Quantum electromagnetic sensors

and the search for axion dark matter below 1 µeV

Sensors supported by DOE oHEP QuantISED program

DM Radio supported by Heising Simons Foundation Gordon and Betty Moore Foundation

Kent Irwin Stanford University SLAC

Stanford University

QuantISED sub-µeV axion sensor team

Saptarshi Chaudhuri Hsiao-Mei Cho Carl Dawson Peter Graham Kent Irwin Stephen Kuenstner Dale Li Arran Phipps Surjeet Rajendran Jyotirmai Singh Cady van Assendelft Kevin Wells Betty Young Cyndia Yu

Two "strongly motivated" dark-matter candidates

- Weakly Interacting Massive Particle (WIMP)
 - Motivated by supersymmetry
 - Naturalness: thermal production of observed abundances for WIMPs near 100 GeV.
 - Ongoing, 30-year effort to produce (supersymmetry at LHC) and detect (direct darkmatter searches). Much interesting phase space has already been ruled out.
- QCD axion
 - Fixes the standard model: motivated as solution to strong CP problem in QCD and hierarchy problem.
 - Naturalness: misalignment production of observed abundances over full mass range, peV-meV
 - Largely unexplored parameter space.

QCD axion: the need for quantum sensors

- Projected science reach at SQL shown in blue
- Assumptions made about experimental parameters (volume, magnetic field strength) may change—only approximate!

QCD Axion Frequency

QCD axion: the need for quantum sensors

- Projected science reach at SQL shown in blue
- Assumptions made about experimental parameters (volume, magnetic field strength) may change—only approximate!

QCD Axion Frequency

Quantum acceleration required to cover full QCD band

Probing QCD axion through electromagnetism

- Axion field converts to oscillating electromagnetic signal in background DC magnetic field (inverse Primakoff effect)
- Detect using a tunable resonator (an AM radio)

Cavity

Proposal: Sikivie (1983) v>300 MHz: Cavity-based searches (ADMX, HAYSTAC) Proposal: Cabrera, Thomas (2010) v<300 MHz: Lumped-element searches (DM Radio, ABRACADABRA, Florida LC)

DM Radio Pathfinder

Status: In testing / operation

- 0.67 L, no magnet
- Q~200,000 now
- 4 K
- Hidden photon science
- DC SQUID

DM Radio Experiment Family

DM Radio-Quantum DM Radio-50L Status: In construction

- ~0.5 T, 50 L magnet
- Dilution refrigerator
- ALP science
- Platform for quantum sensors

Dark Matter Radio Cubic Meter (DMRadio-m³)

Status: R&D funded under DOE Dark Matter New Initiatives call See Lindley Winslow talk, Thursday 20 Feb 2020, 17:30

- Brings together both DM Radio and ABRACADABRA teams
- QCD axion over 5 MHz 200 MHz (20neV-0.8 $\mu\text{eV})$
- $\sim 4T$, $\sim m^3$ magnet
- Dilution refrigerator

Integrated sensitivity: the figure of merit

- Science reach determined by integrated sensitivity across search band
- Figure of merit with quantum-limited amplifier:

$$U[S(\nu)] = \int_{\nu_l}^{\nu_h} d\nu \left(\frac{|S_{21}(\nu)|^2}{|S_{21}(\nu)|^2 n(\nu) + 1}\right)^2$$

- |S₂₁(ν)|² : transmission from darkmatter signal source to amplifier (entry in scattering matrix S(ν))
- n(v)= signal source thermal occupation number
- "+1" is standard quantum limit
 - A single-pole resonator has nearly ideal integrated sensitivity
 - Substantial sensitivity available outside of resonator bandwidth.

Example: single-pole resonator

S. Chaudhuri et al., arXiv:1904.05806 (2019).

- Ground state
- Cavity resonators (experimental scale of order of Compton wavelength)
- Scattering-mode amplifiers

<~ µeV : High Occupation

- Thermal state
- Lumped LC resonators (experimental scale << Compton wavelength)
- Op amp-mode amplifiers

HAYSTAC: Acceleration through squeezing

HAYSTAC run 1 & 2 combined exclusion plot

HAYSTAC Phase II squeezed state receiver projected acceleration

Droster, Alex G., and Karl van Bibber. "HAYSTAC Status, Results, and Plans." *arXiv preprint arXiv:1901.01668* (2019).

See: Reina Maruyama talk?

Ground state measurement: QND photon counting

Use qubit as an atomic clock whose frequency depends on the number of photons in the cavity. The electric field of even a **single photon** will exercise the non-linearity of the qubit oscillator and shift its frequency.

Count # of photons by measuring the quantized frequency shift of the qubit.

Figure Credit: Aaron Chou, FNAL

Akash Dixit, Aaron Chou, David Schuster

Repeatedly measure the clock frequency to determine whether the cavity contains 0 or 1 photon:

Second regime: High Occupation

Photon counting is useless when $hf \ll k_B T$

- \sqrt{N} thermal fluctuations in the number of resonator photons
- Sensitivity not improved by photon counting
- \rightarrow Backaction evasion

Implement *backaction evasion* to reduce both imprecision and backaction noise below the standard quantum limit, increasing the sensitivity bandwidth

Radio-Frequency Quantum Upconverters: Analagous to Optomechanical Systems

Same Hamiltonian for both systems (to first order in coupling) $\widehat{H} = \hbar \omega_a (\hat{a}^{\dagger} \hat{a} + 1/2) + \hbar \omega_b (\hat{b}^{\dagger} \hat{b} + 1/2) + \widehat{H}_{INT}$ $\widehat{H}_{INT} = -\hbar \widehat{F} \hat{b}^{\dagger} \hat{b} (\hat{a}^{\dagger} + \hat{a}) / \sqrt{2}$

Low Frequency LC Circuit Quadratures

Low-frequency signal flux (black) has components in the X-quadrature (blue) and in the Y-quadrature (red)

$$\widehat{Y} = \frac{1}{\sqrt{2}} \left(\widehat{a} e^{i\omega_a t} - \widehat{a}^{\dagger} e^{-i\omega_a t} \right)$$
$$\widehat{\Phi}(t) = \sqrt{2} \Phi_{zpt} \left(\widehat{X}(t) \cos \omega_a t + \widehat{Y}(t) \sin \omega_a t \right)$$

See optomechanical analogue, e.g. AA Clerk, F. Marquardt, and K. Jacobs, New Journ. Phys. 10, 095010 (2008).

One key difference: optimization for integrated sensitivity

Frequency

Current Response

Noise in LF circuit

Current Response

Noise in LF circuit

Current Response

Noise in LF circuit

• SNR not degraded when readout subdominant to thermal noise

Two contributions to readout noise

Backaction evasion (BAE): reduced readout noise in one quadrature

The reduction in the total X-quadrature noise appears unimpressive

- Electromagnetic sub-µeV axion searches presently use dc SQUIDs in frequency range kHz – 100 MHz.
- The best dc SQUIDs in this frequency range, coupled to macroscopic resonant circuits, are 20 times worse than the SQL, and they couple loss to the resonant circuit.
- A dissipationless sensor is needed that can achieve SQL, and conduct phase-sensitive operations like backaction evasion with electromagnetic signals at audio-RF frequencies.

RF Quantum Upconverters

Lithographic resonator RQUs:3-junction RQU1-junction RQU

Cavity resonator RQUs:

RF Quantum Upconverters

DM Radio Pathfinder Low-frequency resonator (~MHz)

Data illustrating RF Upconversion

- Data illustrating upconversion in singlejunction RQUs
- Single-junction RQU excited on resonance
- The signal information is upconverted to symmetric sidebands on the microwave carrier tone.

Phase-Sensitive Upconversion

If the carrier tone is amplitude modulated in phase with the X-quadrature of the input signal, phase-sensitive amplification of only the Xquadrature is achieved.

Clerk, New Journ. Phys. 10, 095010 (2008).

$$\widehat{\mathbf{H}} = \hbar \omega_a (\hat{a}^{\dagger} \hat{a} + 1/2) + \hbar \omega_b (\hat{b}^{\dagger} \hat{b} + 1/2) + \widehat{\mathbf{H}}_{\text{INT}}$$

$$\widehat{H}_{INT} = -\hbar A \widehat{F} \widehat{\Phi} = -\sqrt{2}\hbar \widetilde{A} \widehat{F} [\widehat{X}(1 + \cos(2\omega_a t)) + \widehat{Y} \sin(2\omega_a t)]$$

If the carrier tone is amplitude modulated in phase with the X-quadrature of the input signal, phase-sensitive upconversion of only the X-quadrature is achieved.

Phase-Sensitive Upconversion Data

Single-junction RQU

Input: 50 kHz flux signal into single-junction RQU

Carrier: 5.5 GHz sinewave amplitude modulated at 50 KHz

Measure: output tone power as a function of phase shift between input sinewave and AM modulation

29.6 dB of phase-sensitive gain contrast

Necessary step towards full backaction evasion

Full Backaction Evasion

Carrier tone modulated to measure only X quadrature

- A backaction signal from the microwave resonator only does work on an LC resonator quadrature, on average, if it is 90 degrees out of phase.
- In this limit, if only the \widehat{X} quadrature is measured, the backaction is injected preferentially into the \widehat{Y} quadrature (which is not measured) BAE
- If the Q of the microwave resonator is high enough (the "good cavity" limit), the sidebands are fully resolved
 Microwave

resonator linewidth

К

$$S_X(\omega) = \frac{\gamma}{(\omega - \omega_a)^2 + (\gamma/2)^2} [1/2 + n_{\rm th} + n_{\rm leak}] + S_{\rm IMP}(\omega)$$

$$S_Y(\omega) = \frac{\gamma}{(\omega - \omega_a)^2 + (\gamma/2)^2} [1/2 + n_{\rm th} + n_{\rm BA}] + S_{\rm IMP}(\omega)$$

$$n_{\rm leak} = \frac{n_{\rm E}}{32}$$

Braginsky, Vorontsov, and Thorne. *Science* **209**, 547 (1980). AA Clerk, F. Marquardt, and K. Jacobs, *New Journ. Phys.* **10**, 095010 (2008).

Next steps

- 29.6 dB of phase-sensitive gain contrast achieved with 1-junction RQU.
- 1-junction RQUs couple to uncontrolled microwave modes in the low-frequency resonator. Implement 3-junction design that cleanly isolates the microwave and low-frequency circuits by symmetry / bias.
- To get >~ 3 dB of BAE, need to improve dynamic range by better parameter optimization, incorporating series arrays of junctions and/or 9junction circuits designed to null the first-order Kerr nonlinearity.
- Implement cavity resonators to improve the Q of the microwave circuit / reduce backaction leakage

- There is a compelling need for quantum sensors for fundamental physics
- It will not be possible to fully probe the QCD axion band without quantum acceleration
- Radio-frequency quantum upconverters can enable measurement better than the SQL below for axion mass below 1 μeV
- 29.6 dB of phase-sensitive gain contrast in an RF Quantum Upconverter achieved – a first step

Ground state measurement: QND photon counting

Weak coupling to electromagnetism

The Axion Lagrangian Density:

The axion can also couple to nuclear spins, but let's focus on electromagnetic searches.

Axion dynamics

Standard E&M

Weak coupling to axions

Modified Maxwell's Equations

 $\boldsymbol{\nabla} \cdot \mathbf{E} = g_{a\gamma\gamma} \mathbf{B} \cdot \boldsymbol{\nabla} a$

 $abla imes \mathbf{B} - \partial_t \mathbf{E} = g_{a\gamma\gamma} \left(\mathbf{E} \times \nabla a - \mathbf{B} \partial_t a
ight)$ $abla imes \mathbf{E} + \partial_t \mathbf{B} = 0$

 $\nabla \cdot \mathbf{B} = 0$

This looks like an effective current density parallel to a background B-field