

First results of DarkSRF: a dark photon search using SRF cavities

- Alexander Romanenko, <u>Anna Grassellino</u> Roni Harnik
- Fermi National Accelerator Laboratory

QIS for Fundamental Physics Workshop Aspen Center for Physics, Feb 20-22 2020

Acknowledgements

This work is supported by the DOE HEP QuantiSeD program, FNAL LDRD program, and builds upon decades of investments from the DOE HEP GARD program and the DOE BES LCLS-II project

Outline

Introduction on SRF

SRF Cavities "towards" the Quantum Regime

DarkSRF Experiment at 1.4K and first results

DarkSRF stage 2 search in dilution fridge: SRF cavities in the true quantum regime

Extending the search scheme to axions

Outline

Introduction on SRF

SRF Cavities "towards" the Quantum Regime

DarkSRF Experiment at 1.4K and first results

DarkSRF stage 2 search in dilution fridge: SRF cavities in the true quantum regime

Extending the search scheme to axions

How are Particles Accelerated in Modern Machines?

- Superconducting radiofrequency (SRF) cavities
- High quality EM resonators: $Q_0 > 10^{10}$
- Over billions of cycles, large electric field generated (>10²⁵ photons stored)
- Particle beam gains energy as it passes through

Why SRF cavities for quantum sensing?

SRF cavities are the most efficient engineered oscillators

🛟 Fermilab

Nanometric RF Penetration Layer drives the performance

Major SRF infrastructure and expertise at Fermilab, enabling highest Q ever achieved, in low and high photon count regimes

Material science and superconducting characterization

- Cavity surface undergoes a series of delicate chemical and heat treatments
- Material science tools are <u>essential</u> to understand the surface nanostructural changes that lead to dramatic changes in performance

Modern large scale accelerators: large and complex high coherence SRF systems

European XFEL ~1000 cavities

Specification: Q > 10¹⁰ @ 2K, 23.6 MV/m

LCLS-II at SLAC

Fermilab is building half (30+) of cryomodules

Q > 2.7 x 10¹⁰ @ 2K, 16 MV/m

Outline

Introduction on SRF

SRF Cavities "towards" the Quantum Regime

DarkSRF Experiment at 1.4K and first results

DarkSRF stage 2 search in dilution fridge: SRF cavities in the true quantum regime

Extending the search scheme to axions

Taking SRF cavities "towards" the quantum regime

Fermilab Vertical cavity test Facility at APS-TD (VTS)

T= 1.4K ~1000 photons

1.3 GHz

2.6 GH

650 MHz

Dilution Fridge at Fermilab APS- TD Quantum Lab (QCL)

T~6mK

Grassellino- I

RF Surface resistance is highly nonlinear

First experiment: extend the measured fields to record low

First clear proof that growing natural Nb oxide degrades low field Q: confirmation of TLS losses

A. Romanenko and D. I. Schuster, Phys . Rev. Lett. 119, 264801 (2017)

🛟 Fermilab

Outline

Introduction on SRF

SRF Cavities "towards" the Quantum Regime

DarkSRF Experiment at 1.4K and first results

DarkSRF stage 2 search in dilution fridge: SRF cavities in the true quantum regime

Extending the search scheme to axions

Longer Range Interactions and Wave-like Dark Matter

- New light particles are theoretically well motivated. e.g.
 - Axion like particles (including the QCD axion)
 - Dark photons
- For such light particles two hypotheses can be tested:

 $\mathcal{L} \supset \begin{array}{l} \mathsf{dark \ photons?} \\ \mathsf{axions?} \\ \mathsf{long \ range \ force?} \end{array}$

Dark matter (and new particle):

DARK

ENERGY

69%

ENERGY DISTRIBUTION

OF THE UNIVERSE

NORMAL MATTER

DARK

MATTER

26%

Basic search schemes

a search for a mediator.

A dark matter search:

the DM filled Universe is the emitter

Dark sector search

S. R. Parker *et al*, Phys. Rev. D 88, 112004 (2013)

J. Hartnett et al, Phys. Lett. B 698 (2011) 346

J. Jaeckel and A. Ringwald, Phys. Lett. B 659, 509 (2008)

improvement in sensitivity to χ

🛟 Fermilab

 $Q_{DET}, Q_{EM} < 10^5 \text{ so}$

For correct cavity positioning $P_{\rm rec} \sim G^2 \epsilon^4 \left(\frac{m_{\gamma'}}{m_{\gamma'}}\right)^4 Q_{\rm rec} Q_{\rm em} P_{\rm em}$

DarkSRF experiment

Controlling cavity frequency with sub-Hz resolution

SRF Cavity Tuner (LCLS II double lever tuner) to tune "transmitter" cavity

(*) Piezo tuner resolution measured with LCLS II cavity ~0.15Hz was limited by noise at HTS **Coarse Tuner**

- Range up to $\Delta X=2mm$ or $\Delta F=5MHz$
- Resolution δx=5nm or δF=12Hz
- Hysteresis ~ 300Hz

Fine/Fast Tuner

- Range up to $\Delta X=3um$ or $\Delta F=8kHz$
- Resolution $\delta x=0.05$ nm or $\delta F=0.1$ Hz (*) (resolution will be limited by

electrical noise of the piezo amplifier)

Happy people right before run zero

Grassellino- First results of DarkSRF

Cavity frequency matching – Step 1

Dark Photon search! – (Step 2)

Cross-talk check - Step 3

No stored power = no dark photons

Back to dark photon search - Step 4 = Step 2

27 3/3/20 A. Romanenko I Dark SRF Meeting

Back to Step 5 = Step 1 – all is still in tune

Run 1 and 2 improvements

- Added cryogenic (~40 dB) low-noise amplifier (HEMT) right at the pickup antenna of the receiver
- Identified and suppressed the main cross-talk sources
 - DC power and current bias wires for HEMT
 - Better isolated cables, connectors etc

Data acquisition runs – medium power

- <u>Emitter</u>:
 - E_{acc} = 6.2MV/m, stored energy U = 0.6 J ⇔ 7e23 photons, Q₀ ~ 4.5e10, Qloaded = 1.6e9, freq jitter rms ~ 1 Hz,
- <u>Receiver</u>:
 - Q₀ ~3e10, Qloaded = 6e9, freq jitter rms ~ 1 Hz
- Limitation: thermal excitation of the receiver cavity: ~5500 stray photons

Data acquisition runs – high power

- <u>Emitter</u>:
 - Eacc = 40 MV/m, stored energy U = 26 J ⇔ 3e25 photons, Q₀ ~ 2e10, Q_{loaded} = 1.6e9, freq jitter rms ~ 1 Hz,
- <u>Receiver</u>:
 - Q₀ ~3e10, Q_{loaded} = 6e9, freq jitter rms ~ 1 Hz
- Limitation: some remaining cross-talk

Results from run 2 – exclusion boundary pushed up to 3 orders of magnitude compared to state of the art

Grassellino- First results of DarkSRF

Outline

Introduction on SRF

SRF Cavities "towards" the Quantum Regime

Dark Photon Experiment at 1.4K and first results

Dark photon search in dilution fridge: SRF cavities in the true quantum regime

Extending the search scheme to axions

Taking SRF cavities to the 'true' quantum regime

Fermilab Vertical cavity test Facility at APS-TD (VTS)

T= 1.4K ~1000 photons

1.3 GHz

2.6 GHz

650 MHz

Dilution Fridge at Fermilab APS- TD Quantum Lab (QCL)

T~6mK

Record high Q in quantum regime at first run

A. Romanenko, R. Pilipenko, S. Zorzetti, D. Frolov, M. Awida, S. Posen, A. Grassellino, arXiv:1810.03703

🛟 Fermilab

Grassellino- First results of DarkSRF

Material treatment to suppress TLS dissipation

A. Romanenko, R. Pilipenko, S. Zorzetti, D. Frolov, M. Awida, S. Posen, A. Grassellino, arXiv:1810.03703

🛟 Fermilab

Material treatment to suppress TLS dissipation

A. Romanenko, R. Pilipenko, S. Zorzetti, D. Frolov, M. Awida, S. Posen, A. Grassellino, arXiv:1810.03703

辈 Fermilab

Record high photon lifetimes achieved

Grassellino- First results of DarkSRF

SRF Bluefors-2

- Designed to sustain several Watts at 2K stage
- Working on transferring the light shine through wall setup to this DR (tuner, piezo, rad shielding...)
- Should be able to run in DR in the next few months

New limit vs future potential reach in DR

First measurements in quantum regime

- Exclusion of dark photons floating around in the galaxy at one specific frequency
- Could extend experiment by scanning

A. Romanenko, R. Pilipenko, S. Zorzetti, D. Frolov, M. Awida, S. Posen, A. Grassellino, arXiv:1810.03703

🛟 Fermilab

Outline

Introduction on SRF

SRF Cavities "towards" the Quantum Regime

DarkSRF Experiment at 1.4K and first results

DarkSRF stage 2 search in dilution fridge: SRF cavities in the true quantum regime

Extending the search scheme to axions and more

Lots of new exciting ideas on very high Q SRF cavities for axion searches and more – we need to implement

Open Access

Probing Axionlike Particles and the Axiverse with Superconducting Radio-Frequency Cavities

Zachary Bogorad, Anson Hook, Yonatan Kahn, and Yotam Soreq Phys. Rev. Lett. **123**, 021801 – Published 9 July 2019

Axion production and detection with superconducting rf cavities

Ryan Janish, Vijay Narayan, Surjeet Rajendran, and Paul Riggins Phys. Rev. D **100**, 015036 – Published 23 July 2019

Axion Dark Matter Detection by Superconducting Resonant Frequency Conversion

Asher Berlin

Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003, USA.

Raffaele Tito D'Agnolo Institut de Physique Théorique, Université Paris Saclay, CEA, F-91191 Gif-sur-Yvette, France

Sebastian A. R. Ellis, Christopher Nantista, Jeffrey Neilson, Philip Schuster, Sami Tantawi, Natalia Toro, and Kevin Zhou SLAC National Accelerator Laboratoru. 2575 Sand Hill Road. Menlo Park. CA 94025. USA

Searching for Millicharged Particles with Superconducting Radio-Frequency Cavities

Asher Berlin^1 and $\operatorname{Anson} \operatorname{Hook}^2$

¹Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003, USA ²Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742, USA

Extending DarkSRF to axions searches

- Harnik, Romanenko, Grassellino, PAC 2018 DarkSRF presentation, Fermilab
- Kahn et al: Searching for axions and for the SM light-by-light interaction at low energies in a single cavity.
- Rajendran et al: Suggestion for light-shining-through-wall axion search using a quiet receiver cavity and a static B-field adjacent to the cavity.

SRF Cavities for Axion Searches in Tesla fields?

- FNAL SRF group has an active research program in Nb₃Sn and other new materials
- World record Nb₃Sn cavities in the range 650MHz - 4 GHz with Q ranging from 1e9 to 1e11
- Will now test them in Tesla fields
- Nb₃Sn is excellent candidate H_{c2} ~ 30 T and we know how to make high quality films
- Optimize geometry for parallel fields to minimize Lorentz force (F~IxB)
- Several other new materials to be studied with our new CVD/ALD furnace

Sam Posen

Sam Posen, FNAL

45

Summary

- Exciting new opportunities with SRF cavities for QIS and dark sector searches
- First results exclude existence of dark photons in mass range 10⁻⁸-10⁻⁵ eV by > 3 order of magnitude form previous searches
- Lots more progress to come

