Quantum Algorithms for HEP simulations

Quantum Information Science for Fundamental Physics, Aspen

CWB, W. de Jong, B. Nachman, D. Provasoli 1904.03196 [quant-ph]

Christian Bauer
Quantum algorithms for High Energy Physics Simulations

Christian Bauer
Quantum algorithms for High Energy Physics Simulations

Need Precise predictions

Christian Bauer
Quantum algorithms for High Energy Physics Simulations

What we can compute is limited...

Christian Bauer

AATLAS

Run Number: 152409, Event Number: 8186656

6 Jet Event in 7 TeV Co

Christian Bauer

The traditional way to compute high multiplicity events is inherently probabilistic and can not include many quantum interference effects

Quantum algorithms have possibility to include such quantum effects efficiently

The traditional way to compute high multiplicity events is inherently probabilistic and can not include many quantum interference effects

Quantum algorithms have possibility to include such quantum effects efficiently

A few very basic facts about amplitudes

A few very basic facts about amplitudes

virtual particle almost real likely process in QM Amplitude large

00000000000

1
 $A_{q} \sim \frac{1}{\left(p_{q}+p_{g}\right)^{2}}$

A few very basic facts about amplitudes

virtual particle far from real unlikely process in QM Amplitude small

70000000000000000

A few very basic facts about amplitudes

virtual particle far from real unlikely process in QM Amplitude small

000000000000000000

A few very basic facts about amplitudes

Christian Bauer

Quantum algorithms for High Energy Physics Simulations

A few very basic facts about amplitudes

Dealing with probabilities instead of amplitudes

A few very basic facts about amplitudes

$$
\left|A_{n+1}\right|^{2} \approx\left|A_{n}\right|^{2} \times P(t)
$$

Whole problem Markovian process

Two possibilities at each t :

\author{

1. Nothing happens (no-branch prob Δ)
 2.Emission happens (branch prob $P \times \Delta$)
}

Emission depends on P of particle that emits and Δ of system at time t_{i}
 Christian Bauer

state = initial_state() for t in l... N : if emission_happens(state): n = choose_emitter(state) state = new_state(state, n) write_out(state)

...but parton shower is completely based on probabilities, so all quantum mechanical information is lost...
...to get it back, need to compute shower for each possible amplitude...

Number of amplitudes grow exponentially with \# of intermediate particles

Very efficient way to simulate high multiplicity events exist, but including quantum interference effects is exponentially hard in many cases

The traditional way to compute high multiplicity events is inherently probabilistic and can not include many quantum interference effects

> Quantum algorithms have possibility to include such quantum effects efficiently

A very simple toy model

Yukawa theory with two types of fermions and mixing between them

$$
\begin{align*}
\mathcal{L}= & \bar{f}_{1}\left(i \not \partial+m_{1}\right) f_{1}+\bar{f}_{2}\left(i \not \partial+m_{2}\right) f_{2}+\left(\partial_{\mu} \phi\right)^{2} \\
& +g_{1} \bar{f}_{1} f_{1} \phi+g_{2} \bar{f}_{2} f_{2} \phi+g_{12}\left[\bar{f}_{1} f_{2}+\bar{f}_{2} f_{1}\right]
\end{align*}
$$

Very simple Feynman rules

A very simple toy model

$$
\begin{aligned}
\mathcal{L}= & \bar{f}_{1}\left(i \not \partial+m_{1}\right) f_{1}+\bar{f}_{2}\left(i \not \partial+m_{2}\right) f_{2}+\left(\partial_{\mu} \phi\right)^{2} \\
& +g_{1} \bar{f}_{1} f_{1} \phi+g_{2} \bar{f}_{2} f_{2} \phi+g_{12}\left[\bar{f}_{1} f_{2}+\bar{f}_{2} f_{1}\right] \phi
\end{aligned}
$$

The mixing g_{12} gives several interesting effects

Different real emission amplitudes give rise to interference

Virtual diagrams give rise to flavor change without radiation

Need to correct both real and virtual effects Similar to including subleading color

A 2×2 matrix can be diagonalized...

Interaction can be written in matrix notation

$$
\left(\bar{f}_{1}, \bar{f}_{2}\right)\left(\begin{array}{cc}
g_{1} & g_{12} \\
g_{12} & g_{2}
\end{array}\right)\binom{f_{1}}{f_{2}} \phi
$$

This can be diagonalized as

$$
\begin{gathered}
\left(\bar{f}_{1}, \bar{f}_{2}\right) U^{\dagger}\left(\begin{array}{cc}
g_{1} & g_{12} \\
g_{12} & g_{2}
\end{array}\right) U\binom{f_{1}}{f_{2}} \phi \equiv\left(\bar{f}_{a}, \bar{f}_{b}\right)\left(\begin{array}{cc}
g_{a} & 0 \\
0 & g_{b}
\end{array}\right)\binom{f_{a}}{f_{b}} \phi \\
g_{a}=\frac{g_{1}+g_{2}-g^{\prime}}{2}, \quad g_{b}=\frac{g_{1}+g_{2}+g^{\prime}}{2}, \quad g^{\prime}=\operatorname{sign}\left(g_{2}-g_{1}\right) \sqrt{\left(g_{1}-g_{2}\right)^{2}+4 g_{12}^{2}} \\
U=\left(\begin{array}{cc}
\sqrt{1-u^{2}} & u \\
-u & \sqrt{1-u^{2}}
\end{array}\right), \quad u=\sqrt{\frac{\left(g_{1}-g_{2}+g^{\prime}\right)}{2 g^{\prime}}}
\end{gathered}
$$

Thus, the theory can be transformed into a system of non-interacting fermions

This gives normal evolution

At each discrete step, need to
(a) Do nothing (determined by Δ_{i})
(b) Emit one particle (determined by $\mathrm{P}_{\mathrm{p}, \mathrm{i}}$)

Denote initial state as state in n-particle Hilbert space

```
state = to_diagonal_basis(initial_state)
for i in l... N:
    if emission(state):
        n = choose_emitter(state)
        state = new_state(state, n)
final_state = from_diagonal_basis(state)
```

Final state is state in $(\mathrm{n}+\mathrm{N})$-particle Hilbert space

Results in exponentially hard problem

- Δ_{i} only depends on n_{a}, n_{b}, but different for each i
- $P_{p, i}$ depends on flavor of each particle, but independent of i

There are two important facts to realize:

1. We need to rotate back to the f_{1}, f_{2} basis in the end, so need to compute amplitudes, not probabilities
2. Need the results for all possible final state particles f_{a}, f_{b}

This means that for each shower history, need amplitudes for all possible flavors of fermions

This grows like $\mathbf{2 n f}^{\text {nf }}$ for $\mathbf{n f}_{\mathrm{f}}$ fermions

A quantum computer can compute the 2^{nf} amplitudes using polynomial number of operators

- Discretize time (evolution variable) and allow emissions at each discrete value
- Only include interference effects from $f_{a} f_{b}$ interference

Final state determined by history of emissions and types of final state particles

Qubit registers for history lh>, types of final state particles Ip> and ancillary information

Register	Purpose	\# of qubits
$\|p\rangle$	Particle state	$3\left(N+n_{I}\right)$
$\|h\rangle$	Emission history	$N\left\lceil\log _{2}\left(N+n_{I}\right)\right\rceil$
$\|e\rangle$	Did emission happen?	1
$\left\|n_{\phi}\right\rangle$	Number of bosons	$\left\lceil\log _{2}\left(N+n_{I}\right)\right\rceil$
$\left\|n_{a}\right\rangle$	Number of f_{a}	$\left\lceil\log _{2}\left(N+n_{I}\right)\right\rceil$
$\left\|n_{b}\right\rangle$	Number of f_{b}	$\left\lceil\log _{2}\left(N+n_{I}\right)\right\rceil$

A quantum computer can compute the 2^{nf} amplitudes using polynomial number of operators

Goal of algorithm is to create superposition of final states with correct relative amplitudes

$$
|000 \ldots 0\rangle \rightarrow A_{1}\left|\Psi_{1}\right\rangle+\ldots A_{n}\left|\Psi_{n}\right\rangle
$$

Repeated measurements of the final state selects states with probability $\left|A_{i}\right|^{2} \Rightarrow$ can be used as true event generator

A quantum computer can compute the 2^{nf} amplitudes using polynomial number of operators

At each discreet time interval, algorithm rotates from f_{1}, f_{2} basis to f_{a}, f_{b} basis, performs shower in 4 separate steps, and rotates back to $\mathfrak{f}_{1}, \mathrm{f}_{2}$ basis

$\left|n_{i}\right\rangle,|h\rangle$: Integer registers

$|e\rangle$: Boolean value

Christian Bauer
Quantum algorithms for High Energy Physics Simulations

A quantum computer can compute the 2^{nf} amplitudes using polynomial number of operators

At each discreet time interval, algorithm rotates from $\mathrm{f}_{1}, \mathrm{f}_{2}$ basis to f_{a}, f_{b} basis, performs shower in 4 separate steps, and rotates back to f_{1}, f_{2} basis

Operation	Scaling
count particles $\mathrm{U}_{\text {count }}$	$N \ln \left(\mathrm{n}_{\mathrm{f}}\right)$
decide emission U_{e}	$N n_{f} \ln \left(\mathrm{n}_{\mathrm{f}}\right)$
create history U_{h}	$N \mathrm{nf}^{2} \ln \left(\mathrm{n}_{\mathrm{f}}\right)$
adjust particles U_{p}	$N n_{f} \ln \left(\mathrm{n}_{\mathrm{f}}\right)$

There are many things that needs to happen before this becomes truly useful
1.Apply to quantum interference effects of standard model
2.Reduce the circuit depth and required qubits
3.Find ways to make code more robust against noise

4 ...

But our proof of principle that quantum interference effects in parton showers can be included using quantum algorithms is important first step

There are many other interesting questions in quantum computing that we (and many others) are working on
1.Dynamical simulation of quantum field theories on lattices
2.Find better ways of sampling from given distributions
3.Ways to correct for readout and gate noise
4.Efficient ways to prepare complicated states

5
5.

Christian Bauer

