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a brief reminder: the lund plane

- A jet may be approximated as soft emissions around a hard core
which represents the originating quark or gluon

. _ ZE
- Emissions may be characterized by (1-2)E
-kt = transverse momentum of emission AR
relative to the jet core
- (Or alternatively, z = relative momentum of The Lund Plane Is
emission relative to the jet core) the phase space of
these emissions: it
- AR = angle of emission relative to the jet core naturally factorises

perturbative and

non-perturbative
effects, UE/MPI, etc.
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a brief reminder: the lund plane

- A jet may be approximated as soft emissions around a hard core
which represents the originating quark or gluon

AR

- Emissions may be characterized by Primary Lund-plane regions

- kit = transverse momentum of emission
relative to the jet core
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- (Or alternatively, z = relative momentum of
emission relative to the jet core)
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- AR = angle of emission relative to the jet core
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strongly coupled dark sectors

> |magine a strongly interacting dark
sector

» Similar to QCD, but with different
color/flavor factors, coupling
constant, etc.

» Same principles of QCD showers
will also apply here
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> Imagine a strongly interacting dark
sector

» Similar to QCD, but with different
color/flavor factors, coupling

constant. etc. Both ATLAS and CMS have performed

» Same principles of QCD showers
will also apply here

> These partons can then hadronize
iInto dark hadrons

> Depending on the model, some or
all of these can decay into Standard
Model particles (quarks and gluons)

> These will then shower and
hadronize, leaving a very
complicated system

> Much like the SM, can reconstruct
into jets

searches for these types of models!

2112.11125, 2305.18037
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strongly coupled dark sectors

> Rich phenomenology of models, but not enough time to cover this in detail!

» Focusing on the case where dark sector hadronizes before decay to SM, and all dark hadrons
decay to SM patrticles promptly

> Many challenges in constraining models involving dark showers
> Unlike a boosted resonance, cannot tag N-prong structure (more akin to quark/gluon tagging)

» Hard to write a robust model of their behavior
» Dark hadronization cannot be constrained with Standard model measurements

> Many physical parameters which significantly change the properties of the reconstructed jets

> When looking at the jet structure, no single parameter (like mass) which can be used for
limits
> Exploring two questions today:

> Can we apply our knowledge of SM jet substructure to improve our understanding of dark
sector jets?

> Can we design robust searches which are not overly dependent on parts of the model that we
don’t know how to constrain (like hadronization)?
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dark showers and the lund plane

- As a first check, can see if the Monte Carlo predictions reproduce the

In(k, / GeV)

expected behavior

-~ Only using the dark partons, no hadronization or decays to SM

particles

- Can compare to a leading-logarithmic prediction of the expected density

- Ratio is close to 1, demonstrating a basic validation of the simulation
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dark sector showers In the lund jet plane

> Can look at Lund jet plane for jets at different stages of the event

generation

> Dark hadronization tends to have the largest impact on low-k;
emissions, though some changes throughout the plane
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dark sector showers In the lund jet plane

> Can look at Lund jet plane for jets at different stages of the event
generation

> The dark hadron decays to Standard Model particles results Iin
brighter band in the part of the plane affected by non-perturbative
effects
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dark sector showers In the lund jet plane

> Can look at Lund jet plane for jets at different stages of the event
generation

> Very little impact from the Standard Model QCD shower

> The dark hadrons are relatively low-mass, so very little showering
happens for this choice of parameters
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dark sector showers In the lund jet plane

> Can look at Lund jet plane for jets at different stages of the event
generation

> Some changes from the Standard Model hadronization, but mostly
confined to low-k: region
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using lund jet planes for searches

> Different hadronization choices produce very different Lund jet planes
> Translates into large differences in observables like the number of tracks

> These hadronization choices are unconstrained by Standard Model
measurements
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thoughts on hadronization

> The number of constituents in a jet is very
susceptible to different hadronization
models

> Analyses which cut on something like
this would be hard to interpret

> Generally, QCD has a lot fewer
constituents than the dark shower models

> This makes sense, because the dark
showers have the secondary
showering+hadronization

» Even this assumption depends on the
model!

> This Is the best-case scenario

> Once you start including correlations,
etc, any tagger can easily result in bad
features
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thoughts on hadronization

> Depending on what parameters
you scan over, the behavior can
become very problematic

» For instance, just changing
the dark hadron masses can
result in major changes to the
substructure!

> Keeps the same number of
colors & flavors, Adark,

hadronization parameters
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thoughts on hadronization

> Depending on what parameters

: ~ 8r : 2
you scan over, the behavior can > "k Primary LJP l1 8
become very problematic ° F oM Hadron /Modiied 89 *
. . . - 6 1
> For instance, just changing the = i3 14
dark hadron masses can result in ) 1.2

major changes to the
substructure!

> Keeps the same number of
colors & flavors, Adark,

hadronization parameters

> Compare this to the LJP, where In(R/A R)
there Is a clear region where this
IS not significantly changed, even
with different hadron masses
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quantifying the robustness

> |n searches, care about the performance as
well as the robustness

> Various ways of quantifying these, but : b
choose one option based on the signaland € f ¢"/&>%7 * Nyjp
background efficiency T b = Dp
e © @In(k/GeV) > 0.9 A Nt
> Performance = p= N 41 Jet mass
. - In(k/GeV) > 1.2
> Determined using a one-sided tagger 3
cut on an observable F 4 @nk/Gev)>15
? - W Ink/Gev) > 1.9
> Resilience = ¢ = (i?) - o enlkGev) > 2.
D C A IR BT I I A I
0 S 10 15 20 25
> Ag determined using different Resilience

hadronization choices

» Using the number of emissions in the Lund jet
plane can provide more robust taggers!
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summary

> Dark sector jets have a rich phenomenology, but also pose significant
challenges

> Can use the Lund jet plane to construct observables which are relatively
iInsensitive to the dark shower hadronization model

> The same principles that apply to SM QCD also apply here, even after the
decays and showers of the SM particles

> Can tune observables to balance stability vs. sensitivity

> The Lund jet plane is not the only solution, and it also comes with its own
challenges

> Lots of potential to continue exploring other alternatives, more complex
observables

> Can apply intuition from the Standard Model to design robust strategies for
dark sector searches
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nidden valley parameters

nc | nr Ap maor Mrp My, | QL bmé | Teo fraction pp
primary benchmark | 3 | 3 | 5 GeV | 2.5 GeV | 5 GeV | 5 GeV | 0.3 0.8 1 | default (= 0.75)
large hadronization 31 3| 5GeV |25 GeV| 5 GeV | 5 GeV | 2 0.2 2 default
small hadronization 3| 3| 5GeV |125GeV| 5GeV | 5 GeV | O 2 0 default
snowmass benchmark | 3 [ 2 [6.5 GeV [0.5 GeV |10 GeV |20 GeV [0.3| 0.8 1 default
dark QCD scale Ap 31 3|50 GeV |25GeV]| 5GeV | 5GeV |0.3] 0.8 1 default
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the lund jet plane

1. Jet Finding:
Cluster jets using your favorite jet algorithm

core
" core | >

2. C/A Reclustering: core -
Combine closest pairs of charged particles or tracks! e | emission 4
3. C/A Declustering: —
Unwind, widest angles first. Each step is an emission 3
emission, or, a point in the Lund Jet Plane! )

g 6:_ ATLAS Simulation Preliminary lterative deCIUS’[_ering
4 Plot Emissions: Pyt Lund Plane Even Disply approach to approximate the
C.h tar . LY X plane, proposed by Dreyer/

aracterize _emISSIOnS i Sovez/Salam 1807.04758
based on their angle (AR), na
and the hardness of the : < Iy
splitting and z = premission [ pr = ° . A
i . emission 1

A Particle-level Emission V

V Detector-level Emission
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