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QCD axion                                 WIMP
10-22 eV                                                  eV 100 GeV                  1019 GeV

dwarf galaxies                                                                                                           Planck mass

Two “strongly motivated” dark-matter candidates

• Weakly Interacting Massive Particle (WIMP)

• Motivated by supersymmetry

• Naturalness: thermal production of observed abundances for WIMPs near 100 GeV.

• Ongoing, 30-year effort to produce (supersymmetry at LHC) and detect (direct dark-
matter searches). Much interesting phase space has already been ruled out.

• QCD axion

• Fixes the standard model: motivated as solution to strong CP problem in QCD and 
hierarchy problem.

• Naturalness: misalignment production of observed abundances over full mass range, 
peV-meV

• Largely unexplored parameter space.



QCD axion: the need for quantum sensors
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• Projected science reach at SQL shown in blue
• Assumptions made about experimental parameters (volume, 

magnetic field strength) may change—only approximate!

Cavity extensions
to ADMX
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• Projected science reach at SQL shown in blue
• Assumptions made about experimental parameters (volume, 

magnetic field strength) may change—only approximate!

Science enabled by quantum acceleration

• Quantum acceleration required to cover full QCD band



• Axion field converts to oscillating electromagnetic signal in 
background DC magnetic field (inverse Primakoff effect)

• Detect using a tunable resonator (an AM radio)

Probing QCD axion through electromagnetism
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Cavity
Proposal: Sikivie (1983)
ν>300 MHz:
Cavity-based searches
(ADMX, HAYSTAC)

Proposal: Cabrera, Thomas (2010)
ν<300 MHz:
Lumped-element searches
(DM Radio, ABRACADABRA, Florida LC)

>
I 

XX
Amplifier

Magnet



DM Radio Experiment Family
DM Radio Pathfinder DM Radio-Quantum

DM Radio-50L

Dark Matter Radio Cubic Meter (DMRadio-m3)

• 0.67 L, no magnet
• Q~200,000 now
• 4 K
• Hidden photon science
• DC SQUID

• Brings together both DM Radio and 
ABRACADABRA teams

• QCD axion over 5 MHz – 200 MHz (20neV-0.8 
µeV)

• ~4T, ~m3 magnet
• Dilution refrigerator

• ~0.5 T, 50 L magnet
• Dilution refrigerator
• ALP science
• Platform for 

quantum sensors

Status: R&D funded under DOE Dark Matter New Initiatives call
See Lindley Winslow talk, Thursday 20 Feb 2020, 17:30

Status: In constructionStatus: In testing / operation



• Science reach determined by integrated 
sensitivity across search band

• Figure of merit with quantum-limited 
amplifier:

𝑈𝑈[𝑆𝑆 ν ] = �
ν𝑙𝑙

νℎ
𝑑𝑑ν

|𝑆𝑆21 ν |2

|𝑆𝑆21 ν |2𝑛𝑛 ν + 1
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• |𝑆𝑆21 ν |2 : transmission from dark-
matter signal source to amplifier 
(entry in scattering matrix 𝑆𝑆 ν )

• n(ν)= signal source thermal occupation 
number

• “+1” is standard quantum limit

Integrated sensitivity: the figure of merit

• A single-pole resonator has nearly ideal integrated sensitivity
• Substantial sensitivity available outside of resonator bandwidth.
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Example: single-pole resonator

S. Chaudhuri et al., arXiv:1904.05806 (2019). 
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• Ground state
• Cavity resonators (experimental scale of order of Compton wavelength)
• Scattering-mode amplifiers
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CASPEr Electric NMR             DM Radio     ADMX-G2

ℎ𝑓𝑓 ≪ 𝑘𝑘𝐵𝐵𝑇𝑇

<~ µeV : High Occupation

• Thermal state
• Lumped LC resonators (experimental scale << Compton wavelength)
• Op amp-mode amplifiers



HAYSTAC: Acceleration through squeezing

HAYSTAC run 1 & 2 combined exclusion plot

HAYSTAC Phase II squeezed state receiver 
projected acceleration

Droster, Alex G., and Karl van Bibber. 
"HAYSTAC Status, Results, and 
Plans." arXiv preprint 
arXiv:1901.01668 (2019).

See: Reina Maruyama talk?



Use qubit as an atomic clock whose frequency 
depends on the number of photons in the 
cavity.  The electric field of even a single 
photon will exercise the non-linearity of the 
qubit oscillator and shift its frequency.

Many QND 
measurements 
agree that the cold 
cavity contains 0 
photons

Many QND 
measurements of the 
single photon without 
absorbing it.  

Inject 1 photon

Repeatedly measure the clock frequency to determine 
whether the cavity contains 0 or 1 photon:

Akash Dixit, Aaron Chou, David Schuster

Count # of photons by measuring the quantized 
frequency shift of the qubit.

Figure Credit: Aaron Chou, FNAL

Ground state measurement: QND photon counting
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ℎ𝑓𝑓 ≪ 𝑘𝑘𝐵𝐵𝑇𝑇

Second regime: High Occupation



Photon counting is useless when ℎ𝑓𝑓 ≪ 𝑘𝑘𝐵𝐵𝑇𝑇
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Thermal + 
Zero-Point

Imprecision

Backaction

Sensitivity bandwidth

• 𝑁𝑁 thermal fluctuations in 
the number of resonator 
photons

• Sensitivity not improved by 
photon counting

→ Backaction evasion

Implement backaction evasion to reduce both imprecision and backaction noise 
below the standard quantum limit, increasing the sensitivity bandwidth
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Radio-Frequency Quantum Upconverters:
Analagous to Optomechanical Systems

Same Hamiltonian for both systems (to first order in coupling)

LIGO: Axion detector with RQU:

�H = ħ𝜔𝜔𝑎𝑎 �𝑎𝑎† �𝑎𝑎+ ⁄1 2 + ħ𝜔𝜔𝑏𝑏 �𝑏𝑏† �𝑏𝑏+ ⁄1 2 + �HINT

�HINT = −ħ �𝐹𝐹�𝑏𝑏† �𝑏𝑏 ⁄�𝑎𝑎† + �𝑎𝑎 2



Low Frequency LC Circuit Quadratures

See optomechanical analogue, e.g.
AA Clerk, F. Marquardt, and K. Jacobs, New Journ. Phys. 10, 095010 (2008).

One key difference: optimization for integrated sensitivity

�Y =
1
2

�𝑎𝑎 𝑒𝑒𝑖𝑖𝜔𝜔𝑎𝑎𝑡𝑡 − �𝑎𝑎†𝑒𝑒−𝑖𝑖𝜔𝜔𝑎𝑎𝑡𝑡

�X, �Y = 𝑖𝑖

�Φ 𝑡𝑡 = 2Φ𝑧𝑧𝑧𝑧𝑡𝑡 �X 𝑡𝑡 cos𝜔𝜔𝑎𝑎𝑡𝑡 + �Y 𝑡𝑡 sin𝜔𝜔𝑎𝑎𝑡𝑡

Low-frequency signal flux 
(black) has components in the 
X-quadrature (blue) and in the 
Y-quadrature (red)

�X =
1
2

�𝑎𝑎 𝑒𝑒𝑖𝑖𝜔𝜔𝑎𝑎𝑡𝑡 + �𝑎𝑎†𝑒𝑒−𝑖𝑖𝜔𝜔𝑎𝑎𝑡𝑡
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Noise in LF circuit
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𝑆𝑆𝑋𝑋,𝑌𝑌 𝜔𝜔 =
γ

𝜔𝜔 − 𝜔𝜔𝑎𝑎 2 + ⁄γ 2 2 ⁄1 2 + 𝑛𝑛th

𝑛𝑛th = exp
ħ𝜔𝜔𝑎𝑎
𝑘𝑘B𝑇𝑇

− 1
−1

Thermal occupation

Vacuum



Noise in LF circuit
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Noise in LF circuit
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Tuned to axion signal: max response
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Detuned axion signal: SNR the same
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• SNR not degraded when readout subdominant to thermal noise
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SNR constant over sensitivity BW
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Push readout noise as low as possible
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Thermal + 
Vacuum Noise

Readout: Imprecision

Frequency

Current 
Response

Readout: 
Backaction

Sensitivity 
BW
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Two contributions to readout noise

𝑆𝑆𝑋𝑋,𝑌𝑌 𝜔𝜔 =
γ

𝜔𝜔 − 𝜔𝜔𝑎𝑎 2 + ⁄γ 2 2 ⁄1 2 + 𝑛𝑛th + 𝑛𝑛BA + 𝑆𝑆IMP 𝜔𝜔

𝑛𝑛th = exp
ħ𝜔𝜔𝑎𝑎
𝑘𝑘B𝑇𝑇

− 1
−1



Increased coupling: larger sensitivity bandwidth

Thermal + 
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𝑆𝑆𝑋𝑋,𝑌𝑌 𝜔𝜔 =
γ

𝜔𝜔 − 𝜔𝜔𝑎𝑎 2 + ⁄γ 2 2 ⁄1 2 + 𝑛𝑛th + 𝑛𝑛𝐵𝐵𝐵𝐵 + 𝑆𝑆IMP 𝜔𝜔



Optimized coupling: strong backaction
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𝑆𝑆𝑋𝑋,𝑌𝑌 𝜔𝜔 =
γ

𝜔𝜔 − 𝜔𝜔𝑎𝑎 2 + ⁄γ 2 2 ⁄1 2 + 𝑛𝑛th + 𝑛𝑛𝐵𝐵𝐵𝐵 + 𝑆𝑆IMP 𝜔𝜔



Backaction evasion (BAE): reduced readout noise 
in one quadrature
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Readout: 
backaction 
noise

Resonator: 
thermal noise 

increased 
backaction

reduced 
backaction

Backaction 
evasion (BAE)

Resonator: 
vacuum noise 

The reduction in the total X-quadrature noise appears unimpressive



Now that the backaction is reduced…
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NOW SINGLE QUADRATURE



The coupling can be increased

Thermal + 
Vacuum Noise

Imprecision

Frequency

Current 
Response

Backaction

Sensitivity Bandwidth
Sensitivity BW can be greatly increased 30

NOW SINGLE QUADRATURE



RF Quantum Upconverters
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RQU
High-frequency 
resonator
(~5 GHz)

• Electromagnetic sub-µeV
axion searches presently use 
dc SQUIDs in frequency range 
kHz – 100 MHz.

• The best dc SQUIDs in this 
frequency range, coupled to 
macroscopic resonant 
circuits, are 20 times worse 
than the SQL, and they 
couple loss to the resonant 
circuit.

• A dissipationless sensor is 
needed that can achieve SQL, 
and conduct phase-sensitive 
operations like backaction 
evasion with electromagnetic 
signals at audio-RF 
frequencies.



RF Quantum Upconverters
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RQU
High-frequency 
resonator
(~5 GHz)



RF Quantum Upconverters
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Lithographic resonator RQUs:
3-junction RQU         1-junction RQU

Cavity resonator RQUs:

RQU
High-frequency 
resonator
(~5 GHz)



RF Quantum Upconverters
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DM Radio Pathfinder
Low-frequency 
resonator
(~MHz)

RQU
High-frequency 
resonator
(~5 GHz)



Data iIlustrating RF Upconversion
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• Data illustrating 
upconversion in single-
junction RQUs

• Single-junction RQU 
excited on resonance

• The signal information 
is upconverted to 
symmetric sidebands 
on the microwave 
carrier tone. 

Signal
5 kHz

20 kHz

50 kHz

5.5 GHz Carrier



Phase-Sensitive Upconversion
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If the carrier tone is amplitude 
modulated in phase with the 
X-quadrature of the input 
signal, phase-sensitive 
amplification of only the X-
quadrature is achieved. 

Microwave carrier

�H = ħ𝜔𝜔𝑎𝑎 �𝑎𝑎† �𝑎𝑎+ ⁄1 2 + ħ𝜔𝜔𝑏𝑏 �𝑏𝑏† �𝑏𝑏+ ⁄1 2 + �HINT

�HINT = −ħ𝐴𝐴 �𝐹𝐹�Φ = − 2ħ�̃�𝐴 �𝐹𝐹 �X 1 + cos 2𝜔𝜔𝑎𝑎𝑡𝑡 + �Y sin 2𝜔𝜔𝑎𝑎𝑡𝑡

A 𝑡𝑡 = 2 ��̃�𝐴 Φ𝑧𝑧𝑧𝑧𝑡𝑡 cos𝜔𝜔𝑎𝑎𝑡𝑡

If the carrier tone is amplitude modulated in phase with the X-quadrature of the 
input signal, phase-sensitive upconversion of only the X-quadrature is achieved.

Clerk, New Journ. Phys. 10, 095010 (2008).



Phase-Sensitive Upconversion Data

37

29.6 dB of phase-sensitive gain contrast

Input: 50 kHz flux signal into 
single-junction RQU

Carrier: 5.5 GHz sinewave 
amplitude modulated at 50 KHz

Measure: output tone power as 
a function of phase shift 
between input sinewave and 
AM modulation

Single-junction 
RQU

• Necessary step towards full backaction evasion



Full Backaction Evasion
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• A backaction signal from the microwave resonator only does work on an LC 
resonator quadrature, on average, if it is 90 degrees out of phase.

• In this limit, if only the �X quadrature is measured, the backaction is injected 
preferentially into the �Y quadrature (which is not measured) - BAE

• If the Q of the microwave resonator is high enough (the “good cavity” limit), 
the sidebands are fully resolved

Carrier tone modulated to 
measure only X quadrature

Braginsky, Vorontsov, and Thorne. Science 209, 547 (1980).
AA Clerk, F. Marquardt, and K. Jacobs, New Journ. Phys. 10, 095010 (2008).

𝑆𝑆𝑋𝑋 𝜔𝜔 =
γ

𝜔𝜔 − 𝜔𝜔𝑎𝑎 2 + ⁄γ 2 2 ⁄1 2 + 𝑛𝑛th + 𝑛𝑛leak + 𝑆𝑆IMP 𝜔𝜔

𝑆𝑆𝑌𝑌 𝜔𝜔 =
γ

𝜔𝜔 − 𝜔𝜔𝑎𝑎 2 + ⁄γ 2 2 ⁄1 2 + 𝑛𝑛th + 𝑛𝑛BA + 𝑆𝑆IMP 𝜔𝜔
𝑛𝑛leak =

𝑛𝑛BA
32

κ
𝜔𝜔𝑎𝑎

2

Microwave 
resonator linewidth



Now that the backaction is reduced…

Thermal + 
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NOW SINGLE QUADRATURE



The coupling can be increased

Thermal + 
Vacuum Noise

Imprecision

Frequency

Current 
Response

Backaction

Sensitivity Bandwidth
Sensitivity BW can be greatly increased 40

NOW SINGLE QUADRATURE



Next steps
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• 29.6 dB of phase-sensitive gain contrast achieved 
with 1-junction RQU.

• 1-junction RQUs couple to uncontrolled microwave 
modes in the low-frequency resonator. Implement 
3-junction design that cleanly isolates the 
microwave and low-frequency circuits by 
symmetry / bias.

• To get >~ 3 dB of BAE, need to improve dynamic 
range by better parameter optimization, 
incorporating series arrays of junctions and/or 9-
junction circuits designed to null the first-order 
Kerr nonlinearity.

• Implement cavity resonators to improve the Q of 
the microwave circuit / reduce backaction leakage



Summary

42

• There is a compelling need for quantum sensors for 
fundamental physics

• It will not be possible to fully probe the QCD axion band 
without quantum acceleration

• Radio-frequency quantum upconverters can enable 
measurement better than the SQL below for axion mass 
below 1 µeV

• 29.6 dB of phase-sensitive gain contrast in an RF Quantum 
Upconverter achieved – a first step





DFSZ, 0.45 GeV/cc, B=14T, C=1/2, Q=5x104@1GHz, V=13𝜆𝜆3, crit.coup 

Signal shot noise limit 3σ, t=103 s

Figure Credit: Aaron Chou, FNAL

Sensitivity 
limited only by 
signal photon 
shot noise.

Ground state measurement: QND photon counting

See: David Schuster talk?



Standard E&MAxion dynamics Weak coupling to axions

The axion can also couple to nuclear spins, 
but let’s focus on electromagnetic searches.

The Axion Lagrangian Density:

Weak coupling to electromagnetism

Modified Maxwell’s Equations

This looks like an effective 
current density parallel to a 
background B-field
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