
27 September 2019

HPC for HEP: Friend or Foe?
Salman Habib 

CPS and HEP Divisions

Basic Arithmetic: 

• Current HEP computing worldwide is roughly a 
million cores (~few Pflops); US share is ~1Pflop 

• This might increase to a few PFlops by the 
mid-2020’s; HL-LHC requirement is (very) roughly 
order of magnitude more (but could be less) 

• By 2022, the LCFs and NERSC will have ~Eflops 
of compute power, by the mid 2020’s, tens of 
Eflops of compute power — 4 orders of 
magnitude more than all US HEP computing 
combined 

• HEP usually gets ~10% of ASCR compute 
capability, still have 3 orders of magnitude; let us 
say LHC experiments get 10% of this, still have 2 
orders of magnitude, let’s say usage efficiency is 
not great, still may have 10X the equivalent of 
the total compute requirement

Dose of Reality: 
• Next-gen architectures (GPUs, ARM, etc.) require handling 

massive (local) concurrency and are difficult to 
program plus the future is very hard to predict 

• HEP experiment software — like many others — not up to 
the task as yet (but some encouraging early results) 

• ECP project focuses on HPC codes and these are making 
solid progress (but note these are HPC codes) 

• HEP experiment software is in the millions of lines of code, 
but most of it probably does not need to be refactored 

• DOE/SC HPC codebase is probably O(100M) lines of code; 
include NNSA, probably a billion — next-gen computing is 
a problem faced by everyone 

• Many other data-intensive use cases exist on the HL-LHC 
timescale (light sources, genomics, distributed sensors, —) 

• Main issues — 1) exploit concurrency (SIMD/SIMT etc.) 
but 2) be portable — able to run on all systems and get the 
same answer (nontrivial) 

• Secondary issues are technical (I/O, storage, edge 
services, temperamental HPC systems) and political, but 
surmountable



Example System: Aurora

Public Specs: 
• Performance (sustained): >1EF (double precision) 
• System interconnect: Cray Slingshot 
• Compute node: x86 CPUs + Intel GPUs 
• CPU-GPU interconnect: PCIe 
• System Memory: >10PB 
• Storage: >230PB at >25TB/s 
• # Cabinets: >100 
• Programming Languages/Models: Intel OneAPI, 

Fortran, C, C++, UPC, Co-array Fortran, Python, 
MPI, OpenCL, OpenMP 5.x, DPC++/SYCL 

• Frameworks: TensorFlow, PyTorch, Scikit-learn, 
GraphX, Intel DAAL, Intel MKL-DNN

One cabinet is ~10PFlops (Cf. US HEP HL-LHC 
computing requirement naively scaled up) and 
this will be already obselete in the HL-LHC era

HEP ECP project example: 
• ExaSky — extreme-scale cosmological simulations, 

~0.5M lines of code, two main codes (HACC and 
Nyx), one large-scale analysis framework 

• HACC has about 300K lines of code, 95% are 
machine-independent C++/MPI 

• Typical HACC performance is around ~50+% of peak 
on all DOE systems, independent of architecture 

• Note: “HPC application and software development is a 
contact sport” — Doug Kothe 

AI-friendly!



HEP-CCE: A HEP link to ASCR

CCE cross-cutting role: Jim 
Siegrist, ICHEP 2016 talk

CCE: 
• Consists of HEP and ASCR researchers at HEP 

laboratories (very partially supported) 
• Main role is to develop HPC tools/capabilities to aid 

HEP science 
• Helped bring containers to HPC systems; jointly 

worked with ESnet on Petascale Transfer project, run 
summer student programs, ported HEP code on ALCF 
systems and at NERSC, sponsored hackathons and 
workshops (event generators, IO), etc. 

• Current proposal aims to study use of ASCR HPC 
systems for all HEP frontiers particularly experiments 
taking data starting from 2020 onwards (ATLAS, 
CMB-S4, CMS, DESI, DUNE, LSST DESC, —) 

• Primary focus is on 1) pilot projects on concurrency/
offloading leveraging ongoing work by experiments, 2) 
data model/structure issues and IO, 3) event 
generation, 4) complex distributed workflows on HPC 
systems (mostly CF) — first two are (by far) the most 
important

ATLAS Connection (possible): 
• Doug Benjamin 
• Paolo Calafiura 
• Taylor Childers 
• Charles Leggett 
• Peter van Gemmeren 
• —

https://press3.mcs.anl.gov/hepfce/

https://press3.mcs.anl.gov/hepfce/


Back-Up Info

PPS 
• Data structures that support SIMD/SIMT parallelization targeting CPU/vector units and GPUs 
• Efficient communication between CPUs and GPUs 
• Memory layout optimization to enable bacth operations spanning multiple events 
• Potential use cases: FastJet, Track seeding, LAr TPC data preparation 
• Investigate Kokkos, RAJA, OpenMP, DPC++/SYCL, etc. as performance portability models (also Python/Numba) 

Timescales 
• FY20/Q1 — US ATLAS/CMS ops program HL-LHC R&D strategic plan 
• FY20/Q1 — DUNE software and computing CDR 
• FY20/Q2-Q3 — ATLAS/CMS interim R&D statements 
• FY21/Q3 — CMS High Level Trigger TDR 
• FY22/Q1 — ProtoDUNE-II beam operations, DUNE Software and 

Computing TDR 
• FY22/Q3 — WLCG and ATLAS/CMS Software and Computing TDRs


