Astrophysical Neutrinos: IceCube

Hadar Lazar May 1, 2019

100-years-old riddle

- Where do ultra-high cosmic rays come from?
- By the time they reach Earth, their paths have been bent by interstellar magnetic fields
- Solution: use neutrinos! To find the source of these cosmic rays, we can study neutrinos that were produced in or near the astrophysical particle accelerator

IceCube neutrino detector

- A 1 km³ detector made of Antarctic ice buried beneath the surface to a depth of about 2,500
- Contains:
 - 5,160 digital optical modules (DOMs), each with a respective PMT
 - Strings that are 1,450 to 2,450 meters in depth holding 60 DOMs each
 - DeepCore: Eight strings at the center of the array that are deployed more compactly
 - IceTop: measures the cosmic-ray arrival directions in the Southern Hemisphere as well as the flux and composition of cosmic rays

IceCube neutrino detector

5,160 optical sensors detect Cherenkov light from charged particles produced when neutrinos interact in the ice

Vetoing background

- To avoid downward-going cosmic-ray muons produced in cosmic-ray air showers:
 - Select upward-going tracks, since Earth acts as a muon shield
 - Choose only interactions that originate within the detector
- To isolate atmospheric neutrinos, IceCube uses calculations of particle production in the atmosphere to model neutrino production. These look for:
 - A softening in the energy spectrum
 - A concentration around the horizon
 - Cosmic-ray muons, which are likely produced by the same cosmic-air showers that produce atmospheric neutrinos

Finding astrophysical neutrinos

- Search for point sources that have a local concentration
- Isolate particularly energetic neutrinos
- Select downward-going neutrinos that are unaccompanied by cosmicray air shower and atmospheric muons
- Search for v_{τ} , which are very rare in air showers but common in astrophysical flux

Point source searches

- On Sept. 22, 2017, IceCube observed a neutrino which was energetic enough to be of likely astrophysical origin
- The Fermi telescope showed that the position of IceCube's measurement was consistent with blazar TXS0506 +56, which was emitting gamma-rays with an energy above 1 GeV
- DATA from the MAGIC telescope showed that the source was also emitting photons with energies above 100 GeV
- Fulfills the mission of multimessenger astronomy, which aims for globally coordinated observations of cosmic rays, neutrinos, gravitational waves, and electromagnetic radiation

Point source searches

Neutrino event display. Time at which a DOM observed a signal is reflected in the color of the hit, with dark blues for earliest hits and yellow for latest

Findings

- First find were two neutrinos, named Bert and Ernie
- "High-Energy Starting Event" (HESE) selected events that deposited more than 6,000 observed photons (photoelectrons) in the detector where the first significant deposition was in the signal region
- HESE's three-year search crossed the 5σ discovery threshold
- Newer search which found 82 events in 2078 live days of data, with expected background from downward-going muons was 25±7 events, and atmospheric neutrinos ~16 events

Other possibilities

- Gamma rays coincident with neutrinos
- Indirect dark matter searches
- Galactic supernovae

Thank you!

Refrences

M. G. Aartsen et al. [IceCube and Fermi-LAT and MAGIC and AGILE and ASAS-SN and HAWC and H.E.S.S. and INTEGRAL and Kanata and Kiso and Kapteyn and Liverpool Telescope and Subaru and Swift NuSTAR and VERITAS and VLA/17B-403 Collaborations], Science 361, no. 6398, eaat1378

M. G. Aartsen et al. [IceCube Collaboration], arXiv:1710.01191.

Fun Slides

Neutrinos as a the drivers of supernovae

- Massive stars end their lives in a gigantic explosions—this is supernovae!
- There is a running theory that neutrinos play into the physical processes that trigger and drive the explosion
- Leaking out from a hot interior of the neutron star, a small fraction of neutrinos are absorbed in surrounding gas
- The heating causes violent motions of the gas, which when sufficiently powerful, sets of a supernova
- Outer layers of the dying star are expelled into circumstellar space along with chemical elements the star has assembled during its life
- New radioactive species are created in the hot ejecta of the explosion
 - 44Ti (decays into calcium)
 - 56Ni (decays into iron)

Neutrinos as a the drivers of supernovae

- The violent boiling of the neutrino-heated gas causes non-spherical blast waves
- This sets off a large-scale asymmetry on the ejected stellar matter and the supernova with two immediate consequences:
 - Neutron star receive a recoil momentum opposite the direction of the strong explosion
 - Production of heavy elements is more efficient in directions where the explosion is stronger and matter more heated
- Both these effects were predicted years ago by 3D simulations of neutrino-driven supernova explosions at the RIKEN Astrophysical Big Bang Laboratory

Neutrinos as a the drivers of supernovaes

- New observations of Cassiopeia A (Cas A), aligned with theoretical prediction
- Cas A is:
 - the remnant of a supernova whose light reached the Earth around the year 1680, could confirm this theoretical prediction
 - 11,000 light years away
- Both from observation and simulation, the biggest and brightest clumps with most of 44Ti are found in the upper half of the gas remnant

