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The Kinetic Inductance Detector (KID)
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Transmission (dB)

KID multiplexing and readout is a big advantage
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Frequency vs. blackbody temperature
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Multiplexed Readout of ~1000/GHz KIDs at SRON for the

European ‘Space KIDs’ project

Array Design

4 i 42 44 456 48 5 52
O Erequency (CH2) e
0 o — T rerrerreeaas
[
-0} .
g
20} ]
N
w
30 .
_40 1 1 1 1
4,05 4.06 4.07 4.08 4.09 4.1

Frequency (GHz) ‘
J. Baselmans et al., A&A 601, A89 (2017)

Dark NEP (W/VHz)

300 600 900

2 4 6
Dark NEP (10" WivHz)



Increased sensitivity of future far-IR space telescopes
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Two science case studies enabled with ultrasensitive
detectors on the Origins Space Telescope
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* Protoplanetary disk evolution and search for life * Evolution of galaxies over cosmic time

* Formation of habitable planets * Growth of structure in the universe
Technique: Mapping water, ice and molecular Technique: Observing fine structure lines
lines from key volatiles (e.g. NH;) in of high-z galaxies

protoplanetary disks



Challenges for future submm/far-IR

Requirements:

* Very low NEP of ~ 1020 W/Hz'/2 or photon-counting

space detectors

* Large format arrays of ~ 10*-10° pixels

Photon counting vs total power detection:

* Photon counting is not sensitive to 1/f drifts in telescope

electronics, temperature, etc.

* No need to measure a calibrator (2x) and no need to subtract
~ 4x increase in

1/f noise from signal (another 2x) =
observation speed

* Performance limited by “dark counts”

* Dark counts can fundamentally be close to zero for KIDs at low

temperature (<100 mK)

Challenges for KIDs:

* >10x improvement in KID state of the art noise still needed

* Development of “cleaner” nano-fab techniques
for ultra-pure thin films and substrates is crucial
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Reduced frequency noise in modern MKID resonators

StLs @ 1KHz (1/Hz)
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Amorphous oxides/defects/dielectrics on resonator surfaces and
interfaces contain “two-level system” defect states that tunnel
randomly and create fluctuations in the dielectric constant. >
Frequency noise

Frequency noise originates mainly in capacitive parts (E-field areas)

T it s e
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A parallel-plate capacitor with crystalline dielectric and clean 0. Noroozian et al., AIP conf. proc. 1185, 148, 2009
interfaces will have significantly reduced TLS noise -> Microstrip-based https://doi.org/10.1063/1.3292302
resonators made using SOl wafer technology are a good candidate J. Zmuidzinas, Annu. Rev. Condens. Matter Phys., 3, 169, 2012

O. Noroozian, PhD thesis, 2012 (Caltech)



A single-photon counting KID design for
submm/far-IR space spectroscopy

Photon counting _ _ _

e Assuming spectrometer in space with R = 1000,
% background photon rate is expected 10? — 10*
% photons/sec, so suitable for photon counting

time
pr— — Our KID design and benefits:

(ryogenic % i
amplifier Spectrometer |3 . . o

e Ultra-small volume aluminum kinetic inductor for

increased response to single photons

Coupling e SOl wafer (currently 0.45 um Si substrate)
(apacitor

* Parallel-plate capacitor on single-crystal Si for
integration with spectrometer (u-Spec) and
reduced TLS frequency noise

e  Choke filter for confinement of submm radiation

7

= radiation inside sensitive inductor
Kinetic
;:(:_t:gor/ *  All-microstripline elements and no cuts in ground
absorber lw"—ml plane ->Immunity to stray radiation

O.Noroozian (PI), Photon-counting KIDs for the Origins Space Telescope, NASA ROSES APRA (2017)



Thin aluminum films for ultrasensitive KID resonators
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O.Noroozian (Pl), Photon-counting KIDs for the Origins Space Telescope, NASA ROSES APRA (2017)



Very long quasi-particle lifetimes in Al
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* Measured using fiber-coupled 660 nm LED
pulsing at 7mK

* Dark intrinsic Lifetime is very long > 6ms

* Measurement limited by noise at tail end of
pulse

« “Lifetime” keeps increasing over time as
expected for very dark background ===

* On-set of decrease is caused by readout 3
power QP generation

e Consistent with data from SRON
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O.Noroozian (PI), Photon-counting KIDs for the Origins Space Telescope, NASA ROSES APRA (2017)



Simulation of photon counting at 0.5 -1.0 THz
with a 10-nm aluminum KID on SO

Photon Counting @ 0.5 and 1 THz, V = 0.05 ym®
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Credit: Thomas Stevenson, GSFC
Dark counts are only caused by white amplifier noise at a rate of 5 Hz. This corresponds to NEP = 1-2 x 10" W/rt Hz in the 0.5-1 THz
range .
Integrated over the signal bandwidth, TLS noise is sub-dominant to amplifier white noise, because internal Q is low during pulse. v

Recombination time and ring time are fast compared to photon arrival rate. Pulses decay with tau ~ 1.7 ms. v
Counting photons with > 95% efficiency!

Assumptions:

photon rate = 100/s, spectrometer resolution = 1000, optical coupling efficiency = 25%, 4K telescope (conditions for high-Z galaxy case)

detector volume = 0.05 um?3, bath temperature = 100 mK, readout power = -137 and -156 dBm
Material properties take from our films measured at GSFC.

O.Noroozian (PI), Photon-counting KIDs for the Origins Space Telescope, NASA ROSES APRA (2017)




u-Spec: an integrated spectrometer for submm/ THz space
spectroscopy (NASA GSFC)

p-Spec spectrometer (R=64 version)

Orders of magnitude reduction in the mass and volume of our spectrometer are achieved by using superconducting
microstrip transmission lines with low-loss single-crystal silicon dielectric substrates (0.45 um thick).
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A 400-600 GHz prototype p-Spec chip with an R=64

U-Spec is an analog of a grating spectrometer that uses an

artificial grating (Rowland spectrometer). :

Phase delays in a tree of superconducting transmission lines IS (one perchannel)
are used to produce constructive and

destructive interference in propagating waves, which focus

light on diffraction-limited spots on

a 2.5-D focal plane

Photons go through order-sorting filters first and are then
detected by ultra-sensitive KIDs
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Optical measurement of py-Spec channels
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Measurement of a prototype u-Spec designed for R = 64
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Demonstrated results:

» Sharp line profile of (sinx/x)? (as opposed to Lorentzian in filterbank-based spectrometers)
* Resolution of R=64 achieved as designed
* Absolute frequency position within £1 GHz as designed.



Insensitivity to cosmic radiation important in space

* Planck spacecraft bolometers were very sensitive to cosmic rays and lost significant
observation time and data

* KIDs are more immune (better than bolometers) because:
fast response time + insensitive to phonons below energy gap (unlike TESs)

Simulated TOI (pW)

TOI 15_Dark (pV)
N - o (=]

N 9

Simulation of a LEKID@L2
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A. Catalano, A&A 592, A26 (2016)



A cryogenic black-body calibrator source with stray-
light shielding for testing space worthy KIDs
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PJ. De Visser, PhD thesis, 2014 (TuDelft)

Using above design and concept as a starting point, we are
currently implementing a shielded ultra-dark blackbody
source at GSFC (see next slide).

Filtered coax cables




GSFC design for an ultra-dark testbed with BB
calibrator for KID spectrometer testing

Photon-counting aluminum KIDs at 100mK
need to see a background incident power
of ~1021 W at f > 90GHz

- Need ~137dB attenuation from 3.2K and
~110dB from 800mK blackbody radiation
from shields

Primary issues are minimizing radiation
leaks to high precision, filtering
feedthroughs for DC and microwave lines

Need a fast, temperature-swept, integrated
blackbody to introduce known amounts of
optical power to detector for
characterization.

Challenge: A combination of residual
resonator TLS frequency noise, slow BB
temperature control, drifts, and very low
microwave read power create potential
problems with long-duration noise/NEP
measurements. —> Solution is a manually
controlled iris at <100mK. Modulator
provides stable background when iris
closed. Currently implementing this at
GSFC.
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J. Connors (formerly GSFC NPP postdoc)
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Blackbody calibrator de5|gn

Graphite loaded epoxy coating forms
a non-magnetic lossy absorber

Optimized cone angle, absorber
thickness, and thermal time constant

15 deg half angle chosen for BB to
have < -35dB reflection at 850GHz
(using multiple light ray bounces)

Thermal time constant estimated at
~5min at 4K with copper wire defining
G to 800mK bath

3mm Absorber Thickness, £, =« 5.2 = 0.2
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J. Connors (formerly GSFC NPP postdoc)



Blackbody calibrator being assembled at GSFC
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Kinetic Inductance Traveling-wave Parametric
Amplifiers (TWKIP) for readout of KIDs

* |nvented in 2012 at Caltech/JPL

* Kerr medium made of ultra low-loss
and high kinetic inductance NbTiN film

o OSLyjy < I?

e Uses transmission-line architecture

The good:
e Quantum-limited noise

e QOctave or more bandwidth

* High input dynamic range (-50 to -40 dBm)

* Very low dissipation

e Can operate at temperature of “< 3 K

* Integration with superconducting
electronics

* Can read out large array of detectors

The not-so-good:

e High pump power (~10 pW)

* In-band ripples (recently reduced)

* Relatively long line length of 2.5 cm
(used to be 1 meter!)
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PUBLISHED ONLINE: 8 JULY 2012 | DOI:10.1038/NPHYS2356

A wideband, low-noise superconducting amplifier

with high dynamic range

Byeong Ho Eom’, Peter K. Day?*, Henry G. LeDuc? and Jonas Zmuidzinas'?
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First demo of application of TWKIPs for KID readout

Wide-band parametric amplifier readout and

resolution of optical microwave kinetic inductance

detecto rs Nicholas Zobrist," () Byeong Ho Eom,? Peter Day,” Benjamin A. Mazin,"® (%) Seth R. Meeker,” Bruce Bumble,”
Henry G. LeDuc,” Grégoire Coiffard,' Paul Szypryt,® (%) Neelay Fruitwala,' Isabel Lipartito,' and Clint Bockstiegel’

Appl. Phys. Lett. 115, 042601 (2019)
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Millimeter-wave TWKIP amplifiers for
astronomical receiver front-ends

TWKIPs can in principle be designed to operate at frequencies up to 1 THz.

Paramps could be used as front-end amplifiers before down-converting mixing elements

This would obviate the need for SIS mixers altogether, would allow quantum-limited performance for
full system, and increase the instantaneous bandwidth and observation speed of receiver systems by
many times. (e.g. for ALMA band 3 receivers - 8x increase in telescope observation speed!)
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* 0. Noroozian, “Superconducting paramps: the next big thing in (Sub)millimeter-wave receivers”, National
Committee of URSI National Radio Science Meeting, 2018

* D. Woody, “Development of ultra-wideband quantum limited amplifiers for millimeter and submillimeter
receiver frontends”, ALMA final study report, 2013



Many applications of TWKIP amplifiers

* Application for space-based detector readout. e.g. for
the Origins Space Telescope to read out arrays of
photon-counting spectrometers

* Replacing high power consuming HEMT amplifiers with
TWKIPs for reducing SWaP in space platforms.

* Sensitive current sensors for multiplexed readout of

large TES detector arrays for astronomical telescopes
(e.g. CMB-S4 needs ~ 10° TESs)

* X-ray/Gamma-ray spectrometers for fast/real-time
materials analysis in industry or national security.

* Deep-space communication —e.g. IF amplifiers for DSN
* Space debris tracking using radar



Application of KIDs for dark matter detection

APPLIED PHYSICS LETTERS 100, 232601 (2012)

Position and energy-resolved particle detection using phonon-mediated
microwave kinetic inductance detectors

D. C. Moore,"® S. R. Golwala,' B. Bumble,? B. Cornell,” P. K. Day,® H. G. LeDuc,?
and J. Zmuidzinas'?
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The End
Thank youl!



Funded by NASA in 2019: Measuring the cosmological
evolution of gas and galaxies with the EXperiment for
Cryogenic Large-aperture Intensity Mapping (EXCLAIM)

Rotator

A high-altitude balloon spectrometer designed to measure the
redshifted emission from CO and C|[lI] lines over cosmic time to
deepen our understanding of star formation. (PI: E. Switzer)
Intensity Mapping: Rather than detect individual galaxies, EXCLAIM
will measure the statistics of brightness fluctuations of redshifted,
cumulative line emission.

All-cryogenic telescope with 1.5 K mirror coupled to six (6)

u-Spec chips each with resolution R=500.

EXCLAIM will use significant heritage equipment including the
gondola, cryostat, electronics, and software from the PIPER balloon
mission. Commissioning planed for 2021.

Detectors will be microstrip aluminum KIDs similar to the photon
counting detector design.

The project leverages the design, materials development, results,
lessons learned, testing infrastructure, and same team for the KID

CIP
magnetometer

2 meters

Readout

Star
Camera

Electronics

Table 1: EXCLAIM Spectrometer

. ” h S . 5 | Spectrometer architecture Rowland on-chip
proJeCt as well as the H-Spec proJeCt' © | Number of spectrometers 6 single-pol
“Laboratory” | R=256 balloon | R=512 balloon £ Spectral range [GHZ] 421-540 GHz
—— gy —— g Spectrometer efficiency 53 — 63%
Optical Frequency ~ ~ 500 GHz ~ 500 GHz ~ 500 GHz & | Resolving power R=512
Spectrometer order 2
Power loading 1nW-20pW  30fW 50 aW Spectrometer dimensions 4% 8cm
Thickness 100 nm 20 nm 10 nm Det.ectors per spectrometer 349
Emitters per spectrometer 256
Qint under loading 20k — 137k 300k 800k v | Time constant < 1ms
€| MKID Al film thickness 20 nm
-15 -18 -19 O
I(Z:;t/i'cztgzr)NEP ;gﬁg; 8x10 3.5x10 % MKID NEP 1019 W/\/E 3
: O | Detector bath 100mK CADR
BLIP NEP 9x10-16 —4x10-  5x10-18 2x10-19 MKID Readout Band 2.64—3.36 GHz
17 HEMT Noise Temp. <5K




