Quantum Algorithms for HEP simulations

Quantum Information Science for Fundamental Physics, Aspen

CWB, W. de Jong, B. Nachman, D. Provasoli

1904.03196 [quant-ph]

Need Precise predictions

What we can compute is limited...

Christian Bauer Quantum algorithms for High Energy Physics Simulations

Run Number: 152409, Event Number: 8186656

Date: 2010-04-05 12:28:45 CEST

20 ET (GeV)

Christian Bauer Quantum algorithms for High Energy Physics Simulations

6 Jet Event in 7 TeV Col

The traditional way to compute high multiplicity events is inherently probabilistic and can not include many quantum interference effects

Quantum algorithms have possibility to include such quantum effects efficiently

The traditional way to compute high multiplicity events is inherently probabilistic and can not include many quantum interference effects

Quantum algorithms have possibility to include such quantum effects efficiently

virtual particle almost real likely process in QM Amplitude large

 A_q

 $(p_{q} + p_{g})^{2}$

virtual particle far from real unlikely process in QM Amplitude small

 $(p_{\bar{a}} + p_{g})^2$

 $\ll A_q$

 $\int \frac{(p_a + p_g)^2}{(p_a + p_g)^2}$

virtual particle far from real unlikely process in QM Amplitude small

 $(p_{\bar{a}} + p_{g})^2$

Christian Bauer Quantum algorithms for High Energy Physics Simulations

 $\ll A_q$

 $(p_a + p_g)$

$$\left|A_{n+1}\right|^2 \approx \left|A_n\right|^2 \times P(t)$$

Dealing with probabilities instead of amplitudes

$$\left|A_{n+1}\right|^2 \approx \left|A_n\right|^2 \times P(t)$$

Whole problem Markovian process

Two possibilities at each t:1. Nothing happens (no-branch prob Δ)2. Emission happens (branch prob $P \times \Delta$)

Emission depends on P of particle that emits and Δ of system at time t_i

state = initial_state() fort in 1...N: if emission_happens(state): n = choose_emitter(state) state = new_state(state, n) write_out(state)

...but parton shower is completely based on probabilities, so all quantum mechanical information is lost...

...to get it back, need to compute shower for each possible amplitude...

Number of amplitudes grow exponentially with # of intermediate particles

Very efficient way to simulate high multiplicity events exist, but including quantum interference effects is exponentially hard in many cases

The traditional way to compute high multiplicity events is inherently probabilistic and can not include many quantum interference effects

Quantum algorithms have possibility to include such quantum effects efficiently

A very simple toy model

Yukawa theory with two types of fermions and mixing between them

$$\mathcal{L} = \bar{f}_1 (i\partial \!\!\!/ + m_1) f_1 + \bar{f}_2 (i\partial \!\!\!/ + m_2) f_2 + (\partial_\mu \phi)^2 + g_1 \bar{f}_1 f_1 \phi + g_2 \bar{f}_2 f_2 \phi + g_{12} \left[\bar{f}_1 f_2 + \bar{f}_2 f_1 \right] \phi$$

Very simple Feynman rules

A very simple toy model

$$\mathcal{L} = \bar{f}_1 (i\partial \!\!\!/ + m_1) f_1 + \bar{f}_2 (i\partial \!\!\!/ + m_2) f_2 + (\partial_\mu \phi)^2 + g_1 \bar{f}_1 f_1 \phi + g_2 \bar{f}_2 f_2 \phi + g_{12} \left[\bar{f}_1 f_2 + \bar{f}_2 f_1 \right] \phi$$

The mixing g_{12} gives several interesting effects

Need to correct both real and virtual effects Similar to including subleading color

A 2x2 matrix can be diagonalized...

Interaction can be written in matrix notation

$$(ar{f_1},ar{f_2})\left(egin{array}{cc} g_1 & g_{12} \ g_{12} & g_2 \end{array}
ight)\left(egin{array}{cc} f_1 \ f_2 \end{array}
ight)\phi$$

This can be diagonalized as $(\bar{f}_1, \bar{f}_2) U^{\dagger} \begin{pmatrix} g_1 & g_{12} \\ g_{12} & g_2 \end{pmatrix} U \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \phi \equiv (\bar{f}_a, \bar{f}_b) \begin{pmatrix} g_a & 0 \\ 0 & g_b \end{pmatrix} \begin{pmatrix} f_a \\ f_b \end{pmatrix} \phi$ $g_a = \frac{g_1 + g_2 - g'}{2}, \qquad g_b = \frac{g_1 + g_2 + g'}{2}, \qquad g' = \operatorname{sign}(g_2 - g_1) \sqrt{(g_1 - g_2)^2 + 4g_{12}^2}$ $U = \begin{pmatrix} \sqrt{1 - u^2} & u \\ -u & \sqrt{1 - u^2} \end{pmatrix}, \quad u = \sqrt{\frac{(g_1 - g_2 + g')}{2g'}}$

Thus, the theory can be transformed into a system of non-interacting fermions

This gives normal evolution

At each discrete step, need to

(a) Do nothing (determined by Δ_i) (b) Emit one particle (determined by $P_{p,i}$)

Denote initial state as state in n-particle Hilbert space

state = to_diagonal_basis(initial_state)
for i in 1... N:
 if emission(state):
 n = choose_emitter(state)
 state = new_state(state, n)
final_state = from_diagonal_basis(state)

Final state is state in (n+N)-particle Hilbert space

Results in exponentially hard problem

- Δ_i only depends on n_a, n_b,
 but different for each i
- P_{p, i} depends on flavor of each particle, but independent of i

There are two important facts to realize:

- 1. We need to rotate back to the f₁, f₂ basis in the end, so need to compute amplitudes, not probabilities
- 2. Need the results for all possible final state particles f_a , f_b

This means that for each shower history, need amplitudes for all possible flavors of fermions

This grows like 2^{nf} for n_f fermions

- Discretize time (evolution variable) and allow emissions at each discrete value
- Only include interference effects from f_a f_b interference

Final state determined by history of emissions and types of final state particles

Qubit registers for history lh>, types of final state particles lp> and ancillary information

Register	Purpose	# of qubits
p angle	Particle state	$3(N+n_I)$
h angle	Emission history	$N \lceil \log_2(N+n_I) \rceil$
$ e\rangle$	Did emission happen?	1
$ n_{\phi} angle$	Number of bosons	$\lceil \log_2(N+n_I) \rceil$
$ n_a angle$	Number of f_a	$\lceil \log_2(N+n_I) \rceil$
$ n_b angle$	Number of f_b	$\lceil \log_2(N+n_I) \rceil$

Goal of algorithm is to create superposition of final states with correct relative amplitudes

Repeated measurements of the final state selects states with probability $|A_i|^2 \Rightarrow$ can be used as true event generator

 $|n_i\rangle, |h\rangle$: Integer registers

$$|p\rangle_{i} = \begin{pmatrix} 000\\001\\010\\011\\100\\101\\110\\111 \end{pmatrix} = \begin{pmatrix} 0\\\phi\\-\\-\\f_{1}/f_{a}\\f_{2}/f_{b}\\\bar{f}_{1}/\bar{f}_{a}\\\bar{f}_{2}/\bar{f}_{b} \end{pmatrix}$$

At each discreet time interval, algorithm rotates from f₁, f₂ basis to f_a, f_b basis, performs shower in 4 separate steps, and rotates back to f₁, f₂ basis

Operation	Scaling
count particles U _{count}	N In(n _f)
decide emission U _e	N n _f In(n _f)
create history U _h	N n _f ² ln(n _f)
adjust particles U _p	N n _f In(n _f)

classical algorithms scales as

 $N 2^{n_f/2}$

There are many things that needs to happen before this becomes truly useful

1. Apply to quantum interference effects of standard model

- 2.Reduce the circuit depth and required qubits
- 3. Find ways to make code more robust against noise

4.....

But our proof of principle that quantum interference effects in parton showers can be included using quantum algorithms is important first step

There are many other interesting questions in quantum computing that we (and many others) are working on

1.Dynamical simulation of quantum field theories on lattices

2. Find better ways of sampling from given distributions

3. Ways to correct for readout and gate noise

4.Efficient ways to prepare complicated states

5.....

