements

0.09 0.08 -0.07 0.06 0.05 0.04 0.03 0.02 0.01

thoughts on hadronization

- The number of constituents in a jet is very susceptible to different hadronization models
 - Analyses which cut on something like this would be hard to interpret
- Generally, QCD has a lot fewer constituents than the dark shower models
 - This makes sense, because the dark showers have the secondary showering+hadronization
 - Even this assumption depends on the model!
- This is the best-case scenario
 - Once you start including correlations, etc, any tagger can easily result in bad features

thoughts on hadronization

- Depending on what parameters you scan over, the behavior can become very problematic
 - For instance, just changing the dark hadron masses can result in major changes to the substructure!
 - Keeps the same number of colors & flavors, Λ_{dark}, hadronization parameters

thoughts on hadronization

- Depending on what parameters you scan over, the behavior can become very problematic
 - For instance, just changing the dark hadron masses can result in major changes to the substructure!
 - Keeps the same number of colors & flavors, Λ_{dark} , hadronization parameters
 - Compare this to the LJP, where there is a clear region where this is not significantly changed, even with different hadron masses

quantifying the robustness

- In searches, care about the performance as well as the robustness
 - Various ways of quantifying these, but choose one option based on the signal and background efficiency

• Performance =
$$p = \frac{\epsilon_{\rm D}}{\sqrt{\epsilon_{\rm QCD}}}$$

Determined using a one-sided tagger cut on an observable

• Resilience =
$$\zeta = \left(\frac{\Delta \epsilon_{\rm D}}{\langle \epsilon_{\rm D} \rangle}\right)^2$$

- $\Delta \epsilon$ determined using different hadronization choices
- Using the number of emissions in the Lund jet plane can provide more robust taggers!

summary

- Dark sector jets have a rich phenomenology, but also pose significant challenges
- Can use the Lund jet plane to construct observables which are relatively insensitive to the dark shower hadronization model
 - The same principles that apply to SM QCD also apply here, even after the decays and showers of the SM particles
 - Can tune observables to balance stability vs. sensitivity
- The Lund jet plane is not the only solution, and it also comes with its own challenges
 - Lots of potential to continue exploring other alternatives, more complex observables
 - Can apply intuition from the Standard Model to design robust strategies for dark sector searches

hidden valley parameters

	n_C	n_F	$\Lambda_{ m D}$	$m_{Q_{ m D}}$	$m_{\pi_{ m D}}$	$m_{ ho_{ m D}}$	a_L	$b_{m^2_{Q_{\mathrm{D}}}}$	$r_{Q_{\mathrm{D}}}$	fraction $\rho_{\rm D}$
primary benchmark	3	3	$5~{ m GeV}$	$2.5~{ m GeV}$	$5~{ m GeV}$	$5~{ m GeV}$	0.3	0.8	1	default $(= 0.75)$
large hadronization	3	3	$5~{ m GeV}$	$2.5~{ m GeV}$	$5~{ m GeV}$	$5~{ m GeV}$	2	0.2	2	default
small hadronization	3	3	$5~{ m GeV}$	$2.5~{ m GeV}$	$5~{ m GeV}$	$5~{ m GeV}$	0	2	0	default
snowmass benchmark	3	2	$6.5~{ m GeV}$	$0.5~{ m GeV}$	$10 { m ~GeV}$	$20~{ m GeV}$	0.3	0.8	1	default
dark QCD scale $\Lambda_{\rm D}$	3	3	$50~{ m GeV}$	$2.5~{ m GeV}$	$5~{ m GeV}$	$5~{ m GeV}$	0.3	0.8	1	default

the lund jet plane

1. Jet Finding:

Cluster jets using your favorite jet algorithm

2. C/A Reclustering:

Combine closest pairs of charged particles or tracks!

3. C/A Declustering:

Unwind, widest angles first. Each step is an **emission**, or, a point in the Lund Jet Plane!

4. Plot Emissions:

Characterize emissions based on their angle (ΔR), and the hardness of the splitting and z = p_T^{emission} / p_T

