Searches for Dark Matter with the ATLAS Detector

A

Karol Krizka

Physics 290e

Large Hadron Collider

The Standard Model can be tested by smashing particles at high energies,

Runs I and II

Run I

Higgs discovery!

- First physics data at 7 TeV in 2011 (5.2 fb⁻¹)
- Energy increased to 8 TeV in 2012 (21.7 fb⁻¹)

Run II

- Started running at 13 TeV in end of 2015 (3.2 fb⁻¹)
- Finished in 2018 with 147 fb⁻¹

ATLAS Particle Detector

ATLAS Particle Detector

Particle Identification

Jets

parton je

Initiated by quarks and gluons in ^p the underlying process.

Jets

ATLAS Trigger

Why Dark Matter?

Ordinary Matter 5%

Dark Matter 26% CMB Measurements

Dark Energy 69%

Gravitational Lensing

Dark Matter Models at the LHC

Two approaches to a benchmark model

- valid over large energy range
- many parameters

Simplified Model

- valid only at certain energies (EFT)
- few parameters as possible

Mediator-Based Dark Matter Model

• Common model used by all searches and all LHC experiments

- An (**spin ?**) mediator (mass **m**_R) couples to Dark Matter (mass **m**_{DM})
- Independent couplings to quarks $(g_{\mbox{\tiny SM}})$ and Dark Matter $(g_{\mbox{\tiny DM}})$

Dark Matter Models at the LHC

Two approaches to a benchmark model

- valid over large energy range
- many parameters

Simplified Model

- valid only at "low" energies
- few parameters as possible

Detecting Dark Matter in ATLAS

Detecting Dark Matter in ATLAS

Require production of mediator in association with *X*.

- Dark Matter will have momentum imbalance in the transverse plane.
- Called Mono-X searches

Early Example of Missing Energy

Nature 159, 694-697 (1947)

18 Physics 290e

$$\vec{E}_T^{\text{miss}} = -\vec{p}_T^{\ e} - \vec{p}_T^{\ \mu} - \vec{p}_T^{\ \tau} - \vec{p}_T^{\ \gamma} - \vec{p}_T^{\ \text{jet}} - \vec{p}_T^{\ \text{soft}}$$

Hard term: Reconstructed particles with best calibration Soft Term: From tracks not matched to any other objects

Sources of Missing Energy (Backgrounds)

• "Real" missing energy

- Z→vv is the largest "irreducible" background (looks like a Z'→DM decay!)
- $W \rightarrow lv$ where the lepton is not reconstructed
- Laptonic decays of top quarks

• Detector effects

- We do not model every single cable and crack
- Hard to estimate from simulation

Non-Collision Backgrounds

- Muons created from ineslastic beam-gas interactions with collimators
- Cosmic-rays
- Calorimeter noise

Mono-Jet EXOT-2016-27

- Triggers on missing energy
 - Jet trigger (other choice): ~500 GeV
- Data-driven background estimation
 - Simutenous fit of Control Regions
 - Binned in ME_{T}

Modelling Z→vv Background

• $Z \rightarrow \mu \mu$ is the same as $Z \rightarrow \nu \nu$, if you remove the muons!

• Same with W→lv, and has very high statistics.

Taken from Monte Carlo:

- Ratio between $Z \rightarrow vv vs Z \rightarrow \mu\mu vs W \rightarrow lv$
- General shape of $\mathsf{ME}_{\scriptscriptstyle\mathsf{T}}$ distribution

Taken from Data:

- Overall normalization of Z/W processes
- Contraint of systematics governing ME_⊤ shape via bin-by-bin nuisance parameters

• Control Region for all processes with a top quark

- Presence of a single muon
- Require W-like transverse mass $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}p_{\rm T}^{\nu}[1 \cos(\phi^{\ell} \phi^{\nu})]}$
- Presence of b-quark
- Included in the simultaneous fit

Multi-Jet Background

Comes from calorimeter effects

• "Truth" distribution of high ME_{T} and low ME_{T} jets is the same

Estimated using the Jet Smearing Method

1) Take "well-measured" low-ME_T jets

2)Smear with jet response function

- Initial estimate from MC (truth vs detector simulated jets)
- Modify using functions by testing on data
 - dijet for the Gaussian core
 - trijet for the non-Gaussian tails

3)Invert $\Delta \varphi_{j,MET}$ cut for normalization

Non-Collision Backgrounds

- Greatly reduced by very tight "jet cleaning" cuts
- Estimated by inverting cleaning and selecting out-of-time jets
 - Also known as the ABCD method

Average calorimeter deposition time

Mono-jet Limits

Mono-jet Limits

Mono-photon EXOT-2016-32

- Z/W background k-factors estimated via simultaneous fits to Z/W control regions
 - Same as in mono-jet!
- Data-driven estimation for fake photons
 - Miss-ID'ed electrons estimated from Z \rightarrow ee sample misidentified as Z \rightarrow e γ
 - Miss-ID'ed jets estimated using ABCD method

Mono-photon Limits

Mono-Higgs

Higgs is slowly turning from "new particle" into a tool.

What are boosted objects?

A hadronically decaying particle X at rest can be reconstructed using two anti-K_T R=0.4 jets.

But if *H* is boosted, then anti-k_τ R=0.4 will not be able to resolve two separate jets.

рт Н Д д Ю~2mx/pт

Solution: reconstruct a single **large-R** jet and look at the radiation pattern of the constituents (substructure).

- Invariant mass of constituents?
- How many hard prongs?
- How many b-tagged track jets?

Η

32 Physics 290e

m_{z'} [GeV]

Background Estimation

- Top and Z/W+jet estimated using usual lepton Control Regions
- Multijet background estimated by inverting $\Delta \phi_{j,MET}$ < 0.35 cut
- Final fit is in the invariant jet mass (signal = bump at 125 GeV)

Mono+H(→bb) Limits

Variable Radius jets are a **new** substructure tool that modifies jet radius as a function of p_⊤

Search directly for Z' via decay into quarks!

Constrains DM model, but does not confirm it.

Three strategies:

- High mass dijet, m_{jj}>1 TeV
 - Limited by 500 GeV single jet trigger
- Trigger Level dijet, m_{jj}>500 GeV
 - Limited by 200 GeV Level-1 single jet trigger
- Dijet+ISR, m_{jj}>100 GeV
 - Lower cross-section due to high energy of ISR

Non-Resonant Background Model

Data-driven background model

• Model smoothly falling background with a smoothly falling function

$$c_0(1-x)^{c_1}x^{c_2+c_3\ln x+c_4\ln x^2+c_5\ln x^3}, x=\frac{m_{jj}}{\sqrt{s}}$$

- What functions to use?
 - Fitting non-resonant background is an industry in itself!
 - Single function, sliding window, decomposition, Gaussian processes...
- How many parameters are enough?
 - 3 parameter, 4 parameter, 5 parameter, 6 parameter
 - Choice depends on luminosity

3)Throw toys using background model to estimate distribution of discrepant regions

• Used to gauge the global significance of the "signal"

October 2, 2019

m_{ii} [GeV]

Used to gauge the global significance of the "signal"

High Mass Dijets

ATLAS-CONF-2019-007

Trigger Level Dijet EXOT-2016-20

- 2 kHz event rate, but only 100 MB/s
 - Rest of ATLAS: 1 kHz event rate, 1 GB/s output
- About million events in each bin!
 - Quite a challenge to fit with a single function
- Lower masses reach with tighter y* cut

Dijet+photon EXOT-2018-05

- Two trigger strategies
 - Single photon (150 GeV)
 - Photon (75 GeV) + 2 jets (50 GeV)

Boosted Dijet+ISR EXOT-2017-01

155 GeV photon / 420 GeV jet

- ISR could be photon or jet
- Tries to count number of subjets in signal jet (substructure)
- Background estimation by inverting substructure cuts

Resonance Search Results

Summary Plot

The size of excluded region depends on the coupling values and type.

Highest Energy Event In ATLAS

Why Mediator-Based Models?

 $\log_{10}(\sigma_{EFT} / \sigma_{FT})$

Source: arXiv:1308.6799