

Jet observables in anisotropic QCD matter

João Barata, BNL

Based on work done with G. Milhano, A. Sadofyev

Brookhaven[™] National Laboratory

31st July 2023, BOOST 2023

2308.xxxx

pp dijet event in CMS

PbPb dijet event in CMS

 $\left(1\right)$

How do we treat jet evolution in theory?

1) Use eikonal expansion, i.e. expansion in inverse powers of jet energy; keep kinetic phases

2) Matter enters through classical background field; usually assumed: homogeneous, infinitely long, static, ...

 $A^{\mu}(x^{+}, x^{-}, x) \approx A^{\mu}_{\text{matter}}(x^{+}, x) + \delta A^{\mu}(x^{+}, x^{-}, x) \quad A^{\mu}_{\text{matter}}(x^{+}, x)$

 $\langle A_{\text{matter}}(x)A_{\text{matter}}(y)\rangle \sim \delta(x-y)$

3) Any cross-section is constructed from

$$\underbrace{p_0} (D) \underbrace{p} = \underbrace{p} + \underbrace{p_0} T \underbrace{p}$$

The single particle propagator becomes at **high energies**

$$\mathcal{G}(\boldsymbol{x}_2, t_2; \boldsymbol{x}_1, t_1) = \int_{\boldsymbol{x}_1}^{\boldsymbol{x}_2} \mathcal{D}\boldsymbol{r} \exp\left(\frac{i\omega}{2} \int_{t_1}^{t_2} dt \, \dot{\boldsymbol{r}}^2\right) \mathcal{W}_{\boldsymbol{r}}$$

Then any process reduces to computing correlators of the form

$$d\sigma \sim \langle \mathcal{T} \prod \{$$

Wilson line along forward light-cone

Brownian motion in momentum space

vertices $\{\mathcal{G},\Gamma\}
angle_{ ext{matter}}$

3)

Even with these approximations this is a challenging problem! Focus on lowest order processes

"medium induced gluon emission"

One can gain analytical insight into the problem; covers all main approaches to jet quenching

Jets decouple more from plasma evolution: less sensitivity to medium properties

Momentum broadening in anisotropic matter

2202.08847

Transverse plane

Momentum broadening in anisotropic matter

The final distribution has the form

Consider the case of a source with finite width $E \frac{d\mathcal{N}^{(0)}}{d^2 n \, dE} = \frac{f(E)}{2\pi w^2} e^{-\frac{p^2}{2w^2}}$

higher odd moments can be generated, for example

$$\langle p^{\alpha} \boldsymbol{p}^{2} \rangle = \frac{w^{2} L^{2} \mu^{2}}{E \lambda} \frac{\nabla^{\alpha} \rho}{\rho} \ln \frac{E}{\mu} + \frac{L^{3} \mu^{4}}{6E \lambda^{2}} \frac{\nabla^{\alpha} \rho}{\rho} \left(\ln \frac{E}{\mu} \right)^{2}$$

$$N = 1 \qquad \qquad N - 2$$

Higher *N* terms dominate due to diverging potential at large momenta

2202.08847

Single particle broadening distribution (when Fourier transformed) Usually a unit operator, but now it acts with ∇ on initial distribution

 $\int d^2 \boldsymbol{p} \, \frac{d\mathcal{N}}{d^2 \boldsymbol{p} \, dE} = \frac{d\mathcal{N}}{d^2 \boldsymbol{x} dE}$

Self normalized (particle number conservation)

Coulomb logarithm

IV - Z

Momentum broadening in anisotropic matter

Some simple numerical results

The full distribution is written in terms of the angle θ and parameter $c_T \equiv \left| \frac{\nabla T}{ET} \right|$

2202.08847

depletion of higher momentum modes

(7)

Radiative energy loss in dense anisotropic matter

2304.03712

Radiative energy loss in dense anisotropic matter 2304.03712

Expanding to first order in gradients allows to perturbatively compute the spectrum in the form

$$\omega \frac{dI}{d\omega d^2 \boldsymbol{k}} = \omega \frac{dI_0}{d\omega d^2 \boldsymbol{k}} + (\hat{\boldsymbol{g}} \cdot \boldsymbol{k}) \, \omega \frac{dI_1}{d\omega d^2 \boldsymbol{k}} + \mathcal{O}(\hat{\boldsymbol{g}}^2)$$

The distribution can be written as

$$\frac{C_F}{2} \operatorname{Re} \int_0^\infty d\bar{z} \int_0^{\bar{z}} dz \int_{\boldsymbol{x}_{in}, \boldsymbol{y}} |J(\boldsymbol{x}_{in})|^2 \left[\boldsymbol{\nabla}_{\boldsymbol{x}} \cdot \boldsymbol{\nabla}_{\bar{\boldsymbol{x}}} \quad S_2(\boldsymbol{k}, \boldsymbol{k}, \infty; \boldsymbol{y}, \bar{\boldsymbol{x}}, \bar{z}) \\ \operatorname{Solved!} \mathcal{K}(\boldsymbol{y}, \boldsymbol{x}_{in}, \bar{z}; \boldsymbol{x}, \boldsymbol{x}_{in}, z) \right]$$

$$\omega \frac{dI}{d\omega d^2 \mathbf{k}} = \omega \frac{dI_0}{d\omega d^2 \mathbf{k}} + \omega \frac{dI_{\mathcal{P}}}{d\omega d^2 \mathbf{k}} + \omega \frac{dI_{\mathcal{K}}}{d\omega d^2 \mathbf{k}} + \omega \frac{dI_{\mathcal{K}}}{d$$

Radiative energy loss in dense anisotropic matter 2304.03712

Numerical results, in the harmonic approximation for the in-medium scattering cross-section

 $\gamma_T = 0.05$

 $\gamma_T = 0.01$

(10)

Jet observables in inhomogeneous matter 2308.xxxx

(11)

Jet observables in inhomogeneous matter 2308.xxxx

We have now the tools to compute jet observables (at least at leading order in the strong coupling)

Observable 1: jet shape

$$(2\pi)p_t^{\rm jet}\frac{d\rho(r)}{d\omega d\alpha} = 1 - 2\pi \int_{\omega r}^{\omega} dkk\,\omega \frac{dI}{d\omega d^2 k}$$

Jet observables in inhomogeneous matter 2308.xxxx

Observable 2: jet angularities G

$$G_n = \sum_{i \in \text{jet}} \frac{p_t^i}{p_t^{\text{jet}}} g^{(n)}(n)$$

At leading logarithmic accuracy we have $\frac{g_n}{\sigma} \frac{d\sigma}{dg_n d\alpha} = \left(\int_{\sigma}^{\infty} \frac{d\sigma}{dg_n d\alpha}\right)$

 $r_i)$

$$\int_{\frac{g_n}{R^n}}^1 dx \, \left(\frac{\omega dI}{d\omega d^2 k} \frac{(p_t^{\text{jet}})^2 x^{1-\frac{2}{n}} g_n^{\frac{2}{n}}}{n}\right)_{\theta^n = \frac{g_n}{x}} + \frac{\alpha_s C_F}{\pi^2 n} \log \frac{R^n}{g_n} e^{-\frac{\alpha_s C_F}{n\pi} \log^2 \theta_n}$$

Jet observables in inhomogeneous matter 2308.xxxx

Observable 3: ENCs

Ideally we would need E3C, but already with EEC we have

$$\frac{d\Sigma}{d\theta d\alpha} = \int d\vec{n}_1 d\vec{n}_2 \, \frac{\langle \mathcal{E}(\vec{n}_1)\mathcal{E}(\vec{n}_2)\rangle}{(p_t^{\text{jet}})^2} \delta(\cos(\theta_2 - \theta_1) - \cos(\theta)) \, \delta(\alpha - (\alpha_1 - \alpha_2))$$

Outlook

To go beyond we need MC with realistic geometry:

LBT model in equivalent setup to before

(15)