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Characterization of neuron physiology by regression 
of its time-dependent response with CNN
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Collaboration with● What is a neuron? 
● Neuron simulators/ training data set 
● ML objective
● Designed ML model #1 
● Random Hyper-param scan 
● ML model #693 - hard case predictions
● ‘Adversarial’ predicting
● Living cell measurement and analysis 
● Outlook

Target audience : physicists & ML experts
Summary:  work in progress, new problems as we drill deeper - very exciting !!!

PI
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Ion channels control electrical properties of neuron 
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Sodium
Potassium
Calcium

time
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Why understanding ion channels is important ?
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• There is a need for experimental techniques to measure 
distribution of ion channels, it will help us understand better 
how neurons work.

• Channelopathies

• Epilepsy

• Autism

• Accurate neuron models can help in find targets for 
treatments

• Build better neuronal networks that simulate neuronal circuits
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Neuron response simulators
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a) Izhikevich: point cell b) Hodgkin–Huxley:
 ball with 2 sticks cell 
geometry

c) Mainen: simplified 
cell morphology
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Compartmental cell model (Mainen)
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Yang & Ben-Shalom et. al. 2016
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Stimulus: ‘reset’+chirp
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Range used for ML training

hyper-polarization
(no spiking)

self-spiking
(if any)

Stimulated
spiking

INPUT
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Cell response to stimulus depends on its properties

7
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ML training objectives
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1. Map 1D time series of cell response to handful of ion channel conductance 
params describing the cell properties (in a framework of specific cell model)

2. Provide error for predicted params ( by training an ensemble)
3. Provide ‘out-of-range’  warning for a-typical time series (e.g. experimental data 

can be corrupted)
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Data curation (X)
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Traces (time dependent neuron response)
● raw range [-80,+50] mV
● Domain expert: amplitude of spikes has low information content
● Mapping:    X’= log10( X+81/mV)

X original X  scaled
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Data curation  (Y)
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Cell params: Ion channels conductances , 
membrane resistance, m. capacitance, etc.

● raw range of phyPar is diverse
● Linear mapping:    Y’= a+b*Y 
● → unitPar range is  [-1,1] 
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1D Convolutional Neural Network
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few CNN blocks 
* local reception filed, kernel=5
* activation=LeakyReLU 
* maxPool

Flatten 

few FC blocks
* Dense(act=LeakyReLU)
* Dropout(0.01)

Output  K floats: gna_dend    
gna_node    gna_soma    ….
Dense(K, act=1.2*tanh)

Input: cell response
9000 floats, 1D vector
amplitude normalized

$ cat hpar_cellRegr_cnn1.yaml
# CNN params
conv_filter: [6,12,18,24,30,36]
conv_kernel: 5
conv_repeat: 2
pool_len: 3

# FC params
fc_dims: [20, 10, 10]
lastAct: tanh
outAmpl: 1.2
dropFrac: 0.02

# training
lossName: mse
optimizerName: adam
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ML model #1 results
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4-params Izhikevich neuron simulator  10 params Mainen ‘morphological’ simulator 
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Random search of ML hyper-parameters
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$grep np.random genHPar_CellHH.py
np.random.seed() #  set the seed to /dev/urandom 
    numLyr=np.random.randint(2,8)
    filt0=np.random.randint(2,21)
    filtIncr=np.random.randint(0,8)
    kern=np.random.randint(3,8)
    pool=np.random.randint(3,8)
    repeat=np.random.randint(1,4)
    numLyr=np.random.randint(2,8)
    filtEnd=np.random.randint(nOut,51)
    filtIncr=np.random.randint(0,20)
    #lastAct=str(np.random.choice(['linear','tanh']))
    #ampl=np.random.uniform(1.0,2.0)
    dropFrac=float(np.random.choice([0.01, 0.02, 0.05]))
    #loss=str(np.random.choice(['mse','mae']))
    opt=str(np.random.choice(['adam','nadam''adadelta']))
    BS=1<<np.random.randint(4,8)
    lrReduce=np.random.uniform(0.2,0.8)^2

while True: # reject invalid models
    hpar1=get_CNN_HPar()
    if isValid_CNN_HPar(args.nInpFeat,hpar1) : break

$cat hpar_cellRegr_693.yaml

# CNN params
conv_filter: [18, 25]
conv_kernel: 5
conv_repeat: 3
pool_len: 7

# FC params
dropFrac: 0.01
fc_dims: [148, 131, 114, 97, 80, 63, 46]
lastAct: tanh
outAmpl: 1.2

# training
batch_size: 32
lossName: mae
optimizerName: adam
reduceLR_factor: 0.14
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Hyper-param scan (checked 400+ models)
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Loss-ranked list of 400+ scanned models, top 130 w/ loss<0.1 shown 

The meaning  of loss
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Top-3 contenders: 71443_410, 71443_335, 71047_203
 had initial losses of 0.026, 0.037, 0.040
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Stability of top 3  ML models
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_410 : large spread of loss
4 of 16 timed out (diverged ?)

_335 : huge spread of loss
2 of 16 not converged yet (good!)

_203 : narrow spread of loss
6 of 16 not converged yet  
( very good!)
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Model-693 predictions for a hard case
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ML-predictions for 10-param HH 
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← Soma 
Radius 10.5 um

← 2 Basal dendrites of same properties
Length = 1/4th apical length
Radius = apical radius
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‘Adversarial’ predicting (setup=Mainen)

17

 Input traces from Mainen 10param,  scaled for ML, random sample

 Model was trained of  train+val data

Predict 10 params for ‘test’ data.
No comparison to truth.
Show : 1D distribution of params and 
2D correlations between pairs of params.
Uniform is good.

 Note, the last layer of ML-model has the 
activations 1.2* tanh, yet predictions are 
confined to range [-1,1]  - this is good too.
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Adversarial predicting: input=Hodgkin–Huxley
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Input traces from  HH_2dend_10param    scaled for ML, random sample

Mainen-trained model
Predict 10 params for HH traces:

- Some predicted values are 
physical
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Adversarial predicting: input=Izhikevich
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 Input traces from Izhikevich 4 parameters ,   scaled for ML, random sample

Mainen-trained model
Predict 10 params for Izhikevich traces:

- Predicted values are mostly -1.2 
or +1.2  - it is non-physical

activations 1.2* tanh
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Experimental data from pyramidal cell
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Current clamp recording from acute slices, find and 
measure from tufted pyramidal neuron

Current clamp:
● INPUT Controlled current source (nA)
● Output Measures voltage (-70 mV)

Stimulus duration 300ms 
(shown X-axis: 180 ms)

Repetition rate ~1Hz 
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Who is the observer?

21

Experiment
Current clamp:

● INPUT X_5
● Output act(sum(x))

X_1X_2

X_3
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Experiment .NE. simulation
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Width of spikes differs

→  ← 

→ ← 

Zoom-in, experiment sweep 204

experiment sweep 17
has some high freq. noise

experiment 

simulation 

Digital noise in experiment
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Experimental data analysis 
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Neuron (connectivity)
 is changing as function of time !

c
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Step 
stim

chirp 
stim

chirp 
stim
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Predicting cell_A params using Izhi ML-model 
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32 ML predictions per 
sweep

Average +/- rms
(plotted for every 8th 
sweep)

10
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Izhi traces with for params <10% off ML pred.
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Stimulus

cell_A trace #10

Top-6 Izhi matches
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Summary
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Purkinje cell

● CNN-based ML-model is capable to regress 
time-dependent response into 10-param neuron 
model

● K-fold training provides a measure of error of 
prediction

● Improvement is needed:
○ Cross-model predictions
○ Tuning simulator to experimental data
○ More experimental data, more QA
○ Comparison of ML  vs. standard methods 

(MOO, eFEL)
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Backup

27
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Accuracy vs. input size
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*) the range [0.11, 0.29] sec, aka [5.5k,14.5k] , delta=9000bins = 180ms,
*) training data:  mainein_10p26 data , chirp23a, use 1M  traces
Method: 

● Fix model: 203d
● Vary  input size: 1M, 500K, 200k, 100k, 50k
● Train 32 models using 8 kfolds until convergence
● Compute test loss after the training for 50k events

Job ID Input size Avr 
lossMSE

Avr train
 time

Typical rmsErr 
gkv_axon 

75914 100k 0.056 55 min 48%

76057 200k 0.040 90 min 38%

76016 400k 0.030 160 min 31%

75946 800k 0.024 280 min 27%

Example training on 800k traces


